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Summary Realized kernels use high-frequency data to estimate daily volatility of individual
stock prices. They can be applied to either trade or quote data. Here we provide the details of
how we suggest implementing them in practice. We compare the estimates based on trade and
quote data for the same stock and find a remarkable level of agreement.

We identify some features of the high-frequency data, which are challenging for realized
kernels. They are when there are local trends in the data, over periods of around 10 minutes,
where the prices and quotes are driven up or down. These can be associated with high volumes.
One explanation for this is that they are due to non-trivial liquidity effects.

Keywords: HAC estimator, Long run variance estimator, Market frictions, Quadratic
variation, Realized variance.

1. INTRODUCTION

The class of realized kernel estimators, introduced by Barndorff-Nielsen et al. (2008a), can
be used to estimate the quadratic variation of an underlying efficient price process from high-
frequency noisy data. This method, together with alternative techniques such as subsampling
and pre-averaging, extends the influential realized variance literature which has recently been
shown to significantly improve our understanding of time-varying volatility and our ability to
predict future volatility—see Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002)
and the reviews of that literature by, for example, Andersen et al. (2008) and Barndorff-Nielsen
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and Shephard (2007).1 In this paper, we detail the implementation of our recommended realized
kernel estimator in practice, focusing on end effects, bandwidth selection and data cleaning
across different types of financial databases.

We place emphasis on methods that deliver similar estimates of volatility when applied
to either quote data or trade data. This is difficult as they have very different microstructure
properties. We show realized kernels perform well on this test. We identify a feature of some
data sets, which causes these methods difficulties—gradual jumps. These are rare in financial
markets; they are when prices exhibit strong linear trends for periods of quite a few minutes. We
discuss this issue at some length.

In order to focus on the core issue, we represent the period over which we wish to measure the
variation of asset prices as the single interval [0, T ]. We consider the case where Y is a Brownian
semimartingale plus jump process (BMSJ ) given from

Yt =
∫ t

0
audu +

∫ t

0
σudWu + Jt , (1.1)

where Jt = ∑Nt

i=1 Ci is a finite activity jump process (meaning it has a finite number of jumps
in any bounded interval of time). So, Nt counts the number of jumps that have occurred in the
interval [0, t] and Nt < ∞ for any t. We assume that a is a predictable locally bounded drift, σ

is a càdlàg volatility process and W is a Brownian motion, all adapted to some filtration F . For
reviews of the econometrics of processes of the type Y see, for example, Shephard (2005).

Our object of interest is the quadratic variation of Y ,

[Y ] =
∫ T

0
σ 2

u du +
NT∑
i=1

C2
i ,

where
∫ T

0 σ 2
u du is the integrated variance. We estimate it from the observations

Xτ0 , . . . , Xτn
, 0 = τ0 < τ1 < · · · < τn = T ,

where Xτj
is a noisy observation of Yτj

,

Xτj
= Yτj

+ Uτj
.

We initially think of U as noise and assume E(Uτj
) = 0, Var(Uτj

) = ω2. It can be due to, for
example, liquidity effects, bid/ask bounce and misrecording. Specific models for U have been
suggested in this context by, for example, Zhou (1996), Hansen and Lunde (2006), Li and
Mykland (2007), and Diebold and Strasser (2007). We will write U ∈ WN to denote the case
where (Uτ0, . . . , Uτn

) are mutually independent and jointly independent of Y .
There has been substantial recent interest in learning about the integrated variance and

the quadratic variation in the presence of noise. Leading references include Zhou (1996),
Andersen et al. (2000), Bandi and Russell (2008), Hansen and Lunde (2006), Zhang et al.
(2005), Zhang (2006), Kalnina and Linton (2008), Jacod et al. (2007), Fan and Wang (2007), and
Barndorff-Nielsen et al. (2008a).

1 Leading references on this include Zhang et al. (2005) Zhang (2006) and Jacod et al. (2007).
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Our recommended way of carrying out estimation based on realized kernels is spelt out in
Barndorff-Nielsen et al. (2008b). Their non-negative estimator takes on the following form:

K(X) =
H∑

h=−H

k

(
h

H + 1

)
γh, γh =

n∑
j=|h|+1

xjxj−|h|, (1.2)

where k(x) is a kernel weight function. We focus on the Parzen kernel, because it satisfies the
smoothness conditions, k′(0) = k′(1) = 0, and is guaranteed to produce a non-negative estimate.2

The Parzen kernel function is given by

k(x) =

⎧⎪⎨
⎪⎩

1 − 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1 − x)3 1/2 ≤ x ≤ 1

0 x > 1.

Here xj is the jth high frequency return calculated over the interval τj−1–τj in a way that is
detailed in Section 2.2. The method by which these returns are calculated is not trivial, for the
accuracy and depth of data cleaning is important, as are the influence of end conditions.

This realized kernel has broadly the same form as a standard heteroskedasticity and
autocorrelated (HAC) covariance matrix estimator familiar in econometrics (e.g. Andrews,
1991), but unlike them, the statistics are not normalized by the sample size. This makes their
analysis more subtle and the influence of end effects theoretically important.

Barndorff-Nielsen et al. (2008b) show that as n → ∞ if K(U )
p→ 0 and K(Y )

p→ [Y ] then

K(X)
p→ [Y ] =

∫ T

0
σ 2

u du +
NT∑
i=1

C2
i .

The dependence between U and Y is asymptotically irrelevant. They need H to increase with n

in order to eliminate the noise in such a way that K(U )
p→ 0. With H ∝ nη, we will need η >

1/3 to eliminate the variance and η > 1/2 to eliminate the bias of K(U), when U ∈ WN .3 For

K(Y )
p→ [Y ], we simply need η < 1. Barndorff-Nielsen et al. (2008b) show that H ∝ n3/5 is the

best trade-off between asymptotic bias and variance.4

Their preferred choice of bandwidth is

H ∗ = c∗ξ 4/5n3/5, with c∗ =
{

k′′(0)2

k
0,0•

}1/5

and ξ 2 = ω2√
T

∫ T

0 σ 4
u du

, (1.3)

2 The more famous Bartlett kernel has k(x) = 1 − |x|, for |x| ≤ 1. This kernel is used in the Newey and West (1987)
estimator. The Bartlett kernel will not produce a consistent estimator in the present context. The reason is that we need
both k(0) − k(1/H ) = o(1) and H/n = o(1), which is not possible with the Bartlett kernel.

