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Lecture Outline

• Exponentially weighted covariance estimation

• Multivariate GARCH models

• Prediction from multivariate GARCH models



Reading

• FRF chapter 3.

• QRM chapter 4, sections 5 and 6;

• FMUND, chapter 6

Exponentially Weighted Covariance Estimate

let y be a  × 1 vector of multivariate time series:
y = c+ ²  = 1 2 · · ·  

² ∼(0Σ)

The sample covariance matrix is given by:

Σ̂ =
1

 − 1
X
=1

²̂²̂
0
 =

1

 − 1
X
=1

(y − ȳ)(y − ȳ)0 ȳ =
1



X
=1

y

To allow for time varying covariance matrix, an ad hoc approach uses expo-

nentially decreasing weights as follows:

Σ̂ = ²̂−1²̂0−1 + 2²̂−2²̂0−2 + · · ·

=
∞X
=1

²̂−²̂0− 0    1



Since

+ 2 + · · · = 

1− 

the weights are usually scaled so that they sum up to one:

Σ̂ = (1− )
∞X
=1

−1²̂−²̂0−

The above equation can be easily rewritten to obtain the following recursive

form for exponentially weighted covariance matrix:

Σ̂ = (1− )²̂−1²̂0−1 + Σ̂−1
From the above equation, given  and an initial estimate Σ̂1, the time varying

exponentially weighted covariance matrices can be computed easily.

Example: Bivariate Model

Ã
̂11 ̂12
̂12 ̂22

!
= (1− )

"
̂1−1̂1−1 ̂1−1̂2−1
̂1−1̂2−1 ̂2−1̂2−1

#

+

"
̂11−1 ̂12−1
̂12−1 ̂22−1

#
Note

̂11 = (1− )
³
̂1−1

´2
+ ̂11−1

̂12 = (1− )̂1−1̂2−1 + ̂12−1



Estimating 

• In practice, the value of  is usually chosen in an ad hoc way as typified
by the RiskMetrics proposal.

• If ² ∼ (0Σ) where Σ = Cov−1(²) then the log-likelihood function
of the observed time series can be written as:

log = −
2
log(2)− 1

2

X
=1

|Σ|−
1

2

X
=1

(y − c)0Σ−1 (y − c)

• The mean vector c and  can be treated as unknown model parameters
and estimated using quasi-maximum likelihood estimation (MLE), given

the initial value Σ1.

Multivariate GARCH Models

The general multivariate GARCH model has the form

y
×1

= c+
X

=1

Φ
×

y− +
X
=1

β
×

x−
×1

+
X
=1

Θ
×

²−

²
×1

= Σ
12


×
z z ∼  (0 I)

Σ = Σ
12
 Σ

120
  Σ

12
 = Cholesky factor

Here

var−1(y) = Σ
12
 var−1(z)Σ

120
 = Σ



Practical Issues in Modeling Σ

• Models should be easy to understand and estimate, and allow for flexible
dynamics in conditional variances and correlations

• Models should have a limited number of parameters

• Σ should be positive semi-definite

— diagonal elements of Σ
12
 should be greater than or equal to zero

Diagonal VEC Models

Bollerslev, Engle and Wooldridge (1988) extended the univariate GARCH spec-

ification to a multivariate setting with the diagonal VEC model

Σ
×

= A0
×

+

X
=1

A
×

¯ (²−²0−) +
X

=1

B
×

¯Σ−

¯ = Hadamard product (element by element)

where A0 A and B are symmetric matrices. For example, for  = 2 and

 =  = 1Ã
11 12
12 22

!
=

"
110 210
210 220

#
+

"
111 211
211 221

#
¯
"
1−11−1 1−12−1
1−12−1 2−12−1

#

+

"
111 211
211 221

#
¯
"
11−1 12−1
12−1 22−1

#



Element-by-element we have GARCH(1,1)-type models for variances and co-

variances:

