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Lecture Outline

e Exponentially weighted covariance estimation

e Multivariate GARCH models

e Prediction from multivariate GARCH models




Reading

e FRF chapter 3.

e QRM chapter 4, sections 5 and 6;

e FMUND, chapter 6

Exponentially Weighted Covariance Estimate

let y+ be a k x 1 vector of multivariate time series:

Yt = C+€ta t:1727 7T

e ~ WN(0,3X)
The sample covariance matrix is given by:
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To allow for time varying covariance matrix, an ad hoc approach uses expo-
nentially decreasing weights as follows:
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Since
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the weights are usually scaled so that they sum up to one:
A w .
e=(1-X) Z A

=1

The above equation can be easily rewritten to obtain the following recursive
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form for exponentially weighted covariance matrix:
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From the above equation, given A and an initial estimate 21, the time varying

exponentially weighted covariance matrices can be computed easily.

Example: Bivariate Model
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Estimating A\

e In practice, the value of A is usually chosen in an ad hoc way as typified
by the RiskMetrics proposal.

o If €, ~ N(0,3;) where 3; = Covy_1(€;) then the log-likelihood function
of the observed time series can be written as:

kT 1z 1 L a1l
log L = ey log(27) — 5 > I% - 5 Y (vt — ) (vt — o).
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e The mean vector ¢ and A can be treated as unknown model parameters
and estimated using quasi-maximum likelihood estimation (MLE), given
the initial value 37.

Multivariate GARCH Models

The general multivariate GARCH model has the form

yt = c+z¢'ZYt 2+Z B x¢— Z+Z®86t s

kx1 1 kxk =1 kxmmx1 Ss—=
€t = Et/ Zt, Zt ~ 11d (0, Ik)
kx1 kxk

1/2 1/2’ 1/2

Xy = X787, Xy'" = Cholesky factor

Here

1/2 1/2/
var,_1(y) = 31/ %var,_1(z) 52 = 3,




Practical Issues in Modeling 3:;

e Models should be easy to understand and estimate, and allow for flexible
dynamics in conditional variances and correlations

e Models should have a limited number of parameters

e > should be positive semi-definite

. 1/2
— diagonal elements of Et/ should be greater than or equal to zero

Diagonal VEC Models

Bollerslev, Engle and Wooldridge (1988) extended the univariate GARCH spec-
ification to a multivariate setting with the diagonal VEC model

¥t = Ag + A; ©(€_i€;_;) + B; ©%;_
kxk kxk Zzlkxk i ]Z:kak E

® = Hadamard product (element by element)

where Ag, A; and B, are symmetric matrices. For example, for k = 2 and

p:q:]_

(o) = [ B Dot bt
Ot ag et 16t 1 6t 16t 1
REY AN

b Ot—1 9¢—1




Element-by-element we have GARCH(1,1)-type models for variances and co-

variances:
2
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Remark: There are no cross-volatility or cross-covariance feedback effects. For

example, 0%1 does not depend on 0%2, 65_2, or 052.

To isolate the unique elements of 3+ the lower triangular elements are extracted
using the vech(-) operator
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Example: Unique components of bivariate DVEC(1,1) Model
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Hence, only need to specify the lower triangular elements of Ag, A1 and Bj.




In the bivariate DVEC(1,1),

"
2| = vech(Ap)
a%l = diag(vech(Aj))

b3l = diag(vech(B1))

Hence, the DVEC(1,1) can be expresses as

vech(Z;) = vech(Ag) + diag(vech(A1))vech(g;_1€}_1)
+diag(vech(B1))vech(3;_1)

or, more simply, as
h; = ag + diag(a)vi—1 + diag(b1)hs 1
where

ht = VeCh(zt), Vi :VeCh(EIt_]_E%_l)
ag = vech(Ap), a; = vech(A1), by = vech(B)




General Diagonal VEC Model

Let 3¢ be k X k and define the k(k + 1)/2 x 1 vectors h; = vech(3),
vi = vech(gse}), aj = vech(A;) and b; = vech(B;). Then the DVEC(p,q)
model has the form

p q
hy = ag + Z diag(aj)vt_j + Z diag(bj)ht_j
J=1 J=1

where diag(a;) and diag(b;) denote diagonal matrices with the elements of
a; and b; along the diagonals, respectively.