3 This assumes a smooth kernel, such as the Parzen kernel. If we use a ‘kinked’ kernel, such as the Bartlett kernel,
then we need η > 1/2 to eliminate the variance and the impractical requirement that H/n → ∞ in order to eliminate
the bias. Flat-top realized kernels are unbiased and converge at a faster rate, but are not guaranteed to be non-negative.
The latter point is crucial in the multivariate case. In the univariate case, having a non-negative estimator is attractive but
the flat-top kernel is only rarely negative with modern data. However, if [Y] is very small and the ω2 very large, which
we saw on slow days on the NYSE when the tick size was $1/8, then it can happen quite often when the flat-top realized
kernel is used. Of course our non-negative realized kernels do not have this problem. We are grateful to Kevin Sheppard
for pointing out these ‘negative, days.

4 This means that K(X)
p→ [Y ] at rate n1/5, which is not the optimal rate obtained by Barndorff-Nielsen et al. (2008a)

and Zhang (2006), but has the virtue of K(X) being non-negative with probability one, which is generally not the case for
the other estimators available in the literature.
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where c∗ = ((12)2/0.269)1/5 = 3.5134 for the Parzen kernel. The bandwidth H ∗ depends on the
unknown quantities ω2 and

∫ T

0 σ 4
u du, where the latter is called the integrated quarticity. In the

next section, we define an estimator of ξ , which leads to a bandwidth, Ĥ ∗ = c∗ξ̂ 4/5n3/5, that can
be implemented in practice.

Although the assumption that U ∈ WN is a strong one, it is not needed for consistency.

Previously K(U )
p→ 0 has been shown under quite wide conditions, allowing, for example, the

U to be a weakly dependent covariance stationary process. The realized kernel estimator in (1.2)
is robust to serial dependence in U and can therefore be applied to the entire database of high-
frequency prices. In comparison, Barndorff-Nielsen et al. (2008a) applied the flat-top realized
kernel to prices sampled approximately once per minute, in order not to be in obvious violation
of U ∈ WN—an assumption that the flat-top realized kernel estimator is based upon.

The structure of the paper is as follows. In Section 2, we discuss the selection of the band-
width H and the important role of end effects for these statistics. This is followed by Section 3,
which is on the data we used in our analysis and the data cleaning we employed. We then look
at our data analysis in Section 4, suggesting there are some days where our methods are really
challenged, while on most days, we have a pretty successful analysis. Overall, we produce the
empirically important result that realized kernels applied to quote and trade data produce very
similar results. Hence for applied workers, they can use these methods on either type of data
source with some comfort. This analysis is followed by a conclusion in Section 5.

2. PRACTICAL IMPLEMENTATION

2.1. Bandwidth selection in practice

Initially Barndorff-Nielsen et al. (2008a) studied flat-top, unbiased realized kernels, but their
flat-top estimator is not guaranteed to be non-negative. This work has been extended to the non-
negative realized kernels (1.2) by Barndorff-Nielsen et al. (2008b), and it is their results we use
here. Their optimal bandwidth depends on the unknown parameters ω2 and

∫ T

0 σ 4
u du, through ξ

as spelt out in (1.3). We estimate ξ very simply by

ξ̂ 2 = ω̂2
/

ÎV ,

where ω̂2 is an estimator of ω2 and ÎV is a preliminary estimate of IV = ∫ T

0 σ 2
u du. The latter

is motivated by the fact that it is not essential to use a consistent estimator of ξ , and IV2 

T

∫ T

0 σ 4
u du when σ 2

u does not vary too much over the interval [0, T ], and it is far easier to obtain

a precise estimate of IV than of
√

T
∫ T

0 σ 4
u du.5

In our implementation we use

ÎV = RVsparse,

which is a subsampled realized variance based on 20 minute returns. More precisely, we compute
a total of 1200 realized variances by shifting the time of the first observation in 1-second

5 Consider, for instance, the simple case without noise and T = 1, where
∑

y2
j is consistent for IV and

√
n
3

∑
y4

i is

consistent for
√∫

σ 4
u du. With constant volatility the asymptotic variances of these two estimators are 2σ 4 and 8

3 σ 4,

respectively. Further, the latter estimator is more sensitive to noise.
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increments. RVsparse is simply the average of these estimators.6 This is a reasonable starting
point, because market microstructure effects have negligible effects on the realized variance at
this frequency.7 To estimate ω2 we compute the realized variance using every qth trade or quote.
By varying the starting point, we obtain q distinct realized variances, RV(1)

dense, . . . , RV(q)
dense, say.

Next we compute

ω̂2
(i) = RV(i)

dense

2n(i)
, i = 1, . . . , q,

where n(i) is the number of non-zero returns that were used to compute RV(i)
dense. Finally, our

estimate of ω2 is the average of these q estimates,

ω̂2 = 1

q

q∑
i=1

ω̂2
(i).

For the case q = 1, this estimator was first proposed by Bandi and Russell (2008) and Zhang et al.
(2005). The reason that we choose q > 1 is robustness. For ω̂2

(i) to be a sensible estimator of E(U 2
τ )

it is important that E(Uτj
Uτj+q

) = 0. There is overwhelming evidence against this assumption
when q = 1, particularly for quote data. See Hansen and Lunde (2006) and the figures presented
later in this paper. So, we choose q such that every q-th observation is, on average, 2 minutes
apart. On a typical day in our empirical analysis in Section 4, we have q ≈ 25 for transaction
data and q ≈ 70 for mid-quote data. These values for q are deemed sufficient for E(Uτj

Uτj+q
) = 0

to be a sensible assumption.
Another issue in using RV(i)

dense/(2n(i)) as an estimator of ω2, is an implicit assumption that ω2

is large relative to [Y ]/(2n(i)). This problem was first emphasized by Hansen and Lunde (2006),
who showed that the variance of the noise is very small after the decimalisation, in particular
for actively traded assets where they found ω2 � 0.001 · [Y ]. The main reason being that the
decimalisation has reduced some of the main sources for the noise, U , such as the magnitude of
‘rounding errors’ in the observed prices, and the bid-ask bounces in transaction prices. So our
estimator, ω̂2 is likely to be upwards biased, which results in a conservative choice of bandwidth
parameter. But there are a couple of advantages in using a conservative value of H. One is that
a too small value for H will, in theory, cause more harm than a too large value for H ; another
is that a larger value of H increases the robustness of the realized kernel to serial dependence in
U τ .

So, in our empirical analysis we use the expression Ĥ = 3.5134ξ̂ 4/5n3/5 to choose the band-
width parameter for the realized kernel estimator that is based on the Parzen kernel function.

It should be emphasized that our bandwidth choice is optimal in an asymptotic MSE
sense. Alternative selection methods that seek to optimize the finite sample properties of
estimators (under the assumption that U ∈ WN and Y ⊥⊥ U ) have been proposed in Bandi
and Russell (2006b). They focus on flat-top realized kernels (and related estimators), but

6 The initial two scale estimator of Zhang et al. (2005) takes this type of average RV statistic and subtracts a positive
multiple of a non-negative estimator of ω2—to try to bias adjust for the presence of noise (assuming Y ⊥⊥ U ).
Hence this two-scale estimator must be below the average RV statistic. This makes it unsuitable, by construction, for
mid-quote data where RV is typically below integrated variance due to its particular form of noise. Their bias corrected
two scale estimator is re-normalized and so maybe useful in this context.