11 = 110 + 111

³
1−1

´2
+ 111 11−1

12 = 210 + 211 1−12−1 + 211 12−1
22 = 220 + 221

³
2−1

´2
+ 221 22−1

Remark: There are no cross-volatility or cross-covariance feedback effects. For

example, 11 does not depend on 12  2−2 or 22 

To isolate the unique elements ofΣ the lower triangular elements are extracted

using the vech(·) operator

Σ =

Ã
11 12
12 22

!
 vech(Σ) =

⎛⎜⎝ 11
12
22

⎞⎟⎠

Example: Unique components of bivariate DVEC(1,1) Model⎡⎢⎣ 11
12
22

⎤⎥⎦ =

⎡⎢⎣ 110
120
220

⎤⎥⎦+
⎡⎢⎣ 111

211
221

⎤⎥⎦
⎡⎢⎢⎣
1−11−1
1−12−1
2−12−1

⎤⎥⎥⎦

+

⎡⎢⎣ 111
211

221

⎤⎥⎦
⎡⎢⎢⎣
11−1
12−1
22−1

⎤⎥⎥⎦
Hence, only need to specify the lower triangular elements of A0 A1 and B1.



In the bivariate DVEC(1,1), ⎡⎢⎣ 110
120
220

⎤⎥⎦ = vech(A0)

⎡⎢⎣ 111
211

221

⎤⎥⎦ = diag(vech(A1))

⎡⎢⎣ 111
211

221

⎤⎥⎦ = diag(vech(B1))

Hence, the DVEC(1,1) can be expresses as

vech(Σ) = vech(A0) + diag(vech(A1))vech(ε−1ε0−1)
+diag(vech(B1))vech(Σ−1)

or, more simply, as

h = a0 + diag(a1)v−1 + diag(b1)h−1
where

h = vech(Σ) v = vech(ε−1ε0−1)
a0 = vech(A0) a1 = vech(A1) b1 = vech(B1)



General Diagonal VEC Model

Let Σ be  ×  and define the ( + 1)2 × 1 vectors h = vech(Σ)

v = vech(εε
0
), a = vech(A) and b = vech(B) Then the DVEC(p,q)

model has the form

h = a0 +

X
=1

diag(a)v− +
X

=1

diag(b)h−

where diag(a) and diag(b) denote diagonal matrices with the elements of

a and b along the diagonals, respectively.

Problems

• Large number of parameters: (+  + 1)( + 1)2

—  =  = 1  = 2⇒ 9 parameters

—  =  = 1  = 10⇒ 135 parameters

• Σ is not guaranteed to be psd

— could have negative variances or absolute correlations bigger than one



Unconditional Covariance in DVEC model

Consider the DVEC(1,1)

h = a0 + diag(a1)v−1 + diag(b1)h−1
Then

[h] = a0 + diag(a1)[v−1] + diag(b1)[h−1]
= a0 + diag(a1)[h] + diag(b1)[h] by stationarity

⇒ [h] = (I − diag(a1)− diag(b1))−1a0
where  = (+1)2 Here, stationarity requires the eigenvalues of diag(a1)+

diag(b1) to have modulus less than unity.

Covariance Targeting

Using the result [h] = (I− diag(a1)− diag(b1))−1a0 the vector a0 can
be expressed as

a0 = (I − diag(a1)− diag(b1))[h]
The parameters in a0 can be eliminated by specifying a vector for [h] For

example, set [h] = vech(Σ̂)where Σ̂ is the sample covariance matrix. This

is called covariance targeting.

Example: DVEC(1,1) with covariance targeting

h = (I − diag(a1)− diag(B1))vech(Σ̂) + diag(a1)v0−1 + diag(b1)h−1
This eliminates  = ( + 1)2 parameters from the model.



