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We compare expected shortfall with value-at-risk (VaR) in three
aspects: estimation errors, decomposition into risk factors, and 
optimization.

We describe the advantages and the disadvantages of expected
shortfall over VaR. We show that expected shortfall is easily 
decomposed and optimized while VaR is not. We also show that
expected shortfall needs a larger size of sample than VaR for the same
level of accuracy.
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I. Introduction

Artzner et al. (1997) proposed the use of expected shortfall to alleviate the problems
inherent in value-at-risk (VaR). Expected shortfall considers loss beyond the VaR
level and is shown to be sub-additive, while VaR disregards loss beyond the percentile
and is not sub-additive.1

In this paper, we compare expected shortfall with VaR in three aspects: their 
estimation errors, their decomposition into risk factors, and their optimization.
These comparative analyses can help risk managers consider the usefulness of
expected shortfall as a risk management tool.

The rest of the paper is organized as follows. Section II gives our definitions and
concepts of VaR and expected shortfall. Section III examines the estimation error of
expected shortfall using Monte Carlo simulations. Section IV provides an example of
estimating expected shortfall with sample portfolios. Section V describes a method 
of decomposing VaR and expected shortfall developed by Hallerbach (1999) and
Tasche (2000). Section VI describes a method of optimizing portfolios based 
on expected shortfall developed by Rockafeller and Uryasev (2000). Section VII 
concludes the paper.

II. Definitions and Concepts of Expected Shortfall

Artzner et al. (1997) have proposed the use of expected shortfall (also called 
“conditional VaR,” “mean excess loss,” “beyond VaR,” or “tail VaR”) to alleviate the
problems inherent in VaR. The expected shortfall is defined as follows.

Definition of expected shortfall
Suppose X is a random variable denoting the loss of a given portfolio and
VaRα(X ) is the VaR at the 100(1 – α ) percent confidence level.2 ESα(X ) is
defined by the following equation.3

ESα(X ) = E [X |X ≥ VaRα(X )]. (1)

Expected shortfall measures how much one can lose on average in states beyond the
VaR level. When the loss distribution is not normal, VaR disregards the loss beyond
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1. A risk measure ρ is sub-additive when the risk of the total position is less than or equal to the sum of the risk of
individual portfolios. Intuitively, sub-additivity requires that “risk measures should consider risk reduction by
portfolio diversification effects.” 

Sub-additivity is defined as follows. Let X and Y be random variables denoting the losses of two individual
positions. A risk measure ρ is sub-additive if the following equation holds.

ρ(X + Y ) ≤ ρ(X ) + ρ(Y ).

2. In this paper, VaR is defined as the upper 100α percentile of the loss distribution.
3. E [x |B ] is the conditional expectation of the random variable x given event B. Since X is defined as the loss, X is

positive in loss and negative in profit.



the VaR level and fails to be sub-additive. Expected shortfall considers the loss
beyond the VaR level and is shown to be sub-additive. 

III. Estimation Error of Expected Shortfall

A. Concepts of Estimation Error
Estimates of VaR and expected shortfall are affected by estimation error, the natural
sampling variability due to limited sample size. For example, consider a situation
where we estimate the VaR of a given portfolio by Monte Carlo simulations. The
VaR estimates vary according to the realizations of random numbers. To reduce 
estimation error, risk managers must increase the sample size of the simulations.

This section compares the estimation errors of expected shortfall and VaR, 
and considers whether more calculation time is needed when estimating expected 
shortfall than when estimating VaR.

B. Estimation Error under Stable Distribution
In this subsection, we compare the estimation errors of VaR and expected shortfall 
by simulating random variables with stable distributions. 

When a random variable X obeys the stable distribution,4 there exist constants α
and γn such that

Sn
d
= n1/αX + γn, (2)

where Sn is the sum of independently and identically distributed n copies of X .5

α is the index of stability. The smaller α is, the heavier the tail of the distribution. 
If α = 2, the stable distribution reduces to the normal, and it reduces to Cauchy6 if 
α = 1 (Figure 1). The stable distribution is a generalization of the normal in that a
sum of stable random variables is also a stable random variable.

We evaluate the estimation errors of VaR and expected shortfall as follows. First, we
run 10,000 sets of Monte Carlo simulations with a sample size of 1,000, assuming 
that the underlying loss distributions are stable with α = 2.0, 1.9, . . ., 1.2, 1.1.7,8
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4. For details of the stable distribution, see Feller (1969) and Shiryaev (1999).
5. =

d
denotes equality in distribution. 

6. The first moment of Cauchy distribution (α = 1) is infinite. Therefore, when the loss obeys Cauchy distribution,
one cannot define expected shortfall since it is the conditional expectation of loss given that the loss is in the right
tail of the loss distribution.

7. Stable random variables are commonly described by the following characteristic functions:

 πα
 exp{–σα|θ |α (1 – i β(sgnθ)tan—–) + iµθ},   if α ≠ 1, 

Φ(θ) =  2
2

 exp{–σ |θ |(1 + i β—(sgnθ)lnθ) + iµθ},   if α = 1,  π

where α is the index of stability, β is the skewness parameter, σ is the scale parameter, and µ is the location 
parameter. 

In this section, we set β = 0, µ = 0, and σ = 1/√
—
2 . We set σ = 1/√

—
2  so that the loss distribution reduces to

the standard normal when α = 2.
8. We obtained uniform random numbers with Mersenne Twister, and transformed them into stable random 

numbers with the algorithm developed by Chambers, Mallows, and Stuck (1976).



Second, we obtain 10,000 estimates9 of VaR and expected shortfall from those sets of
simulations, and calculate the average, the standard deviation, and the 95 percent con-
fidence level of those estimates.10 The estimation errors of VaR and expected shortfall
are compared by the relative standard deviation (the standard deviation divided by the
average). Tables 1–2 and Figures 2–5 show the results.