7 RVsparse was suggested by Zhang et al. (2005) and has a smaller sampling variance than a single RV statistic and is
more objective, for it does not depend upon the arbitrary choice of where to start computing the returns.
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their approach can be adapted to the class of non flat-top realized kernels that are defined
by (1.2).

2.2. End effects

In this section, we discuss end effects. From a theoretical angle, we will explain why they show
up in this estimation problem, why they are important, and how these effects are eliminated in
the computation of the realized kernel. From an empirical perspective, we will then argue that
they can largely be ignored in practice.

The realized autocovariances, γ h, h = 0, 1, . . . , H are not divided by the sample size.
This means that the realized kernel is influenced by the noise components of the first and last

observations in the sample, U0 and U T , respectively. The problem is that K(U )
p→ U 2

0 + U 2
T �= 0

as n → ∞. The important theoretical implication is that K(X) would be inconsistent if applied
to raw price observations. Fortunately, this end-effect problem is easily resolved by replacing the
first and last observation by local averages. The implication is that K(U ) = Ū 2

0 + Ū 2
T + op(1),

where Ū0 and ŪT both are averages of m, say, observations. If U t is ergodic with E(U t ) = 0, then

it follows that K(U )
p→ 0 as m → ∞. So, the local averaging at the two end-points eliminates

the end-effects.
While the contribution from end effects are dampened by the local averaging (jittering), a

drawback from increasing m is that fewer observations are available for computing the realized
kernel. This follows from the fact that 2m observations are used up for the two local averages.
This trade-off defines a mean-squared optimal choice for m. In practice, the optimal choice for
m is often m = 1, as shown in Barndorff-Nielsen et al. (2008b). This is the reason that end
effects can safely be ignored in practice, despite their important theoretical implications for the
asymptotic properties of the realized kernel estimator. To quantify this empirically, we computed
the realized kernels for m = 1, . . . , 4 for Alcoa Inc. and found that it led to almost identical
estimates. Across our sample period, the (absolute) difference was on average less than 0.5% on
average.

Loosely speaking, end-effects can safely be ignored whenever the quadratic variation, [Y], is
thought to dominate the size of U 2

0 + U 2
T . This is the case for actively traded equities. However,

for less liquid assets, this could be a problem, e.g. on days where the squared spread is, say,
5% of the daily variance of returns. In any case, we now discuss how this local averaging
is carried out in practice, for the case m = 2, which is the value we use in our empirical
analysis.

Write the times at which the log-price process, X, is being recorded as 0 = τ 0 ≤ · · · ≤ τ N =
T . When the recording is being carried out regularly in time, we have τ j − τ j−1 = T /N , for j =
1, . . . , N , but in practice, we typically have irregularly spaced observations. Define the discrete
time observations X0, X1, . . . , Xn, where

X0 = 1

2

(
Xτ0 + Xτ1

)
, Xj = Xτj+1 , j = 1, 2, . . . , n − 1, and Xn = 1

2

(
XτN−1 + XτN

)
.

Thus, the end points, X0 and Xn, are local averages of two available prices over a small interval
of time. These prices allow us to define the high frequency returns as xj = Xj − Xj−1 for j =
1, 2, . . . , n that are used in (1.2).
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3. PROCEDURE FOR CLEANING THE HIGH-FREQUENCY DATA

Careful data cleaning is one of the most important aspects of volatility estimation from
high-frequency. The cleaning of high-frequency data have been given special attention in
e.g. Dacorogna et al. (2001, chapter 4), Falkenberry (2001), Hansen and Lunde (2006), and
Brownless and Gallo (2006). Specifically, Hansen and Lunde (2006) show that tossing out a large
number of observations can in fact improve volatility estimators. This result may seem counter-
intuitive at first, but the reasoning is fairly simple. An estimator that makes optimal use of all
data will typically put high weight on accurate data and be less influenced by the least accurate
observations. The generalized least-squares (GLS) estimator in the classical regression model
is a good analogy. On the other hand, the precision of the standard least squares estimator can
deteriorate when relatively noisy observations are included in the estimation. So, the inclusion
of poor quality observations can cause more harm than good to the least-squares estimator, and
this is the relevant comparison to the present situation. The realized kernel and related estimators
‘treat all observations equally’ and a few outliers can severely influence these estimators.

3.1. Step-by-step cleaning procedure

In our empirical analysis, we use trade and quote data from the NYSE Trade and Quote (TAQ)
database, with the objective of estimating the quadratic variation for the period between 9:30 am
and 4:00 pm. The cleaning of the TAQ high frequency data was carried out in the following steps.
P1–P3 was applied to both trade and quote data, T1–T4 are only applicable to trade data, while
Q1–Q4 is only applicable to quotation data.

All data

P1. Delete entries with a time stamp outside the 9:30 am–4 pm window when the exchange is
open.

P2. Delete entries with a bid, ask or transaction price equal to zero.
P3. Retain entries originating from a single exchange (NYSE in our application). Delete other

entries.

Quote data only

Q1. When multiple quotes have the same time stamp, we replace all these with a single entry
with the median bid and median ask price.

Q2. Delete entries for which the spread is negative.
Q3. Delete entries for which the spread is more that 50 times the median spread on that day.
Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations

from a rolling centred median (excluding the observation under consideration) of 50
observations (25 observations before and 25 after).

Trade data only

T1. Delete entries with corrected trades. (Trades with a Correction Indicator, CORR �= 0).
T2. Delete entries with abnormal Sale Condition. (Trades where COND has a letter code,

except for ‘E’ and ‘F’). See the TAQ 3 User’s Guide for additional details about sale
conditions.
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T3. If multiple transactions have the same time stamp, use the median price.
T4. Delete entries with prices that are above the ‘ask’ plus the bid–ask spread. Similar for

entries with prices below the ‘bid’ minus the bid–ask spread.

3.2. Discussion of filter rules

The first step P1 identifies the entries that are relevant for our analysis, which focuses on volatility
in the 9:30 am–4 pm interval.

Steps P2 and T1 removes very serious errors in the database, such as misrecording of prices
(e.g. zero prices or misplaced decimal point), and time stamps that may be way off. T2 rules out
data points that the TAQ database is flagging up as a problem. Table 1 gives a summary of the
counts of data deleted or aggregated using these filter rules for the database used in Section 4,
which analyses the Alcoa share price.