Problems

e Large number of parameters: (p + ¢+ 1)k(k + 1)/2.
- p=q=1k=2= 9 parameters

- p=q=1,k =10 = 135 parameters

e >, is not guaranteed to be psd

— could have negative variances or absolute correlations bigger than one




Unconditional Covariance in DVEC model

Consider the DVEC(1,1)

h; = ag + diag(a)vy—1 + diag(b1)h; 1
Then
Elhy] = ag+diag(ai)E[vi_1] + diag(b1)E[h;_{]
= ag + diag(aj) E[h¢] 4 diag(b1) E[h¢] by stationarity
= E[hy] = (I — diag(a;) — diag(b1)) 'ag

where p = k(k+1)/2. Here, stationarity requires the eigenvalues of diag(a;)+
diag(b1) to have modulus less than unity.

Covariance Targeting

Using the result E[h;] = (I, — diag(a;) — diag(b1))lag, the vector ag can
be expressed as

ag = (Ip — diag(a;) — diag(b1)) £[hy]
The parameters in ag can be eliminated by specifying a vector for E[hy]. For

example, set E[hy] = vech(2),where 3 is the sample covariance matrix. This
is called covariance targeting.

Example: DVEC(1,1) with covariance targeting

h; = (I — diag(a1) — diag(By))vech(X) + diag(a1)v;_; + diag(b1)h¢_1

This eliminates p = k(k + 1)/2 parameters from the model.




Simplification of DVEC model (Scalar DVEC)

® Restrict A; to have common element a; and B; to have common element

b;.

e Total parameters = k(k + 1) + (p + q).
— k=2,p=q=1=5 parameters;

— k=10,p = q =1 = 112 parameters

Example: Bivariate DVEC(1,1) Model
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The scalar bivariate DVEC(1,1) can then be re-expressed as
hy = ag + a1lzvy—1 + 01I3hy 4
Notice that
Elh] = (1—a1—b1) ag

and that stationarity requires a1 + b1 < 1

BEKK Models

e DEV and model restricts conditional variances and covariances to only
depend on their own lagged values and the corresponding cross-product of
the error terms.

e The BEKK model (Baba, Engle, Kraft and Kroner) gives a richer dynamics
and is given by

P q
3= AoAp+ > Aj(e—ier_))Al+ > BB

i=1 j=1
where Ag is a lower triangular matrix, but A; (¢ = 1,--- ,p) and B;
(j=1,---,q) are unrestricted square matrices.

e k(k—1)(p+ q)/2 more parameters than DVEC(p,q)




Example: bivariate BEKK(1,1)

i = AgAg + Ai(e—1€;_1)A7 + B1X;_1B]

Consider the (2, 2) element of 3; in the BEKK(1,1) model:

Ut22 22 22 22 2 ]2

+ [aftel_; + af’el_,
U201l op2122520 | 2222,22 )

Notice that both 6% 1 and 6% 1 enter the equation. In addition, Ut 1. the
volatility of the first series, also has direct impacts on ot2, the volatility of

the second series. However, for the bivariate BEKK(1, 1) model, flexibility is

b12

achieved at the cost of two extra parameters, i.e., a%z and . which are not

needed for the DVEC(1, 1) model.

Multivariate GARCH Prediction

e Predictions from multivariate GARCH models can be generated in a similar
fashion to predictions from univariate GARCH models.

e For multivariate GARCH models, predictions can be generated for both the
levels of the original multivariate time series and its conditional covariance
matrix. Predictions of the levels are obtained just as for vector autore-
gressive (VAR) models. Compared with VAR models, the predictions of
the conditional covariance matrix from multivariate GARCH models can
be used to construct more reliable confidence intervals for predictions of
the levels.




Forecasting from DVEC(1,1)

Consider the conditional variance equation for the DVEC(1, 1) model:

hy = ag + diag(a)v¢—1 + diag(b1)hs—1

which is estimated over the time period t =1,2,--- ,T.

e To obtain Ep(hp,y), use the forecasts of conditional covariance matrix
at time 1"+ k for k > 0, given information at time 7'.

e For one-step-ahead prediction:
Er(hry1) = ag + diag(a1) Ep[vr] + diag(b1) Ep[hy]
= ag + diag(aj)vy + diag(by)hp

since an estimate of v and hp already exists after estimating the DVEC
model.

e When k£ = 2,

Ep(hrys) = ag + diag(ay) Ep[vr41] + diag(by) Er[hr 4]
= ag + (diag(a1) + diag(b1)) Er[hr 1]

where Ep(hp, 1) is obtained in the previous step.
e This procedure can be iterated to obtain Ep(hp ) for & > 2.

e Forecasts converge to the unconditional covariance matrix defined by

vech(X) = (I, — diag(a;) — diag(b1) tag




Univariate GARCH-Based Models

e For BEKK, DVEC and matrix diagonal models, the conditional covariance
matrix is modeled directly.