Simplification of DVEC model (Scalar DVEC)

• Restrict A to have common element  and B to have common element



• Total parameters = ( + 1) + (+ )

—  = 2  =  = 1⇒ 5 parameters;

—  = 10  =  = 1⇒ 112 parameters

Example: Bivariate DVEC(1,1) Model⎡⎢⎣ 11
12
22

⎤⎥⎦ =

⎡⎢⎣ 110
120
220

⎤⎥⎦+
⎡⎢⎣ 1

1
1

⎤⎥⎦
⎡⎢⎢⎣
1−11−1
1−12−1
2−12−1

⎤⎥⎥⎦

+

⎡⎢⎣ 1
1

1

⎤⎥⎦
⎡⎢⎢⎣
11−1
12−1
22−1

⎤⎥⎥⎦



The scalar bivariate DVEC(1,1) can then be re-expressed as

h = a0 + 1I3v−1 + 1I3h−1
Notice that

[h] = (1− 1 − 1)
−1a0

and that stationarity requires 1 + 1  1

BEKK Models

• DEV and model restricts conditional variances and covariances to only

depend on their own lagged values and the corresponding cross-product of

the error terms.

• The BEKK model (Baba, Engle, Kraft and Kroner) gives a richer dynamics
and is given by

Σ = A0A
0
0 +

X
=1

A(²−²0−)A0 +
X

=1

BΣ−B0

where A0 is a lower triangular matrix, but A ( = 1 · · ·  ) and B

( = 1 · · ·  ) are unrestricted square matrices.

• ( − 1)(+ )2 more parameters than DVEC(p,q)



Example: bivariate BEKK(1,1)

Σ = A0A
0
0 +A1(²−1²0−1)A01 +B1Σ−1B01

Consider the (2 2) element of Σ in the BEKK(1 1) model:

22 = 220 220 + [211 1−1 + 221 2−1]2+
[211 211 11−1 + 2211 221 21−1 + 221 221 22−1]

Notice that both 1−1 and 2−1 enter the equation. In addition, 11−1, the
volatility of the first series, also has direct impacts on 22 , the volatility of

the second series. However, for the bivariate BEKK(1 1) model, flexibility is

achieved at the cost of two extra parameters, i.e., 121 and 121 , which are not

needed for the DVEC(1 1) model.

Multivariate GARCH Prediction

• Predictions from multivariate GARCH models can be generated in a similar
fashion to predictions from univariate GARCH models.

• For multivariate GARCH models, predictions can be generated for both the
levels of the original multivariate time series and its conditional covariance

matrix. Predictions of the levels are obtained just as for vector autore-

gressive (VAR) models. Compared with VAR models, the predictions of

the conditional covariance matrix from multivariate GARCH models can

be used to construct more reliable confidence intervals for predictions of

the levels.



Forecasting from DVEC(1,1)

Consider the conditional variance equation for the DVEC(1 1) model:

h = a0 + diag(a1)v−1 + diag(b1)h−1
which is estimated over the time period  = 1 2 · · ·   .

• To obtain  (h+), use the forecasts of conditional covariance matrix

at time  +  for   0, given information at time  .

• For one-step-ahead prediction:
 (h+1) = a0 + diag(a1) [v ] + diag(b1) [h ]

= a0 + diag(a1)v + diag(b1)h

since an estimate of v and h already exists after estimating the DVEC

model.

• When  = 2,

 (h+2) = a0 + diag(a1) [v+1] + diag(b1) [h+1]

= a0 + (diag(a1) + diag(b1)) [h+1]

where  (h+1) is obtained in the previous step.

• This procedure can be iterated to obtain  (h+) for   2.

• Forecasts converge to the unconditional covariance matrix defined by

vech(Σ̄) = (I − diag(a1)− diag(b1)−1a0



Univariate GARCH-Based Models

• For BEKK, DVEC and matrix diagonal models, the conditional covariance
matrix is modeled directly.

— This approach can result in a large number of parameters since the

covariance terms need to be modeled separately.

• Another approach in multivariate GARCH modeling is to first model in-
dividual series using univariate GARCH and then model the conditional

correlations between the series. The main types of models are

— Constant conditional correlation (CCC) model, Dynamic conditional

correlation (DCC) model, and orthogonal principal component (OGA-

RCH) model.

Constant Conditional Correlation (CCC) Model

• Given that  =  a × covariance matrixΣ can be decomposed

into:

Σ = DRD

where R is the correlation matrix, D is a diagonal matrix with the vector

(1 · · ·  )0 on the diagonal, and  is the standard deviation of the -th
series.