By far, the most important rules here are P3, T3 and Q1. In our empirical work, we will see
the impact of suspending P3. It is used to reduce the impact of time-delays in the reporting of
trades and quote updates. Some form of T3 and Q1 rule seems inevitable here, and it is these
rules which lead to the largest deletion of data.

We use Q4 to get the outliers that are missed by Q3. By basing the window on observation
counts, we will have it expanding and contracting in clock time depending on the trading
intensity. The choice of 50 observations for the window is ad hoc, but validated through extensive
experimentation.

T4 is an attractive rule, as it disciplines the trade data using quotes. However, it has the
disadvantage that it cannot be applied when quote data is not available.8 We see from Table 1
that it is rarely activated in practice, while later results we will discuss in Table 2 on realized
kernels, demonstrate the RK estimator (unlike the RV statistic) is not very sensitive to the use of
T4.

It is interesting to compare some of our filtering rules to those advocated by Falkenberry
(2001) and Brownless and Gallo (2006). In such a comparison, it is mainly the rules designed to
purge outliers/misrecordings that could be controversial.

Among our rules Q4 and T4 are the relevant ones. Q4 is very closely related to the procedure
(Brownless and Gallo 2006, pp. 2237) advocate for removing outliers. They remove observation
i if the condition, |pi − p̄i(k)| > 3si(k) + γ , is true. Here p̄i(k) and s i(k) denote, respectively,
the δ-trimmed sample mean and sample standard deviation of a neighbourhood of k observations
around i and γ is a granularity parameter. We use the median in place of the trimmed sample
mean, p̄i(k), and the mean absolute deviation from the median in place of s i(k). By not using the
sample standard deviation, we become less sensitive to runs of outliers.

Falkenberry (2001) also use a threshold approach to determine if a certain observation is an
outlier. But instead of using a ‘Search and Purge’ approach he applies a ‘Search and Modify’
methodology. Prices that deviate with a certain amount from a moving filter of all prices are
modified to the filter value. For transactions, this has the advantage of maintaining the volume of
a trade even if the associated price is bad.

Finally, we note that our approach to discipline the trade data using quotes, T4, has formerly
be applied in only Hansen and Lunde (2006), Barndorff-Nielsen et al. (2006), and Barndorff-
Nielsen et al. (2008a).

8 When quote data is not available, Q4 can be applied in place of T4, replacing the word mid-quote with price.
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Table 1. Summary statistics for the cleaning and aggregation procedures when applied to Alcoa Inc. (AA)
data from different exchanges.

Trade date Quote data

P2 T1 T2 T3 T4 P2 Q1 Q2 Q3 Q4

January 24, 2007

NYSE 7276 0 0 0 2299 5 42,121 0 28,205 0 0 68

PACIF 6847 0 0 0 4678 1 15,909 0 7768 0 0 12

NASD 9813 0 0 14 6365 1 30,231 15 20,625 0 87 57

NASDAQ 0 0

Other 142 0 0 3 32 3

January 26, 2007

NYSE 8787 0 0 0 3454 4 51,115 0 36,843 0 0 6

PACIF 4606 0 0 0 2824 4 21,509 0 12,024 0 0 0

NASD 10,743 0 0 2 6728 11 40,130 26 28,922 0 197 49

NASDAQ 0 0

OtherOther 479 0 0 3 36 3

May 4, 2007

NYSE 8487 0 0 0 3234 8 48,812 0 34,181 0 0 35

PACIF 4795 0 0 0 3117 4 28,676 0 19,250 0 0 0

NASD 1402 0 0 16 372 0 2394 0 1491 0 6 0

NASDAQ 10,131 0 0 0 7155 0 49,720 0 39,751 0 0 6

OtherOther 485 0 0 1 34,926 88

May 8, 2007

NYSE 24,347 0 0 1 14,475 53 109,240 0 90,766 0 0 8

PACIF 24,840 0 0 0 19,096 13 76,900 0 62,386 0 0 0

NASD 6,643 0 4 15 2384 1 17,003 0 12,908 0 108 1

NASDAQ 42,162 0 0 0 34,483 23 138,140 0 122,610 0 0 4

Other 1,897 0 0 3 102,810 7

Notes: The first column gives the number of observations observed between 9:30 am and 4:00 pm (P1). Subsequent
columns state the reductions in the number of observations due to each of the cleaning/aggregation rules. A blank entry
means that the filter was not applied in the particular case. NYSE(N): New York Stock Exchange, PACIF(P): Pacific
Exchange, NASD(D): National Association of Security Dealers, NASDAQ(T): National Association of Security Dealers
Automated Quotient, in each case the letter in parenthesis is the TAQ identifier.

4. DATA ANALYSIS

We analyse high-frequency stock prices for Alcoa Inc. which has the ticker symbol AA. It is
the leading producer of aluminium, and its stock is currently part of the Dow Jones Industrial
Average (DJIA). We have estimated daily volatility for each of the 123 days in the six-month
period from January 3 to June 29, 2007. Much of our discussion will focus on four days that
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C10 O. E. Barndorff-Nielsen et al.

Table 2. Sensitivity of RV and RK to our filtering rules P2, T3 and T4 for trade data from Alcoa Inc. (AA)
on three specific days and averaged across the full sample.

No. of Observations Realized variance Realized kernel

P2 T3.• T4.E P2 T3.E T4.E P2 T3.A T3.B T3.C T3.D T3.E T4.E

January 24, 2007

NYSE 7276 4977 4972 3.25 2.20 2.14 0.91 0.81 0.83 0.83 0.83 0.82 0.82

PACIF 6847 2169 2168 1.34 1.26 1.07 0.97 0.83 0.83 0.84 0.83 0.83 0.76

NASD 9813 3434 3433 2.65 1.71 1.55 0.95 0.84 0.84 0.83 0.83 0.84 0.84

All 24,078 7815 7.19 2.88 1.02 0.96 0.95 0.92 0.92 0.92

January 26, 2007 (excluding 12:13 to 12:21 pm)