The estimation error of expected shortfall is larger than that of VaR when the
underlying loss distribution is fat-tailed. As α gets closer to one (i.e., as the underly-
ing loss distribution becomes fat-tailed), the relative standard deviation of the
expected shortfall estimate becomes much larger than that of the VaR estimate. On
the other hand, when α is close to two (i.e., when the underlying loss distribution is
approximately normal), the relative standard deviation of VaR and expected shortfall 
estimates are almost equal. 
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Figure 1  Comparison of Normal and Cauchy Density Functions

9. The estimator of VaR at the 100(1 – α ) percent confidence interval is the upper 100α percent quantile of the
empirical loss distribution. We take the VaR estimator as the (nα + 1)th largest sample of loss, where n is the
sample size. That is, we take X (nα +1) as the VaR estimator where the sequence X (n), X (n –1), . . . , X (nα +1), X (nα ), . . . , X (1)

is the loss sample rearranged in increasing order. We take the following as the expected shortfall estimator. 

X (1) + X (2) + . . . + X (nα +1)ESα = ————————–— . 
nα + 1

10. The asymptotic standard deviation of the VaR estimate can be obtained in closed form. Furthermore, there is a
closed-form formula that approximates the standard deviation of the expected shortfall estimate (see Appendix 1
for details). When the underlying loss distribution is relatively thin-tailed (such as the normal and t
distributions), those closed-form formulas give almost equal numbers to those calculated by Monte Carlo 
simulation. On the other hand, when the underlying distribution is fat-tailed (such as in a Pareto distribution),
they give substantially different numbers.
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Table 1  Estimates of VaR and Expected Shortfall with Stable Distribution
(Confidence Level: 95 Percent)

Standard Relative Confidence
α Risk measures Average deviation standard interval

(a) (b) deviation (95 percent)
(c) = (b)/(a)

2.0
VaR 1.64 0.07 0.04 [1.51  01.77]

(normal)
Expected shortfall 2.05 0.08 0.04 [1.90  02.21]

1.9
VaR 1.70 0.08 0.04 [1.55  01.85]

Expected shortfall 2.42 0.80 0.33 [2.06  03.14]

1.8
VaR 1.77 0.09 0.05 [1.60  01.95]

Expected shortfall 2.90 1.81 0.63 [2.28  04.20]

1.7
VaR 1.86 0.11 0.06 [1.67  02.08]

Expected shortfall 3.53 3.84 1.09 [2.58  05.60]

1.6
VaR 1.98 0.13 0.07 [1.75  02.26]

Expected shortfall 4.39 8.34 1.90 [2.96  07.62]

1.5
VaR 2.15 0.16 0.08 [1.86  02.50]

Expected shortfall 5.67 19.31 3.41 [3.48  10.71]

1.4
VaR 2.38 0.21 0.09 [2.02  02.82]

Expected shortfall 7.71 48.95 6.35 [4.16  15.76]

1.3
VaR 2.68 0.26 0.10 [2.22  03.25]

Expected shortfall 11.46 139.60 12.19 [5.10  25.13]

1.2
VaR 3.08 0.34 0.11 [2.49  03.85]

Expected shortfall 19.79 463.10 23.40 [6.48  42.45]

1.1
VaR 3.65 0.46 0.13 [2.86  04.67]

Expected shortfall 44.41 1,866.40 42.03 [8.59  81.44]
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Table 2  Estimates of VaR and Expected Shortfall with Stable Distribution
(Confidence Level: 99 Percent)

Standard Relative Confidence
α Risk measures Average deviation standard interval

(a) (b) deviation (95 percent)
(c) = (b)/(a)

2.0
VaR 2.30 0.12 0.05 [02.09  002.54]

(normal)
Expected shortfall 2.62 0.14 0.05 [02.36  002.90]

1.9
VaR 2.57 0.20 0.08 [02.25  003.03]

Expected shortfall 3.94 3.68 0.93 [02.70  007.02]

1.8
VaR 3.00 0.35 0.12 [02.47  003.86]

Expected shortfall 5.58 8.36 1.50 [03.27  011.25]

1.7
VaR 3.61 0.55 0.15 [02.78  004.94]

Expected shortfall 7.70 17.74 2.30 [04.05  016.84]

1.6
VaR 4.40 0.78 0.18 [03.23  006.29]

Expected shortfall 10.66 38.62 3.62 [05.01  025.03]

1.5
VaR 5.41 1.08 0.20 [03.81  008.00]

Expected shortfall 15.16 89.50 5.91 [06.31  037.93]

1.4
VaR 6.76 1.49 0.22 [04.56  010.37]

Expected shortfall 22.76 226.92 9.97 [08.02  060.08]

1.3
VaR 8.63 2.10 0.24 [05.58  013.64]

Expected shortfall 37.59 647.21 17.22 [10.39  100.13]

1.2
VaR 11.34 3.04 0.27 [07.00  018.77]

Expected shortfall 72.74 2,147.04 29.52 [13.90  176.21]

1.1
VaR 15.53 4.63 0.30 [09.09  026.85]

Expected shortfall 181.77 8,653.26 47.61 [19.63  351.63]
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Figure 2  Relative Standard Deviation of Estimates (Confidence Level: 95 Percent)
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Figure 3  Relative Standard Deviation of Estimates (Confidence Level: 95 Percent,
Enlarged 1.9 ≤ α ≤ 2)



This result can be explained as follows. When the underlying distribution is 
fat-tailed, the probability of infrequent and large loss is high. The expected shortfall
estimates are affected by whether large and infrequent loss is realized in the obtained
sample, since expected shortfall considers the right tail of the loss distribution. On
the other hand, the VaR estimates are less affected by large and infrequent loss than
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Enlarged 1.9 ≤ α ≤ 2)
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the expected shortfall estimates, since the VaR method disregards loss beyond the
VaR level. Therefore, when the underlying loss distribution becomes more fat-tailed,
the expected shortfall estimates become more varied due to infrequent and large loss,
and their estimation error becomes larger than the estimation error of VaR.