R =

⎡⎢⎢⎢⎣
1 12 · · · 1
12 1 · · · 2
... . . . ...

1 2 · · · 1

⎤⎥⎥⎥⎦  D =

⎡⎢⎢⎢⎣
1 0 · · · 0

0 2 · · · 0
... . . . ...

0 0 · · · 

⎤⎥⎥⎥⎦



• Based on the observation that the correlation matrix of foreign exchange
rate returns is usually constant over time, Bollerslev (1990) suggested

modelling the time varying covariance matrix as:

Σ = DRD

whereR is the constant conditional correlation matrix, andD is a diagonal

matrix:

D =

⎡⎢⎣1 . . .



⎤⎥⎦
with  following any univariate GARCH process, for  = 1 · · ·  . Here,
the conditional correlations  are constant but the conditional covariances

 =  are time varying.

• R can be the sample correlation matrix or a matrix of specified values

Dynamic Conditional Correlation (DCC) Model

Engle (2002) extended Bollerslev’s CCC model to allow the conditional corre-

lations to be time varying.

r
×1

= μ+ ε ε|−1 ∼  (0Σ)

(ε|−1) = Σ
×

= DRD

R =

⎡⎢⎢⎢⎢⎣
1 12 · · · 1

12 1 · · · 2
... . . . ...

1 2 · · · 1

⎤⎥⎥⎥⎥⎦  D =

⎡⎢⎢⎢⎣
1 0 · · · 0

0 2 · · · 0
... . . . ...

0 0 · · · 

⎤⎥⎥⎥⎦



For each univariate series ( = 1     ), we have

 =   ∼ (0 1)

(|−1) = 2

Define the vector of standardized errors (returns) z = (1     )
0 Then

[zz
0
|−1] = R 6= I

Why? Consider

( |−1) =
( |−1)


=

( |−1)


=
( |−1)


= ( |−1)

= []

Idea behind DCC:

• Estimate univariate GARCH models (e.g. GARCH(1,1)) for each  ( =
1     )

̂2 = ̂0 + ̂1̂
2
−1 + ̂1̂

2
−1

and form estimated standardized residuals

̂ =
̂

̂

• Model the pairwise conditional covariances between the standardized resid-
uals

̂ = d(̂ ̂|−1)



• Estimate the conditional covariance matrix from the univariate volatility

estimates and bivariate conditional correlation estimates

Σ̂ = D̂R̂D̂

Modeling Conditional Correlations

Engle proposed two ways to model ̂ = d(̂ ̂|−1)
1. EWMA covariance matrix for ẑ = (̂1     ̂)

0

Q̂
 = (1− )ẑ−1ẑ0−1 + Q̂

−1
Then re-scale EWMA covariances to get EWMA correlations

̂
 =

̂
³

̂
 × ̂



´12
Note: re-scaling is necessary because the elements of Q̂

 are not guar-

anteed to lie between -1 and 1.

Note: We use the same  to model all conditional covariances. This greatly

reduces the number of parameters to estimate!



2. Common GARCH(1,1) model for ̂ = (̂ ̂|−1)

̂ =  +  · ̂−1̂−1 +  · ̂−1 for all  
⇒ Q̂


×

= Ω+  · ẑ−1ẑ0−1 +  · Q̂
−1

• Use the same values of  and  for all ̂! This reduces the number of
estimated parameters like in EWMA.

• Use covariance targeting to eliminate  in each equation

 = ̂[̂̂](1− − )

̂[̂̂] = sample covariance b/w ̂ and ̂ = ̂

⇒ Ω = (1− − )× Ŝ

• Re-scale to get conditional correlation matrix

R̂
 = D̂−1 Q̂

 D̂−1

D̂ =

⎡⎢⎢⎢⎢⎢⎣
̂
11 0 · · · 0

0 ̂
22 0

... . . . ...

0 0 · · · ̂


⎤⎥⎥⎥⎥⎥⎦