NYSE 8169 5094 5090 6.95 5.61 5.67 5.10 5.30 5.31 5.31 5.31 5.31 5.31

PACIF 4160 1663 1660 4.85 4.84 4.86 5.27 5.14 5.14 5.13 5.14 5.14 5.13

NASD 9828 3815 3805 6.20 5.27 5.12 4.79 5.08 5.08 5.08 5.08 5.09 5.09

All 22,630 7757 11.00 6.31 4.86 5.16 5.17 5.17 5.17 5.16

May 8, 2007

NYSE 24,347 9871 9818 14.27 7.32 7.72 6.25 6.82 6.73 6.70 6.71 6.72 6.69

PACIF 24,840 5744 5731 7.94 5.52 5.51 7.08 7.10 7.09 7.09 7.09 7.10 7.08

NASD 6643 4240 4239 23.69 12.50 9.24 7.57 6.99 7.02 7.02 7.01 7.01 7.04

NASDAQ 42,162 7679 7656 7.57 5.38 5.39 6.51 6.89 6.87 6.84 6.87 6.90 6.89

All 99,889 13585 62.62 7.34 6.17 6.90 6.88 6.88 6.87 6.88

Averages over full sample

NYSE 9719 5476 5460 4.91 3.27 3.24 2.46 2.42 2.41 2.41 2.41 2.41 2.41

NASD 4109 2196 2194 12.26 4.08 3.81 2.43 2.37 2.37 2.37 2.37 2.37 2.38

PACIF 7602 2356 2351 2.81 2.48 2.47 2.53 2.44 2.44 2.44 2.44 2.44 2.44

NASDAQ 12,846 3526 3447 8.36 2.41 2.50 2.69 2.57 2.57 2.56 2.56 2.57 2.60

All 31,735 8344 83.83 17.61 2.70 2.54 2.53 2.53 2.53 2.54

Notes: Analysis based on data from the common exchanges (NYSE, PACIF, NASD and NASDAQ) and all exchanges
(denoted ALL). T3A-E vary how multiple data on single seconds are aggregated. Our preferred method is T3.E, which
takes the median prices. The first three columns report the observation count at each stage. T3.• signify that T3A-E all
result in the same number of observations.

highlight some challenging empirical issues. The data are transaction prices and quotations
from NYSE and all data are from the TAQ database extracted from the Wharton Research Data
Services (WRDS). We present empirical results for both transaction and mid-quote prices that
are observed between 9:30 am and 4:00 pm.

We first present results for a regular day, by which we mean a day where the high frequency
returns are such that it is straightforward to compute the realized kernel. Then we present
empirical results on the use of realized kernels using the entire sample of 123 separate days,
indicating the realized kernels behave very well and better than any available realized variance
statistic. Then we turn our attention to days where the high-frequency data have some unusual
and puzzling features that potentially could be harmful for the realized kernel.
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4.1. Sensitivity to data cleaning methods

In Table 2, we give a summary of the various effects of aggregating and excluding observations
in different manners. We have carried out the analysis along two dimensions. First, we have
separated data from different exchanges. Specifically, we consider trades on NYSE, PACIF,
NASD and NASDAQ in isolation. We also investigate the performance of the estimator when
all exchanges are considered simultaneously, which is the same as dropping P3 entirely. This
defines the first dimension that is displayed in the rows of Table 2, for three of the four days we
give special attention and averaged over the full sample for AA.

Our second dimension is the amount of cleaning, aggregation and filtering that we apply to
the data. With reference to the cleaning and filtering step in Section 3.1, the columns of Table 2
have the following information.

P2: This is the data with a time stamp inside the 9:30 am–4 pm window, when most the
exchanges are open. We have deleted entries with a bid, ask or transaction price equal to zero.
So, this is basically the raw data, with the only purged observations being clearly nonsense ones.

T3.A–E: This is what is left after step T.3. The different letters represent five different ways
of aggregating transactions that have the same time stamp:

A. First single out unique prices and aggregate volume. Then use the price that has the largest
volume.

B. First single out unique prices and aggregate volume. Then use the price by volume
weighted average price.

C. First single out unique prices and aggregate volume. Then use the price by log(volume)
weighted average price.

D. First single out unique prices and aggregate volume. Then use the price by number of
trades weighted average price.

E. Use the median price. This is the method that we used in the paper.

T4.E This is what is left after rounding step T.4 on the data left after T3.E.

In Table 2, we present observation counts, realized variances and realized kernels. Two things
are particularly conspicuous. On January 24 at PACIF, only one observation was filtered out by
T4.E, still both the realized variance and the realized kernels are quite sensitive to whether this
observation is excluded—it is the only day and exchange where this is the case. In the left-hand
panel of Figure 1, we display the data around this observation, and it is clear that it is out of line
with the rest. Also May 8 at NASD, only one observations was filtered out by T4.E, here only
the realized variance is quite sensitive to whether this observation is excluded. In the right-hand
panel of Figure 1, we display the data around this observation, and again, it is clear that it is out
of line with the rest. Hence we conclude that T4 is useful when it can be applied in practice, but
it does not usually make very much difference in practice when RK estimators are used.

An noteworthy feature of Table 2 is how badly RV does when we aggregate data across
exchanges and only apply P2—basically only implementing trivial cleaning. The upward bias
we see for RV when based on trade-by-trade data is dramatically magnified. Some of this is even
picked up by the RK statistic, which significantly benefits from the application of T3. It is clear
from this table that if one wanted to use information across exchanges, then it is better to carry
out RK on each exchange separately and then average the answers across the exchanges rather
than treat all the data as if they were from a single source.
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Figure 1. Transaction prices for Alcoa Inc. over a period of 5 minutes surrounding one observation deleted
by T4.E. The left-hand panel displays January 24 on PACIF, and the right-hand panel show the scenario at
May 8 on NASD.

4.2. A regular day: May 4, 2007

Figure 2 shows the prices that were observed in our database after being cleaned. They are based
on the irregularly spaced times series of transaction (left-hand panels) and mid-quote (right-
hand panels) prices on May 4, 2007. The two upper plots show the actual tick-by-tick series,
comprising 5246 transactions and 14,631 quotations recorded on distinct seconds. Hence for
transactions data, we have a new observation on average every 5 seconds, while for mid-quotes it
is more often than every couple of seconds. In the middle panel the corresponding price changes
are displayed, changes above 5 cents and below minus 5 cents are marked by a large star (red)
and are truncated (in the picture) at ±5 cents. May 4 was a quite tranquil day with only a couple
of changes outside the range of the plot. The lower panel gives the autocorrelation function of
the log-returns. The acf(1) is omitted from the plot, but its value is given in the subtext. For
the transaction series, the acf(1) is about −0.24, which is fundamentally different from the one
found for the mid-quote series that equals 0.088. This difference is typically for NYSE data as
first noted in Hansen and Lunde (2006). It is caused by the more smooth character of most mid-
quote series, that induces a negative correlation between the innovations in Y and the innovations
in U. The negative correlation results in a smaller, possibly negative, bias for the RV, and this
feature of mid-quote data will be evident from Figure 5, which we discuss in the next subsection.
The negative bias of the RV is less common when mid-quotes are constructed from multiple
exchanges, see, e.g. Bandi and Russell (2006a). A possible explanation for this phenomenon was
given in Hansen and Lunde (2006, pp. 212–214 ), who showed that pooling mid-quotes from
multiple exchanges can induce additional noise that overshadows the endogenous noise found in
single exchange mid-quotes.