Furthermore, we investigate whether the increase in sample size reduces the 
estimation error of expected shortfall. We run 10,000 sets of Monte Carlo simula-
tions with sample sizes of 1,000, 10,000, and 100,000 each, assuming that the
underlying loss distributions are stable with α = 2.0, 1.5, 1.1. We calculate the 
average, the standard deviation, and the 95 percent confidence interval of those
10,000 estimates. Tables 3–4 and Figure 6 show the results. 

The increase in sample size from 1,000 to 100,000 reduces the relative standard
deviations (the standard deviation divided by the average) of the expected shortfall
estimates.11 Therefore, we are able to reduce the estimation error of expected shortfall
by increasing sample size.12

11. Table 3 shows that, when the underlying loss distribution is stable with α = 1.5, we must have a sample size 
of somewhere between several hundred thousand and one million to ensure the same level of relative standard
deviation as occurs when we estimate VaR with a sample size of 1,000 (0.08).

12. This result is consistent with proposition 3.1 of Acerbi and Tasche (2001), which says that the expected shortfall
estimate converges with probability one as sample size tends to infinity.

Table 3  Convergence of Expected Shortfall Estimates under Stable Distributions
(Confidence Level: 95 Percent)

α = 2.0 α = 1.5 α = 1.1

Sample Relative Confidence Relative Confidence Relative Confidence
size standard interval standard interval standard interval

deviation (95 percent) deviation (95 percent) deviation (95 percent)

1,000 0.04 [1.90  2.21] 3.41 [3.48  10.71] 42.03 [08.59  81.44]

10,000 0.01 [2.01  2.11] 0.47 [4.51  08.01] 08.29 [14.02  75.20]

100,000 0.00 [2.05  2.08] 0.15 [5.09  06.91] 02.07 [18.80  76.69]

1,000,000 0.00 [2.06  2.07] 0.05 [5.41  06.28] 00.64 [22.64  71.65]

Table 4  Convergence of Expected Shortfall Estimates under Stable Distributions
(Confidence Level: 99 Percent)

α = 2.0 α = 1.5 α = 1.1

Sample Relative Confidence Relative Confidence Relative Confidence
size standard interval standard interval standard interval

deviation (95 percent) deviation (95 percent) deviation (95 percent)

1,000 0.05 [2.36  2.90] 5.91 [06.31  37.93] 47.61 [19.63  351.63]

10,000 0.02 [2.57  2.75] 0.84 [10.40  27.33] 09.91 [43.86  346.70]

100,000 0.01 [2.64  2.69] 0.26 [13.07  22.08] 02.50 [66.87  356.04]

1,000,000 0.00 [2.67  2.67] 0.10 [14.58  18.96] 00.78 [85.99  330.92]
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IV. Examples of Estimating Expected Shortfall

This section gives examples of estimating expected shortfall, and compares the 
estimation error of expected shortfall with that of VaR. We consider two cases: an
option portfolio and a credit portfolio.

A. Equity Option Portfolio
This subsection treats a sample portfolio consisting of three issues of U.S. stocks
(General Electric, McDonald’s, and Intel) and short positions on options whose
underlying securities are those U.S. stocks (Table 5).

Table 5  Sample Option Portfolio

Days to Strike Price Dollar Position
maturity price (premium) amount (1,000 units)(US$) (US$) (US$1,000)

General Electric stock — — 49-13/16 1,000 –20.1

McDonald’s stock — — 31-1/4 1,000 –32.0

Intel stock — — 42-1/32 1,000 –23.8

Call option on GE stock 18 50.00 2 –100 –50.0

Call option on McDonald’s stock 18 30.00 1-3/4 –100 –57.1

Call option on Intel stock 18 40.00 3-1/2 –100 –28.6

Source: Bloomberg L.P. as of November 28, 2000.

We estimate the VaR and expected shortfall of this sample portfolio. We assume
that the log returns of the stocks obey the multivariate normal distribution, and esti-
mate the variance-covariance matrix of those log returns from historical data. We set
the holding period to be one day, and assume that implied volatility is constant
throughout this period (see Appendix 2 for details). Figure 7 shows the profit and
loss distribution of the sample portfolio. The distribution is skewed to the left
because of the substantial short positions on call options.

1,800
1,600
1,400
1,200
1,000

800
600
400
200

0

Frequency

Profit and loss

US$1,000
–250 –200 –150 –100 –50 0 50

Figure 7  Profit and Loss Distribution of Sample Option Portfolio (Sample Size: 10,000)

Note: The profit (loss) is shown as a positive (negative) number.



We evaluate the estimation errors of VaR and expected shortfall as follows. We
run 10,000 sets of Monte Carlo simulations with a sample size of 1,000, and calcu-
late the average, the standard deviation, and the 95 percent confidence interval of the
VaR and expected shortfall estimates. Tables 6–7 show the result. 
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Table 8  Sample Portfolio with Far-Out-of-the-Money Options

Days to Strike Price Dollar Position
maturity price (premium) amount (1,000 units)(US$) (US$) (US$1,000)

General Electric stock — — 49-13/16 1,000 20.1

McDonald’s stock — — 31-1/4 1,000 32.0

Intel stock — — 42-1/32 1,000 23.8

Call option on GE stock 18 58-3/8 3/16 –100 –533.3

Call option on McDonald’s stock 18 40 1/16 –100 –1,600.0

Call option on Intel stock 18 55 1/16 –100 –1,600.0

Source: Bloomberg L.P. as of November 28, 2000.

