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1 Lecture Outline

• Market Efficiency

• The Forms of the Random Walk Hypothesis

• Testing the Random Walk Hypothesis



2 Reading

• FMUND, chapter 1

• MFTS, chapter 3, section 3.2.9

• APDVP, chapters 5 - 7.



3 Market Efficiency

An Intuitive Definition (Campbell, Lo and MacKinley, 1987, pg 20)

A capital market is said to be efficient if it fully and correctly reflects all rel-
evant information in determining security prices. Formally, the market is said
to be efficient with respect to some information set...if security prices would
be unaffected by revealing that information to all participants. Moreover, effi-
ciency with respect to an information set...implies that it is impossible to make
economic profits by trading on the basis of [that information set].



3.1 Types of Market Efficiency

• Weak Form: Information set includes only the history of prices or returns

• Semistrong Form: The information set includes all publicly available infor-
mation

• Strong Form: The information set contains all public and private informa-
tion



3.2 Efficient Markets and the Law of Iterated Expectations

Samuelson’s fameous result: Let V ∗ = fundamental value of asset and assume
Pt is a rational forecast. Then

Pt = E[V ∗|It]
Pt+1 = E[V ∗|It+1]

E[Pt+1 − Pt|It] = E[E[V ∗|It+1]−E[V ∗|It]|It]
= E[V ∗|It]−E[V ∗|It] = 0

Thus realized changes in prices are unforecastable given information in the set
It



3.3 Testing Market Efficiency

• Any test of market efficiency must assume an equilibrium model that de-
fines normal security returns (e.g. CAPM)

• Perfect efficiency is unrealistic. Grossman and Stiglitz (1980) argue that
you need some inefficiency to promote information gathering activity.

• The notion of relative efficiency - the efficiency of one market measured
against another (e.g. NYSE vs. NASDAQ) may be a more useful concept
than the all or nothing view taken by the traditional market efficiency
literature

— The concept of price discovery in multiple markets is an example of
relative efficiency



4 The Random Walk Hypotheses

pt = μ+ pt−1 + εt, pt = ln(Pt)

=⇒ rt = μ+ εt, rt = ∆pt

• RW1: εt is independent and identically distributed (iid) (0, σ2). Not re-
alistic

• RW2: εt is independent (allows for heteroskedasticity). Test using filter
rules, technical analysis

• RW3: εt is uncorrelated (allows for dependence in higher moments). Test
using autocorrelations, variance ratios, long horizon regressions



4.1 Autocorrelation Tests

Assume that rt is covariance stationary and ergodic. Then

γk = cov(rt, rt−k)

ρk = γk/γ0

and sample estimates are

γ̂k =
1

T

T−kX
t=1

(rt − r̄)(rt+k − r̄), ρ̂k =
γ̂k
γ̂0

r̄ =
1

T

TX
t=1

rt



Result: Under RW1

E[ρ̂k] = − T − k

T (T − 1)
+O(T 2)

√
T ρ̂k

A
˜ N(0, 1)

Box-Pierce Q-statistic: Consider testing H0 : ρ1 = · · · = ρm = 0. Under
RW1

MQ = T (T + 2)
mX
k=1

ρ̂2k
T − k

˜ χ2(m)



4.2 Heteroskedasticity Robust Autocorrelation Tests

To test for autocorrelation in the raw returns when it is suspected that there
are GARCH effects present, Diebold and Lopez (1995) suggested using the
following heteroskedasticity robust version of MQ:

MQHC(m) = T (T + 2)
mX
j=1

1

T − j

⎛⎝ σ̂4

σ̂4 + γ̂j

⎞⎠ ρ̂2j˜ χ
2(m)

where σ̂4 is a consistent estimate of the squared unconditional variance of
returns, and γ̂j is the sample autocovariance of squared returns.



4.3 Variance Ratios

Intuition. Under RW1, the 2-period variance ratio satisfies

VR(2) =
var(rt(2))

2 · var(rt)
=
var(rt + rt−1)
2 · var(rt)

=
2σ2

2σ2
= 1

If rt is a covariance stationary process then

VR(2) =
var(rt) + var(rt−1) + 2cov(rt, rt−1)

2 · var(rt)

=
2σ2 + 2γ1
2σ2

= 1 + ρ1



Three cases:

• ρ1 = 0 =⇒ VR(2) = 1

• ρ1 > 0 =⇒ VR(2) > 1 (mean aversion)

• ρ1 < 0 =⇒ VR(2) < 1 (mean reversion)



General q − period variance ratio under stationarity

VR(q) =
var(rt(q))

q · var(rt)
= 1 + 2

q−1X
k=1

Ã
1− k

q

!
ρk

rt(q) = rt + rt−1 + · · ·+ rt−q+1

Remark 1 : Under RW1, VR(q) = 1.

Remark 2 : For stationary and ergodic returns with a 1-summable Wold repre-
sentation

rt = μ+
∞X
j=0

ψjεt−j, εt ∼ iid(0, σ2), ψ0 = 1,
X

j|ψj| <∞

it can be shown that

lim
q→∞VR(q) =

σ2ψ(1)2

γ0
=
lrv(rt)

var(rt)
=
long-run variance
short-run variance



Remark 3 : Under RW2 and RW3, VR(q) = 1 provided

1

T

TX
t=1

var(rt)→ σ̄2 > 0

4.3.1 Lo and MacKinlay’s Test Statistics

Lo and MacKinlay (1988, 1989) developed a number of test statistics for testing
the random walk hypothesis based on the estimated variance ratio using the
sample one-period returns {r1, . . . , rTq} :

dVR(q) = dvar(rt(q))
q ·dvar(rt)

The form of the statistic depends on the particular random walk model (RW1,
RW2 or RW3) assumed under the null hypothesis.