May 4, 2007 is an exemplary day. The upper panels of Figure 3 present volatility signature
plots for irregularly spaced times series of transaction prices (left-hand panels) and mid-quote
prices (right-hand panels).9 The dark line is the Parzen kernel with H = c∗ξ 4/5n3/5, and the light
line is the simple realized variance.

9 These pictures extend the important volatility signature plots for realized volatility introduced by Andersen et al.
(2000). To construct the plots we use activity fixed tick time, where the sampling frequency is chosen such that we
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Figure 3. Signature plots for the realized kernel and realized variance on May 4, 2007 for Alcoa Inc.
Those based on transaction prices are plotted in left-hand panels and those based on mid-quote prices
are plotted in right-hand panels. The horizontal line in these plots is the subsampled realized variances
based 20-minute returns. The thicker dark line in the upper panels represents the realized kernels using the
bandwidth Ĥ ∗ = c∗ξ̂ 4/5n3/5, and the thin line is the usual realized variance. The lower panels plot the point
estimates of the realized kernel as a function of the bandwidth, H , where the sampling frequency is the
same (tick-by-tick returns) for all realized kernels. The estimate of the optimal bandwidth is highlighted in
the lower panels.

The lower panel of Figure 3 present a kernel signature plot where the realized kernel
computed on tick-by-tick data is plotted against increasing values of H. In these plots, we have
indicated the optimal choices of H. In both plots, the horizontal line is an average of simple
realized variances based on 20 minute returns sampled with different offsets. The shaded areas
denote the 95% confidence interval based on 20 minute returns using the (Barndorff-Nielsen and
Shephard, 2002) feasible realized variance inference method. We characterize May 4, 2007 as

get approximately the same number of observations each day. To explain it, assume that the first trade at the ith day
occurred at time t i0 and the last trade on the ith day occurred at time tini

. So approximate ‘60 second’ sampling is
constructed as follows. We get the tick time sampling frequency on day i as �1 + ni60/(tini

− ti0)�. In this way, there
will be approximately 60 seconds between observations when one takes the intraday average over the sampled intratrade
durations. The actual sampled durations will in general be more or less widely dispersed.
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an exemplary day because the signature plots are almost horizontal. This shows that the realized
kernel is insensitive to the choice of sampling frequency. An erratic signature plot indicates
potential data issues, although pure chance is also a possible explanation.

4.3. General features of fesults across many days

Transaction prices and mid-quote prices are both noisy measures of the latent ‘efficient prices’,
polluted by market microstructure effects. Thus, a good estimator is one that produces almost the
same estimate with transaction data and mid-quote data. This is challenging, as we have seen the
noise has very different characteristics in these two series.

Figure 4 presents scatter plots where estimates based on transaction data are plotted against
the corresponding estimates based on mid–quote data. The upper two panels are scatter plots
for the realized kernel using tick-by-tick data (left-hand side) and the upper right-hand plot
is the realized kernel based on 1-minute returns, and both scatter plots are very close to the
45◦, suggesting that the realized kernel produce accurate estimates at this sampling frequencies,
with little difference between the two graphs. The lower four panels are scatter plots for the
realized variance using different sampling frequencies: tick-by-tick returns (middle left-hand
panel), 1-minute returns (middle right-hand panel), 5-minute returns (lower left-hand panel)
and 20-minute returns (lower right-hand panel). These plots strongly suggest that the realized
variance is substantially less precise than the realized kernel. The realized variance based on
tick-by-tick returns is strongly influenced by market microstructure noise. But the characteristics
of market microstructure noise in transaction prices are very different from those of mid-quote
prices. Thus, as already indicated, the trade data causes the realized variances to be upward
biased, while for quote data, it is typically downward bias. This explains that the scatter plot for
tick-by-tick data (middle left-hand panel) is shifted away from the 45◦ degree line.

Table 3 reports a measure for the disagreement between the estimates based on transaction
prices and mid-quote prices. The statistics computed in the first row are the average Euclidian
distance from the pair of estimators to the 45◦ degree line. To be precise, let V T,t and V Q,t be
estimators based on transaction data and quotation data, respectively, on day t , and let V̄t be the
average of the two. The distance from (V T , V Q) to the 45◦ degree line is given by

√
(VT ,t − V t )2 + (VQ,t − V t )2 = ∣∣VT ,t − VQ,t

∣∣ /√2,

and the first row of Table 3 reports the average of this distance computed over the 123 days in
our sample.

The distance is substantially smaller for the realized kernels than any of the realized
variances, while our preferred estimator, the realized kernel based on tick-by-tick returns, has
the least disagreement between estimates based on transaction data and those based on quote
data. The relative distances are reported in the second row of Table 3, and we note that the
disagreement between any of the realized variance estimators is more than twice that of the
realized kernel.

Table 4 contains summary statistics for realized kernel and realized variance estimators
for the Alcoa Inc. data over our 123 distinct days. The estimators are computed with
transaction prices and mid-quote prices using different sampling frequencies. The sample
average and standard deviation is given for each of the estimators, and the fourth column has
the empirical correlations between each of the estimators and the realized kernel based on
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Figure 4. Scatter plots of estimates based on transaction prices plotted against the estimates based on mid-
quote prices for Alcoa Inc. Regression lines and regression statistics are included with the 45◦ line.

tick-by-tick transaction prices. The table confirms the high level of agreement between the
realized kernels estimator based on transaction data and mid-quote data. They have the same
sample mean, and the sample correlation is nearly one. The time-series standard deviation
of the daily mid-quote based realized kernel is marginally lower than that for the transaction
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Table 3. This Table present statistics that measure the disagreement between the daily estimates based on
transaction prices and mid-quote prices.

Realized kernel Simple realized variance

tick 1 min tick 1 min 5 min 20 min

Alcoa Inc (AA)

Distance 0.089 0.105 1.119 0.170 0.312 0.406

Relative Distance 1.000 1.182 12.62 1.922 3.523 4.575

American International Group, Inc (AIG)

Distance 0.020 0.038 0.458 0.061 0.088 0.132

Relative Distance 1.000 1.892 22.75 3.035 4.382 6.558

American Express (AXP)

Distance 0.079 0.060 0.578 0.133 0.166 0.248

Relative Distance 1.000 0.755 7.277 1.669 2.095 3.117

Boeing Company (BA)

Distance 0.047 0.051 0.564 0.106 0.121 0.242

Relative Distance 1.000 1.083 11.96 2.246 2.567 5.132

Bank of America Corporation (BAC)

Distance 0.028 0.070 0.620 0.050 0.084 0.345

Relative Distance 1.000 2.509 22.21 1.775 3.004 12.35

Citigroup (C)

Distance 0.033 0.052 0.722 0.080 0.139 0.250

Relative Distance 1.000 1.604 22.12 2.467 4.270 7.664

based realized kernel. The table also shows the familiar upward bias of the tick-by-tick trade
based RV and downward bias of the mid-quote version. Low frequency RV statistics have
more variation than the tick-by-tick RK, while the RK statistic behaves quite like the 1-minute
mid-quote RV.