Table 6  Estimates of VaR and Expected Shortfall of Sample Portfolio 
(Confidence Level: 95 Percent)

Standard Relative ConfidenceSample Risk Average deviation standard intervalsize measures (a) (b) deviation (95 percent)(c) = (b)/(a)

1,000
VaR 68.33 3.34 0.0489 [61.72  075.03]

Expected shortfall 91.20 4.63 0.0508 [82.44  100.30]

10,000
VaR 68.18 1.05 0.0154 [66.10  070.22]

Expected shortfall 91.56 1.38 0.0151 [88.97  094.26]

100,000
VaR 68.15 0.33 0.0049 [67.51  068.81]

Expected shortfall 91.57 0.46 0.0050 [90.73  092.50]

Table 7  Estimates of VaR and Expected Shortfall of Sample Portfolio 
(Confidence Level: 99 Percent)

Standard Relative ConfidenceSample Risk Average deviation standard intervalsize measures (a) (b) deviation (95 percent)(c) = (b)/(a)

1,000
VaR 107.00 7.50 0.0701 [093.16   123.31]

Expected shortfall 127.10 9.47 0.0745 [109.94   146.46]

10,000
VaR 106.23 2.28 0.0215 [101.82   110.81]

Expected shortfall 128.35 3.10 0.0242 [122.46   134.68]

100,000
VaR 105.97 0.71 0.0067 [104.53   107.37]

Expected shortfall 128.28 0.99 0.0078 [126.30   130.31]

The estimation errors of VaR and expected shortfall are almost equal. This result
is similar to the result in Section III in which the underlying distribution is found to
be normal. The right tail of the loss distribution of this sample option portfolio is
similar to the normal, since the strike prices of options are close to at-the-money. 

Next, we consider a sample portfolio with far-out-of-the-money options (Table 8).
The only difference between this portfolio and the sample portfolio in Table 5 is that
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the strike prices of options are far-out-of-the-money13 in this portfolio. Figure 8 shows
the profit and loss distribution of the portfolio. The distribution is more skewed to the
left than the profit and loss distribution in Figure 7 because it includes large positions
in far-out-of-the-money options.
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2,000

1,000

0
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Profit and loss
US$1,000

–1,800 –1,600 –1,400 –1,200 –1,000 –800 –600 –400 –200 0 200

Figure 8  Profit and Loss Distribution of Sample Portfolio with Far-Out-of-the-Money
Options (Sample Size: 10,000)

We estimate the VaR and expected shortfall of this sample portfolio by following
the same steps that we used when we estimated the VaR and expected shortfall of the
sample portfolio in Table 5. Tables 9–10 show the results. 

The estimation error of expected shortfall is larger than that of VaR when the
strike prices of the options are far-out-of-the-money. This is because the underlying
loss distribution becomes fat-tailed when the strike prices of the options are made
far-out-of-the-money.

13. As we assume that the log returns of the stocks obey the multivariate normal distribution and that the volatility is
constant, the probability that the stock prices rise beyond the strike prices of options during the holding period is
less than 0.01 percent.

Table 9  Estimates of VaR and Expected Shortfall of Sample Portfolio with 
Far-Out-of-the-Money Options (Confidence Level: 95 Percent)

Standard Relative ConfidenceSample Risk Average deviation standard intervalsize measures (a) (b) deviation (95 percent)(c) = (b)/(a)

1,000
VaR 334.62 22.01 0.0658 [293.70  380.86]

Expected shortfall 500.46 35.00 0.0699 [433.38  571.32]

10,000
VaR 332.56 07.06 0.0212 [318.53  346.88]

Expected shortfall 502.01 11.17 0.0222 [481.57  524.05]

100,000
VaR 332.26 02.15 0.0065 [328.14  336.70]

Expected shortfall 502.19 03.45 0.0069 [495.53  509.05]

Note: The profit (loss) is shown as a positive (negative) number.



B. Loan Portfolio
This subsection deals with a sample loan portfolio. The sample portfolio (Table 11) 
consists of 1,000 loans with homogeneous default rates of 1 percent or 0.1 percent.
The individual loan amounts obey the exponential distribution with an average 
of ¥100 million (see Figure 9 for the distribution of the loan amount). The correlation
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Table 10  Estimates of VaR and Expected Shortfall of Sample Portfolio with 
Far-Out-of-the-Money Options (Confidence Level: 99 Percent)

Standard Relative ConfidenceSample Risk Average deviation standard intervalsize measures (a) (b) deviation (95 percent)(c) = (b)/(a)

1,000
VaR 612.56 58.08 0.0948 [506.46  739.03]

Expected shortfall 781.31 85.48 0.1094 [625.85  964.29]

10,000
VaR 602.79 18.42 0.0306 [566.84  639.76]

Expected shortfall 790.73 27.46 0.0347 [738.77  849.00]

100,000
VaR 602.25 05.57 0.0093 [591.23  613.17]

Expected shortfall 792.14 09.13 0.0115 [774.75  810.97]

Table 11  Sample Loan Portfolio

Amount of exposures ¥100 billion

Number of exposures 1,000

Amount of individual exposures Obeys exponential distribution with average of ¥100 million

Definition of loss Default mode (recognizes loss only if the borrower defaults during
the risk evaluation period)

Recovery rate Zero

Correlation of default events The correlation coefficients between default events are assumed 
to be homogeneous at 0.00, 0.03, and 0.05.
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Figure 9  Distribution of Amount of Individual Exposures
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coefficients between default events are homogeneous at 0.00, 0.03, and 0.05. We
adopt “default mode” as a loss definition, that is, we recognize loss only if the 
borrower defaults during the risk evaluation period. We estimate VaR and expected
shortfall by following the algorithm developed by Ieda, Marumo, and Yoshiba (2000)
(see Appendix 3 for details).

We run 1,000 sets of Monte Carlo simulations with a sample size of 1,000, and
calculate the average, the standard deviation, and the 95 percent confidence interval
of the VaR and expected shortfall estimates. We evaluate the estimation errors of VaR
and expected shortfall by using the relative standard deviation. Tables 12–15 show
the results.