Under RW1, dVR(q) is computed using
dVR(q) = σ̂2(q)

σ̂2

where

σ̂2 =
1

Tq

TqX
k=1

(rk − μ̂)2, σ̂2(q) =
1

Tq2

TqX
k=q

(rk(q)− qμ̂)2,

μ̂ =
1

Tq

TqX
k=1

rk =
1

Tq
(pTq − p0)

Lo and MacKinlay show that, under RW1,q
Tq(dVR(q)− 1) A∼ N(0, 2(q − 1))

ψ̂(q) =

Ã
Tq

2(q − 1)

!1/2
(dVR(q)− 1) A∼ N(0, 1))



Decision rule: reject RW1 at the 5% level if

|ψ̂(q)| > 1.96

Remarks:

1. Very often dVR(q) and ψ̂(q) are computed for various values of q anddVR(q) is plotted against q with ± 2SE values based on its asymptotic
distribution. Note that the SE bands do not represent a simultaneous test
for all values of q considered.

2. Variance ratio tests are available in S+Finmetrics and the R package vrtest.



Lo and MacKinlay also derive a modified version variance ratio statistic based
on the following bias corrected estimates of σ2 and σ2(q) :

σ̄2 =
1

Tq − 1

TqX
k=1

(rk − μ̂)2, σ̄2(q) =
1

m

TqX
k=q

(rk(q)− qμ̂)2

m = q(Tq − q + 1)

Ã
1− q

Tq

!
Defining VR(q) = σ̄2(q)/σ̄2, the biased corrected variance ratio statistic is

ψ̄(q) =

Ã
3Tq2

2(2q − 1)(q − 1)

!1/2
(VR(q)− 1) A∼ N(0, 1))



The variance ratio statistics ψ̂(q) and ψ̄(q) are not valid under the empirically
relevant RW2 and RW3 models. For these models, Lo and MacKinlay derived
the heteroskedasticity robust variance ratio statistic

ψ∗(q) = Ω̂(q)−1/2(VR(q)− 1) A∼ N(0, 1))

where

Ω̂(q) =
q−1X
j=1

Ã
2(q − j)

j

!
δ̂j, δ̂j =

PTq
t=j+1 α̂0tα̂jt³PTq

j=1 α̂0t
´2

α̂jt = (rt−j − rt−j−1 − μ̂)



4.4 Empirical Results from CLM

CML chapter 2, section 8. CRSP value-weighted (VW) and equal weighted
(EW) indices, individual securities from 1962 - 1994

• Daily, weekly and monthly cc returns from VW and EW indices show
significant 1st order autocorrelation

• dVR(q) > 1 and ψ∗(q) statistics reject RW3 for EW index but not VW
index.

— Market capitalization or size may be playing a role. In fact, dVR(q) > 1

and ψ∗(q) are largest for portfolios of small firms.



• For individual securities, typically dVR(q) < 1 (negative autocorrelation)
and ψ∗(q) is not significant!!! How can portfolio dVR(q) > 1 when indi-
vidual security dVR(q) < 1?

4.4.1 Cross lag autocorrelations and lead-lag relations

Result: Portfolio returns can be positively correlated and securities returns can
be negatively correlated if there are positive cross lag autocorrelations between
the securities in the portfolio.



Let Rt denote an N × 1 vector of security returns. Define

γkij = cov(rit, rjt−k) = cross lag autocorrelation

Γk = cov(Rt,Rt−k) =

⎛⎜⎜⎜⎜⎝
γk11 γk12 · · · γk1N
γk21 γk22 · · · γk2N... ... . . . ...
γkN1 γkN2 · · · γkNN

⎞⎟⎟⎟⎟⎠
Let Rmt = 10Rt/N = equally weighted portfolio. Then

cov(Rm,t, Rm,t−1) =
1

N2
10Γ11

corr(Rm,t, Rm,t−1) =
10Γ11
10Γ01

=
10Γ11− tr(Γ1)

10Γ01
+
tr(Γ1)

10Γ01
Note

10Γ11− tr(Γ1) contains only cross-autocovariances
tr(Γ1) = contains only own-autocovariances



4.5 Traditional Views of Market Efficiency (circa 1970)

1. CAPM is a good measure of risk

2. Returns are close to unpredicatable

(a) Stock, bond and foreign exchange bets are not predictable

(b) Market volatility does not change much through time

3. Professional managers do not reliably outperform simple indices and passive
portfolios once one corrects for risk



4.6 Modern Empirical Research (Cochrane, 2001)

1. There are assets, portfolios, funds, and strategies whose average returns
cannot be explained by their market betas

2. Returns are predictable

(a) dividend/price ratio and term premium can predict returns

(b) Bond and foreign exchange returns are predictable

3. Some funds seem to outperform simple indices, even after controling for
risk through market betas