Figure 5 contains histograms that illustrate the dispersion (across the 123 days in our sample)
of various summary statistics. In a moment we will provide a detailed analysis of three other days,
and we have marked the position of these days in each of the histograms. As is the case in most
figures in this paper, the left-hand panels correspond to transaction data and right-hand panels
to mid-quote data. The first row of panels present the log-difference between the realized kernel
computed with tick-by-tick returns and the realized kernel based on five-minute returns. The day
we analysed in greater details in the previous subsection, May 4, is fairly close to the median
in all of these dimensions. The three other days—May 8, January 24 and January 26—are our
examples of ‘challenging days’. January 24 and January 26 are placed in the two tails of the
histogram related to the variation in the realized kernel. The three other dimensions we provide
histograms for are—(2nd row) the log-difference between the realized variance computed with
tick-by-tick returns and that computed with five minute returns; (3rd row) the distribution of the
estimated first-order autocorrelation and the 4th row contains histograms for the sum of the next
nine autocorrelations (acf(2) to acf(10)).
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Table 4. Summary statistics for realized kernel and realized variance estimators, applied to transaction
prices or mid-quote prices at different sampling frequencies for Alcoa Inc. (AA).

Mean (HAC) Std. ρ([̂Y ], K) acf(1) acf(2) acf(5) acf(10)

Realized kernels based on transaction prices

1 tick 2.401 (0.268) 1.750 1.000 0.50 0.29 −0.08 0.10

1 minute 2.329 (0.290) 1.931 0.952 0.44 0.23 −0.08 0.10

RV based on transaction prices

1 tick 3.210 (0.232) 1.670 0.916 0.44 0.25 −0.12 0.10

1 minute 2.489 (0.225) 1.555 0.969 0.46 0.28 −0.12 0.10

5 minute 2.458 (0.293) 2.001 0.953 0.40 0.26 −0.08 0.06

20 minute 2.315 (0.262) 1.745 0.878 0.30 0.22 −0.04 0.10

Realized kernels based on mid-quotes

1 tick 2.402 (0.258) 1.720 0.997 0.49 0.29 −0.09 0.09

1 minute 2.299 (0.281) 1.877 0.944 0.42 0.22 −0.08 0.12

RV based on mid-quotes

1 tick 1.897 (0.173) 1.209 0.910 0.41 0.26 −0.09 0.11

1 minute 2.398 (0.234) 1.529 0.973 0.50 0.31 −0.09 0.10

5 minute 2.464 (0.317) 2.138 0.966 0.45 0.23 −0.08 0.08

20 minute 2.286 (0.298) 2.061 0.884 0.34 0.19 −0.03 0.06

Notes: The empirical correlations between the realized kernel based on tick-by-tick transaction prices and each of the
estimators are given in column 4 and some empirical autocorrelations are given in columns 5–8.

Note the bias features of the realized variance that is shown in the second row of histograms.
For transaction data the tick-by-tick realized variance tends to be larger than the realized variance
sampled at lower frequencies, whereas the opposite is true for mid-quote data.

Next we turn to three potentially harder days that have features that are challenging for
the realized kernel. These days were selected to reflect important empirical issues we have
encountered when computing realized kernels across a variety of datasets.

4.4. A heteroskedastic day: May 8, 2007

We now look in detail at a rather different day, May 8, 2007. Figure 6 suggests that this day
has a lot of heteroskedasticity, with a spike in volatility at the end of the day. This day is also
characterized by several large changes in the price. The transaction price changed by as much as
25 cents from one trade to the next and the mid-quote price by as much as 19 cents over a single
quote update. Informally, this is suggestive of jumps in the process. Although jumps can alter the
optimal choice of H, they do not cause inconsistency in the realized kernel estimator.

The middle panels of Figure 6 visualise the different behaviour of the price throughout the
day. The jump in volatility around 2:30 pm is quite clear from these plots.

In spite of the jump in volatility, and possibly jumps in the price process, Figure 7 offers little
to be concerned about, in terms of the realized kernel estimator. Again the volatility signature
plot is reasonably stable for both transaction prices and mid-quote prices, and so, one has quite
some confidence in the estimate.
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Figure 7. Signature plots for the realized kernel and realized variance for Alcoa Inc. on May 8, 2007. For
details see Figure 3.

4.5. A ‘gradual jump’: January 26, 2007

The high-frequency prices for January 26 is plotted in Figure 8. On this day, the price increases
by nearly 1.5% between 12:13 and 12:20. The interesting aspect of this price change is the
gradual and almost linear manner by which the price increases in a large number of smaller
increments. Such a pattern is highly unlikely to be produced by a semi-martingale adapted to
the natural filtration. The gradual jump produces rather disturbing volatility signature plots in
Figure 9, which shows that the realized kernel is highly sensitive to the bandwidth parameter.
This is certainly a challenging day.

We zoom in on the gradual jump in Figure 10. The upper left-hand panel has 96 upticks
and 43 downticks. The lower plot shows that the volume of the transactions in the period that
the price changes are not negligible; in fact, the largest volume trades on January 26 are in this
period.
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RV RK with Ĥ* = c*ξ̂4/5 n3/5

IV
 e

st
im

a
te

 (
01

-2
6-

20
07

)

1.70

2.48

3.26

4.04

4.82

5.60

6.38

7.16

7.94

8.72

9.50

0 3 5 7 10 15 20 24 30 40 50 60 70 80 95 115
140
165
190

260
310
360
410
460

560
660

H (kernel width)
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Figure 9. Signature plots for the realized kernel and realized variance for Alcoa Inc. on January 26, 2007.
For details see Figure 3.

One possible explanation of this is that there is one or a number of large funds wishing
to increase their holding of Alcoa (perhaps based on private information), and as they buy the
shares, they consume the immediately available liquidity—they could not buy more at that price,
the instantaneous liquidity may not exist, it can only be met by waiting for it to refill. If the
liquidity had existed, then the price may have shot up in a single move.