Table 12  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(Confidence Level: 95 Percent, Default Rate: 1 Percent, Sample Size: 1,000)

Correlation Standard Relative Confidence
coefficients of Risk Average deviation standard interval
default events measures (a) (b) deviation (95 percent)(c) = (b)/(a)

0.00
VaR 18.28 0.43 0.0233 [17.39  019.10]

Expected shortfall 20.99 0.52 0.0248 [20.03  022.02]

0.03
VaR 41.03 3.13 0.0763 [35.05  047.45]

Expected shortfall 69.09 5.98 0.0865 [57.71  081.80]

0.05
VaR 45.79 4.37 0.0955 [37.95  054.62]

Expected shortfall 86.16 8.79 0.1021 [71.37  104.95]

Table 13  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(Confidence Level: 99 Percent, Default Rate: 1 Percent, Sample Size: 1,000)

Correlation Standard Relative Confidence
coefficients of Risk Average deviation standard interval
default events measures (a) (b) deviation (95 percent)(c) = (b)/(a)

0.00
VaR 022.65 00.79 0.0350 [021.21  024.33]

Expected shortfall 024.90 01.02 0.0408 [022.99  026.99]

0.03
VaR 085.03 09.79 0.1151 [067.39  106.34]

Expected shortfall 117.55 15.90 0.1353 [089.42  151.08]

0.05
VaR 108.34 14.31 0.1321 [083.53  141.34]

Expected shortfall 158.03 23.53 0.1489 [118.87  208.67]

Table 14  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(Confidence Level: 95 Percent, Default Rate: 0.1 Percent, Sample Size: 1,000)

Correlation Standard Relative Confidence
coefficients of Risk Average deviation standard interval
default events measures (a) (b) deviation (95 percent)(c) = (b)/(a)

0.00
VaR 03.99 0.20 0.0508 [03.62  04.38]

Expected shortfall 05.45 0.28 0.0522 [04.93  06.04]

0.03
VaR 04.72 0.71 0.1500 [03.50  06.37]

Expected shortfall 15.54 3.15 0.2029 [10.26  22.52]

0.05
VaR 03.92 0.72 0.1826 [02.74  05.53]

Expected shortfall 17.32 4.23 0.2444 [10.74  27.30]



The estimation error of expected shortfall is larger than that of VaR when the
default rate is low and the default correlation is high. Table 12 shows that, when the
default rate is 1 percent, the estimation errors of VaR and expected shortfall at the 
95 percent confidence level are almost equal. On the other hand, Table 13 shows
that, at the 99 percent confidence level, the estimation error of expected shortfall is
larger than that of VaR when the default correlation is high. Table 14 shows that,
when the default rate is 0.1 percent and the default correlation is high, the estimation
error of expected shortfall is larger than that of VaR at both the 95 percent and 
99 percent confidence levels.

The estimates of expected shortfall vary more than those of VaR with low default
rates because of the low frequency of portfolio loss and limited sample size. When the
loss frequency declines, the estimation of expected shortfall requires a larger sample
to ensure the same level of accuracy, since expected shortfall considers the loss in the
tail as a conditional expectation. Thus, expected shortfall varies more than VaR at
low default rates if we estimate it with the same sample size. 

The estimation error of expected shortfall is large when the default correlation 
is high because of the fat tail of the underlying loss distribution. Ieda, Marumo, 
and Yoshiba (2000) show that the underlying loss distribution is fat-tailed when 
the default correlation is high. Furthermore, Subsection III.B shows that the 
estimation error of expected shortfall is larger than that of VaR when the underlying
loss distribution is fat-tailed. 

V. Decomposition of VaR and Expected Shortfall

This section describes a method of decomposing portfolio risk into risk factors.14 The
decomposition of risk is a useful tool for managing portfolio risk. For example, risk
decomposition enables risk managers to select assets that provide the best risk-return
trade-off, or to allocate “economic capital” to individual risk factors. 
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Table 15  Estimates of VaR and Expected Shortfall of Sample Loan Portfolio
(Confidence Level: 99 Percent, Default Rate: 0.1 Percent, Sample Size: 1,000) 

Correlation Standard Relative Confidence
coefficients of Risk Average deviation standard interval
default events measures (a) (b) deviation (95 percent)(c) = (b)/(a)

0.00
VaR 06.37 00.48 0.0757 [05.53  07.37]

Expected shortfall 07.70 00.59 0.0769 [06.59  08.89]

0.03
VaR 19.40 04.25 0.2189 [12.74  29.76]

Expected shortfall 39.62 11.45 0.2891 [22.20  66.87]

0.05
VaR 21.11 05.43 0.2574 [12.83  33.21]

Expected shortfall 49.32 16.06 0.3257 [25.82  88.95]

14. The concept of VaR decomposition was proposed by Garman (1997), whose terminology we followed in using
“marginal VaR” and “component VaR.”



103

Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization

We describe the method of decomposing VaR and expected shortfall developed by
Hallerbach (1999) and Tasche (2000). We also give an example of decomposing VaR
and expected shortfall with the sample option portfolio in Subsection V.A. 

We show that it is more straightforward to decompose expected shortfall than to
decompose VaR.

A. Decomposing VaR
Hallerbach (1999) and Tasche (2000) developed a method of decomposing simulation-
based VaR and expected shortfall into individual risk factors. This subsection describes 
this method following Tasche (2000).

We assume that the portfolio loss X is a linear combination of the losses of 
individual risk factors X i (i denotes risk factors): 

n

X = ∑X iωi . (3)
i =1

X : portfolio loss
X i : loss of individual risk factor i 15

ωi : sensitivity to individual risk factor i

Since the portfolio VaR is a linearly homogeneous function of sensitivity to individual
risk factors, the following equality holds.

n ∂VaRα(X ) VaRα(X ) = ∑————– • ωi. (4)
i=1 ∂ωi

Therefore, the portfolio VaR is decomposed16 into ∂VaR /∂ωi multiplied by the risk
factor ωi.