— This approach can result in a large number of parameters since the
covariance terms need to be modeled separately.

e Another approach in multivariate GARCH modeling is to first model in-
dividual series using univariate GARCH and then model the conditional
correlations between the series. The main types of models are

— Constant conditional correlation (CCC) model, Dynamic conditional
correlation (DCC) model, and orthogonal principal component (OGA-
RCH) model.

Constant Conditional Correlation (CCC) Model

e Giventhat o;; = ;030 @ kX k covariance matrix 3’ can be decomposed

into:
> =DRD
where R is the correlation matrix, D is a diagonal matrix with the vector

(o1, ,04) on the diagonal, and o; is the standard deviation of the i-th

series.

L p12 = p1k op 0 --- 0
R |P2 1 = p| p_|0 o2 0

Pk Pk 1 0 0 - o




e Based on the observation that the correlation matrix of foreign exchange
rate returns is usually constant over time, Bollerslev (1990) suggested
modelling the time varying covariance matrix as:

3 = DRDy
where R is the constant conditional correlation matrix, and Dy is a diagonal
matrix:
o1t
D; =
Okt
with o;; following any univariate GARCH process, for i = 1,--- , k. Here,

the conditional correlations p;j are constant but the conditional covariances
Oijt = P;jO4t0j¢ are time varying.

e R can be the sample correlation matrix or a matrix of specified values

Dynamic Conditional Correlation (DCC) Model

Engle (2002) extended Bollerslev's CCC model to allow the conditional corre-
lations to be time varying.
ry = WU+ €, €t|It—1 ~ 1id N(O, Zt)
kx1
var(e¢|l;—1) = ¥y = DiRDy
kxk

1L p1o¢ - Pkt oix 0 - 0
R, — | P12 1 P2kt | p, 0 o2 0

Pkt P2kt - 1 0 0 - o




For each univariate series (i = 1, ..., k), we have

git = Ouzit, zit ~ N(0,1)
var(ey|l;_1) = o3

Define the vector of standardized errors (returns) z; = (214, ..., 2kz) . Then

Elzzi|l; 1] = R # T,

Why? Consider
_cov(eip, gelli—1)  cov(oizit, ozl Ii—1)

cor(git, et li—1) = P = p—

it0 1t0j
oit0jrcov(zit, 2| It 1)

= cov(zit, zit| It—1)

Tit0 jt
= Elzizj]

Idea behind DCC:

e Estimate univariate GARCH models (e.g. GARCH(1,1)) for each g;+ (i =
1,...,k)
6% = Go+a185_1 + 01654

and form estimated standardized residuals

e Model the pairwise conditional covariances between the standardized resid-

uals

Pijt = cov(Zit, £j¢|Ip—1)




e Estimate the conditional covariance matrix from the univariate volatility
estimates and bivariate conditional correlation estimates

3 = DiR¢Dy

Modeling Conditional Correlations
Engle proposed two ways to model p;; ; = cov(Z;t, £j¢|1¢—1)

1. EWMA covariance matrix for Z; = (214, - - -, 2it)’
AEW M A PN N AEW M A
Q; = (1= N)2Z¢-12p 1 + AQ g

Then re-scale EWMA covariances to get EWMA correlations

~EW M A
AEI%VMA _ Qijt
0 SEWMA o sEWMA)Y/2
Qi t 95t

Note: re-scaling is necessary because the elements of QFWMA

anteed to lie between -1 and 1.

are not guar-

Note: We use the same A to model all conditional covariances. This greatly
reduces the number of parameters to estimate!




2. Common GARCH(1,1) model for §;;; = cov(Z;t, £j¢|I¢—1)

Qiji = wij+o-Zi 121+ 8- §ij—1, forall i, j
ADCC ~ A/ ADCC
= QY =Q+a-212_1+08- Q4
kxk

e Use the same values of a and (3 for all §;; ;! This reduces the number of
estimated parameters like in EWMA.

e Use covariance targeting to eliminate w;; in each equation

wij = FEl23Z2;](1—a—p)
E[éitéjt] = sample covariance b/w £;; and £j; = §;;

= Q=(1-a-p8)xS

e Re-scale to get conditional correlation matrix

RtDCC _ f)t—thDCCf)t—l
~DCC
a11¢ DOCC 0
D, — X 0
0 0 ... gbcc

Akt