An explanation of such a scenario can be based on market microstructure theory (see e.g.
the surveys by O’Hara, 1995 or Hasbrouck, 2007). Dating back to Kyle (1985) and Admati and
Pfleiderer (1988a,b, 1989), the idea is to model the trading environment as comprising three
kinds of traders: risk neutral insiders, random noise trades and risk neutral market makers. The
noise trades are also known as liquidity traders because they trade for reasons that are not directly
related to the expected value of the asset. As such they provide liquidity, and it is their presence
that explain what we encounter in Figure 10. An implication of the theory is that without these
noise traders, there would be no one willing to sell the asset on the way up to the new price
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Figure 10. The ‘gradual’ jump on January 26, 2007. Prices and returns in the period from 2:12 pm to
12:22 pm are shown in the two upper panels. The lower panel shows the prices and volume (vertical bars)
between 11:45 am and 1:00 pm.

level at 12:25. So, without the noise traders, we would have seen a genuine jump in the price.
Naturally, this line of thinking is speculative, and abstract from the fact that some market makers,
including those at the NYSE, are obliged to provide some liquidity. This ‘compulsory’ liquidity
will also tend to erase genuine jumps in the observed prices.

Mathematically, we can think of a gradual jump in the following way. The efficient price
jumps at time τ j by 
Yτj

but 
Xτj

 0, which means that


Yτj

 −
Uτj

.
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Hence the noise process is now far from zero. As trade or quote time evolves the noise trends
back to zero, revealing the impact of the jump on X, but this takes a considerable amount of new
observations if the jump is quite big. This framework suggests a simple model

Uτj
= Vτj

+ ετj
,

Vτj
= ρVτj−1 − θτj


Yτj
, ρ ∈ [0, 1),

where ετj
is covariance stationary and θτj

is one for gradual jumps. Obviously, this could induce
very significant correlation between the noise and the price process. Of course not all jumps
will have this characteristic. When public announcements are made, where the timing of the
announcement is known a priori, then jumps tend to be absorbed immediately in the price
process. In those cases θτj

= 0. These tend to be the economically most important jumps, as
they are difficult to diversify.

This line of thinking encouraged us to remove this gradual jump to replace it by a single jump.
This is shown in Figure 11, while the corresponding results for the realized kernels are given in
Figure 12 which should be compared with Figure 9. This seems to deliver very satisfactory
results. The autocorrelations are now very different after having removed observations between
12:13 and 12:21. Compare with Figure 8. Hence ‘gradual jumps’ seem important in practice
and challenging for this method. We do not currently have a method for automatically detecting
gradual jumps and removing them from the database.

4.6. A puzzling day: January 24, 2007

The feature we want to emphasize with this day is related to the spiky price changes. The upper
panel of Figure 13 shows this jittery variation in the price, in particular towards the end of the
day, where the price moves a lot within a narrow band. We believe this variation is true volatility
rather than noise because the bid ask spread continues to be narrow in this period, about 2 cents
most of the time.

January 24, 2007 is a day where the realized kernel is sensitive to the sampling frequency and
choice of bandwidth parameters, H , as is evident from Figure 14. This may partly be attributed to
pure chance, but we do not think that chance is the whole story here. Chance plays a role because
the standard error of the realized kernel estimator depends on both the sampling frequency and
bandwidth parameter. Rather the problem is that too large a H , or too low sampling frequency
will overlook some of the volatility on this day—a problem that will be even more pronounce for
the low-frequent realized variance. We will return to this issue in Figure 15.

Figure 14 also reveals a rather unusual volatility signature plot for the realized variance based
on mid-quote prices. Usually the RV based on tick-by-tick returns is smaller than that based on
moderate sampling frequencies, such as 20-minutes, but this is not the case here.

Figure 15 shows the prices that will be extracted at different sampling frequencies. The
interesting aspect of these plots is that the realized variance, sampled at moderate and low
frequencies, largely overlooks the intense volatility seen towards the end of the day.

Returns based on 20 minutes, say, will tend to be large in absolute value, during periods
where the volatility is high. However, there is a chance that the price will stay within a relatively
narrow band over a 20 minute period, despite the volatility being high during this period. This
appears to be the case toward the end of the trading day on January 24, 2007. The reason that
we believe the rapid changes in the price is volatility rather than noise, is because the bid–ask
spread is narrow in this period; so, both bid and ask prices jointly move rapidly up and down
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Figure 12. Signature plots for the realized kernel and realized variance for Alcoa Inc. on January 26, 2007,
after deleting the prices between 12:13 pm and 12:21 pm. For details see Figure 3.

during this period. Naturally, when prices are measured over 20 minutes intervals returns are
small, yet volatility is high, the realized variance (based on 5-minute returns) will underestimate
the volatility, for the simple reason that the intraday returns do not reflect the actual volatility.
This seems to be the case on this day as illustrated in the two lower panels in Figure 15. The two
sparsely sampled RV cannot capture this variation in full, because the intense volatility cannot
fully be unearthed by 20-minute intraday returns.

Because the realized kernel can be applied to tick-by-tick returns, it does not suffer from this
problem to the same extent. Utilizing tick-by-tick data gives the realized kernel a microscopic
ability to detect and measure volatility that would otherwise be hidden at lower frequencies (due
to chance). The ‘strength’ of this ‘microscope’ is controlled by the bandwidth parameter, and the
realized kernel gradually looses its ability to detect volatility at the local level as H is increased.
However, H must be chosen sufficiently large to alleviate the problems caused by noise.
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Figure 14. Signature plots for the realized kernel and realized variance for Alcoa Inc. on January 24, 2007.
For details see Figure 3.

On January 24, 2007, we believe that K(X) 
 0.90 is a better estimate of volatility than the
subsampled realized variance based on 20 minute returns, whose point estimate is nearly half
that of our preferred estimator.

5. CONCLUSIONS

In this paper, we have tried to be precise about how to implement our preferred realized kernel
on a wide range of data. Based on a non-negative form of the realized kernel, which uses a
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Figure 15. Transaction prices for Alcoa Inc. on January 24, 2007 at different sampling frequencies. The
lower panel presents the tick-by-tick return on transaction data (dots), and the spread as it varied throughout
the day (vertical lines).

Parzen weight function, we implement it using an averaging of the data at the end conditions.
The realized kernel is sensitive to its bandwidth choice. We detail how to choose this in practice.

A key feature of estimating volatility in the presence of noise is data cleaning. There is very
little discussion of this in the literature, and so, we provide quite a sustained discussion of the
interaction between cleaning and the properties of realized kernels. This is important in practice,
for in some application areas, it is hard to extensively clean the data (e.g. quote data may not be
available), while in other areas (such as when one has available trades and quotes from the TAQ
database) extensive and rather accurate cleaning is possible.
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We provide an analysis of the properties of the realized kernel applied simultaneously to trade
and quote data. We would expect the estimation of [Y] to deliver similar answers and they do,
indicating the strength of these methods.

Finally, we identify an unsolved problem for realized kernels when they applied over
relatively short periods. We call these ‘challenging days’. They are characterized by lengthy
strong trends being present in the data, which are not compatible with standard models of market
microstructure noise.
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