Tasche (2000) proved the following under certain conditions.17

Marginal VaR
The partial derivative of VaR at the 100(1 – α ) percent confidence level 
with respect to ωi (we call this “marginal VaR,” which is denoted by M –VaR i)
is represented as a conditional expectation as follows (Tasche [2000], 
remark 5.4):

∂VaRα(X )M –VaR i = ————— = E [Xi |X = VaRα(X )]. (5)
∂ωi

15. For example, consider the situation where you have 1,000 shares of a stock whose current market price is
US$1,200/share and whose original cost is US$1,500/share. The loss of the stock Xi (considered here as one of a
number of individual factors) is US$300/share, and sensitivity to this stock ωi is 1,000 shares. Furthermore, if
the market price of this stock is US$2,000/share, Xi is equal to –US$500/share.

16. When X is a nonlinear function of Xi , equation (4) does not hold. To deal with options, we consider option 
premiums additional risk factors.

17. The condition includes the continuity of the distributions and the integrability of expectations.



Thus, equation (6) provides a method to decompose VaR. 

n ∂VaRα(X )          n

VaRα(X ) = ∑ ————– • ωi = ∑E [Xi |X =VaRα(X )] • ωi. (6)
i=1 ∂ωi i=1

Considering (∂VaRα(X )/∂ωi ) • ωi the contribution of risk factor i to the portfolio
VaR,18 we define component VaR as follows.

Component VaR
The contribution of risk factor i to the portfolio VaR (we call this “component
VaR,” which is denoted by C – VaRi) is defined as follows:

∂VaRα(X )C – VaRi = ————– • ωi = E [Xi |X =VaRα(X )] • ωi. (7)
∂ωi

It is not straightforward to estimate the right-hand side of equations (5) and (7)
when we calculate VaR by simulations. It is difficult to estimate a conditional expec-
tation conditioned by the equality X =VaRα(X ) when the distribution is discrete.

Hallerbach (1999) proposed and evaluated several methods of estimating this
conditional expectation approximately. He concluded that the “conditional mean
model” provides the best result. This method chooses a data window whose portfolio
losses are close to the level of VaR, and takes the mean loss of this window to obtain
an estimation of the conditional expectation.

B. An Example of Decomposing VaR
This subsection gives an example of decomposing the VaR of the sample option 
portfolio in Subsection IV.A. We adopt the “conditional mean model” proposed by
Hallerbach (1999) in estimating marginal VaR.

We estimate marginal VaR as follows. Suppose we obtain N samples from a 
simulation. We choose a data window whose portfolio losses are close to the portfolio
VaR level. This window is chosen as

X ∈ [VaRα(X ) – εd , VaRα(X ) + εu ], (8)

for some small positive εd and εu . Suppose X j(1 ≤ j ≤ N ) denotes the portfolio loss 
of the j -th sample, Xi

j(1 ≤ i ≤ 6, 1 ≤ j ≤ N ) denotes the loss of the i -th risk factor of
the j -th sample, and T denotes the number of samples in the chosen data window.
The marginal VaR of individual risk factor i is estimated by
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18. Component VaR approximates how the portfolio VaR would change if the corresponding risk factor were
deleted from the portfolio. This approximation works well when the risk factor makes a relatively small contribu-
tion to the portfolio VaR. However, we should note that component VaR is defined using marginal VaR, which
is the “marginal” change in VaR with respect to ωi . This means that this approximation does not work well when
the contribution of the risk factor is large.
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∂VaRα(X )                                    1M – VaRi = ————– = E [Xi |X =VaRα(X )] ≅ —∑Xi
j, (9)

∂ωi T  j

where we take the sum only for the data included in the chosen window.
We calculate VaR at the 95 percent confidence level of the sample option portfolio

in Subsection IV.A by using a Monte Carlo simulation with sample size of 10,000, and
decompose VaR into risk factors.19 Table 16 shows the result.

We evaluate the estimation error of this method by comparing marginal VaR esti-
mated by equation (9) with “recalculated marginal VaR” obtained by re-estimating
portfolio VaR for a slightly changed portfolio (we use 0.1 percent, 0.5 percent, and 
1 percent changes). Table 17 shows the result.20

The marginal VaR estimated by equation (9) differs from recalculated marginal
VaR. This difference is especially apparent in Intel stock and in the call option on
Intel stock, where the signs of those numbers are opposite. Therefore, equation (9) is
not necessarily an accurate estimator of marginal VaR. 

19. We choose the data window as 51 observations centered around the portfolio VaR level. 
20. The difference between marginal VaR and recalculated marginal VaR is the estimation error, since we use the

same sample for calculations.

Table 16  VaR Decomposition of Sample Option Portfolio 
(Confidence Level: 95 Percent)

Marginal VaR Investment Position Component VaR
(US$/unit) amount (1,000 units) (US$1,000)

(a) (US$1,000) (b) (c) = (a) × (b)

General Electric stock –2.30 1,000 –20.1 –46.12

McDonald’s stock –1.67 1,000 –32.0 –53.58

Intel stock –0.60 1,000 –23.8 –14.17

Call option on GE stock –1.55 –100 –50.0 –77.50

Call option on McDonald’s stock –1.53 –100 –57.1 –87.43

Call option on Intel stock –0.37 –100 –28.6 –10.71

Total — 2,700 — –68.70

Table 17  Comparison of Marginal VaR (Confidence Level: 95 Percent)

Recalculated marginal VaR (US$/unit)

Marginal VaR Change in Change in Change in
(US$/unit) position: position: position:

0.1 percent 0.5 percent 1 percent

General Electric stock –2.30 –1.20 –0.44 –1.60

McDonald’s stock –1.67 –2.75 –2.55 –1.86

Intel stock –0.60 –0.37 –0.33 –0.46

Call option on GE stock –1.55 –1.05 –0.82 –1.20

Call option on McDonald’s stock –1.53 –2.20 –1.46 –1.64

Call option on Intel stock –0.37 –0.14 –0.12 –0.50



C. Decomposing Expected Shortfall
This subsection describes a method of decomposing expected shortfall developed by
Tasche (2000).

Suppose equation (3) holds. The following equation holds, since ESα(X ) is a 
linearly homogeneous function of ωi.

n ∂ESα(X )ESα(X ) = ∑ ———– • ωi . (10)
i=1 ∂ωi

Tasche (2000) proved the following under certain conditions.21

Marginal expected shortfall
The partial derivative of expected shortfall at the 100(1 – α ) percent confi-
dence level with respect to ωi (we call this “marginal expected shortfall,” which
is denoted by M –VaRi ) is represented as a conditional expectation as follows
(Tasche [2000], remark 5.4): 

∂ESα(X )M – ESi = ———— = E [Xi |X ≥VaRα(X )]. (11)
∂ωi

Thus, equation (12) provides a method of decomposing expected shortfall.22

n ∂ESα(X )        n

ESα(X ) = ∑———— ωi = ∑E [Xi |X ≥VaRα(X )] • ωi. (12)
i=1 ∂ωi i=1

Based on this observation, we define component expected shortfall as follows.

Component expected shortfall
The contribution of risk factor i to the portfolio expected shortfall (we call 
this “component expected shortfall,” which is denoted by C – ESi ) is defined
as follows: 

∂ESα(X )C – ESi = ———— ωi = E [Xi |X ≥VaRα(X )] • ωi. (13)
∂ωi

It is relatively straightforward to estimate the right-hand side of equation (11). The
conditioning event is the inequality X ≥ VaRα(X ), and we can take more than one
sample as this event.
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21. The conditions are the same as in Footnote 17.
22. We should note that component expected shortfall is defined using marginal expected shortfall, which is the

“marginal” change in expected shortfall with respect to ωi (see Footnote 18).
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D. An Example of Decomposing Expected Shortfall
This subsection gives an example of decomposing expected shortfall of the sample
option portfolio in Subsection IV.A. 

Suppose we obtain N samples from a simulation. Let X j(1 ≤ j ≤ N ) denote the
portfolio loss of the j -th sample, and Xi

j(1 ≤ i ≤ 6, 1 ≤ j ≤ N ) denote the loss of the
i -th risk factor of the j -th sample. We choose a data window whose portfolio losses
are more than or equal to the portfolio VaR level. We let T denote the number of 
samples in the chosen data window. The marginal VaR of individual risk factor i is
estimated by

1M – ESi = E [Xi |X ≥VaRα(X )] = —∑Xi
j, (14)

T  j

where we take the sum only for the data included in the chosen window. 
We calculate the expected shortfall at the 95 percent confidence level of the 

sample option portfolio in Subsection IV.A by a Monte Carlo simulation with a 
sample size of 10,000, and decompose the expected shortfall into risk factors. 
Table 18 shows the result.

Table 18  Expected Shortfall Decomposition of Sample Option Portfolio 
(Confidence Level: 95 Percent)

Marginal Component
expected Investment Position expected
shortfall amount (1,000 units) shortfall

(US$/unit) (US$1,000) (b) (US$1,000)
(a) (c) = (a) × (b)

General Electric stock –3.33 1,000 –20.1 –66.92

McDonald’s stock –2.10 1,000 –32.0 –67.10

Intel stock –0.15 1,000 –23.8 3.57

Call option on GE stock –2.30 –100 –50.0 115.23

Call option on McDonald’s stock –1.91 –100 –57.1 108.93

Call option on Intel stock –0.08 –100 –28.6 –2.28

Total — 2,700 — 91.43

We also evaluate the estimation error by comparing the marginal expected 
shortfall estimated by equation (14) with the “recalculated marginal expected 
shortfall” obtained by re-estimating the portfolio expected shortfall for a slightly
changed portfolio (we take 0.1 percent, 0.5 percent, and 1 percent changes). 
Table 19 shows the result.23

The marginal expected shortfall estimated by equation (14) is almost equal to the
recalculated marginal expected shortfall. Therefore, we conclude that equation (14)
provides an accurate estimate of the marginal expected shortfall.

23. The difference between marginal expected shortfall and recalculated marginal expected shortfall is the estimation
error, since we use the same sample for calculations, as was explained in Footnote 20.



VI. Portfolio Optimization Based on Expected Shortfall

This section provides an overview of methods that can be used to optimize portfolios
based on VaR and expected shortfall. We focus in particular on the situation in which
the underlying loss distribution is not normal and VaR and expected shortfall are 
calculated by simulations.

A. Portfolio Optimization Based on VaR by the Variance-Covariance Method
Portfolio optimization based on VaR is straightforward when VaR is calculated by the
variance-covariance method.24 The traditional mean-variance analysis (see Markowitz
[1952]) is directly applied to VaR-based portfolio optimization, since VaR is a scalar
multiple of the standard deviation of loss when the underlying distribution is
normal.25 Mean variance analysis selects the portfolio with the best mean-variance
profile by minimizing variance subject to the constraint of expected portfolio return.
This optimization problem is formulated as follows:

1min—ω'∑ω, 
{w } 2

(15)
subject to ω'µ = µX

ω'e = 1
where µ : vector of expected returns of risk factors

µX : fixed expected return on portfolio
∑ : variance-covariance matrix of risk factors
e : vector of ones
ω : vector of exposures to risk factors
ω' : transposed vector of ω
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24. The variance-covariance method assumes that portfolios are linear combinations of normally distributed risk 
factors, and calculates VaR with the variance-covariance matrix of risk factors. This method is also called the
“delta-normal” method.

25. To put it more precisely, when the underlying distribution is elliptical (a generalization of the normal), with
finite variance, VaR is a scalar multiple of the standard deviation. However, our explanation here assumes 
normality for the sake of simple illustration.

Table 19  Comparison of Marginal Expected Shortfall (Confidence Level: 95 Percent)

Marginal
Recalculated marginal expected shortfall

expected
(US$/unit)

shortfall Change in Change in Change in
(US$/unit) position: position: position:

0.1 percent 0.5 percent 1 percent

General Electric stock –3.33 –3.34 –3.34 –3.34

McDonald’s stock –2.10 –2.10 –2.10 –2.10

Intel stock –0.15 –0.15 –0.15 –0.15

Call option on GE stock –2.30 –2.31 –2.31 –2.31

Call option on McDonald’s stock –1.91 –1.91 –1.90 –1.91

Call option on Intel stock –0.08 –0.08 –0.08 –0.08
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The solution to this problem is given as ω for each µX , from which we obtain an
optimized σX for each µX .26 This relationship between σX and µX gives us the efficient
frontier in the µX – σX space. From this efficient frontier, we choose the best portfolio
that fits our risk tolerance and return appetite.

Since VaR is a scalar multiple of the standard deviation, we can obtain the efficient
frontier in the µX –VaR space as shown in Figure 10. We select the best portfolio using
this efficient frontier in the µX – VaR space.

µX

αVaR  (X )

Figure 10  Efficient Frontier of Expected Profit and VaR

B. Portfolio Optimization Based on VaR by Simulation-Based Methods
When VaR is calculated by simulations, it is no longer an efficient tool for optimiz-
ing a portfolio, since VaR is no longer a scalar multiple of the standard deviation and
is not optimized using equation (15).

Mausser and Rosen (1998) show that it is difficult to optimize simulation-based
VaR, since VaR is not generally a convex function of risk factors.27

26. The solution ω* is given as

ω* = λ∑–1
e + γ∑–1µ

C – µXB         µX A – B
where λ = ————, γ = ————, A = e'∑–1

e, B = e'∑–1µ, C = µ'∑–1µ, D = AC – B 2.
D D

From this, the efficient frontier is derived as

Aµ 2
X – 2BµX +Cσ 2

X = ———————.
D

27. When an objective of an optimization problem is not convex, the problem is difficult to solve, since multiple
local solutions may exist. See Mausser and Rosen (1998) for the difficulty of optimizing simulation-based VaR.



C. Portfolio Optimization Based on Expected Shortfall by 
Simulation-Based Methods

Rockafeller and Uryasev (2000) provide a simple algorithm for optimizing portfolios
based on a simulation-based expected shortfall. This subsection describes the algorithm
they developed, and gives an example of optimizing the sample option portfolio in
Subsection IV.A.

We assume that the portfolio loss X is a linear combination of the losses of 
individual risk factors X i (i denotes risk factors):

n

X = ∑X iωi . (16)
i=1

X : portfolio loss
X i : loss of individual risk factor i 28

ωi : sensitivity to individual risk factor i

We also assume that the loss of risk factors (X1, . . . , X n) has a probability density 
function p (X1, . . . , X n).

Suppose Ψ(ω, β) denotes the probability that the portfolio loss X does not exceed
some threshold value β.

Ψ(ω, β) = ∫ p (X1, . . . , X n)dX 1
. . . dX n . (17)n

∑Xi ωi ≤ β
i =1

VaR at the 100α percent confidence level is β(ω, α ) defined by

β(ω, α ) = min{β ∈ R |Ψ(ω, β) ≥ α }. (18)

We then define the following function denoted by Φ(ω). 

n

Φ(ω) = ∫ (∑X iωi) • p (X1, . . . , X n)dX 1
. . . dX n , (19)n

i=1∑Xi ωi ≥ β(ω,α)
i =1

The expected shortfall is Φ(ω)/(1 – α ), since it is the conditional expectation given
that the portfolio loss ∑n

i=1X iωi is more than β(ω, α ).
It is difficult to optimize Φ(ω) because β(ω, α ) is involved in its definition.

Rockafeller and Uryasev (2000) show that optimizing Φ(ω) is equivalent to 
optimizing F (ω, β) (see Appendix 4 for proof ).

n

F (ω, β) = (1 – α )β + ∫ω(∑X iωi – β)+p (X1, . . . , X n)dX 1
. . . dX n . (20)

i=1
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28. See Footnote 15.
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Furthermore, the expected shortfall is given as minimized F (ω, β)/(1 – α ) with
respect to β, and VaR is given as corresponding β.

We use this result to minimize the simulation-based expected shortfall. Suppose we
sample X1, . . . , Xn J times (those samples are denoted by Xij , i = 1, . . . , n , j = 1, . . . , J )
from the probability density function p (X1, . . . , X n). The integral in equation (20) 
is calculated approximately as follows:

n J n

∫ω(∑X iωi – β)+p (X1, . . . , X n)dX 1
. . . dX n ≈ J –1∑(∑X ijωi – β)+. (21)

i=1 j =1   i=1

We reduce minimization of F (ω, β) to the following linear programming problem.

J 

min   (1 – α )β + J –1∑z j , (22)
ω∈ Rn, z∈ R J, β∈ R j =1

subject to

n

z j ≥ ∑X ijωi – β, z j ≥ 0, j = 1, . . . , J. (23)
i=1

The constraint on the portfolio expected return is formulated as follows. 

J n

J –1∑ ∑X ijωi = –R. (24)
j=1 i=1

Furthermore, the constraint on the portfolio investment amount is formulated as 
follows. 

n

∑Piωi = W0. (25)
i=1

Pi : initial value of risk factor i
W0: initial investment amount in the portfolio

By solving this constrained minimization problem, we can optimize portfolios
based on the expected shortfall.

D. An Example of Portfolio Optimization Based on Expected Shortfall
This subsection gives an example of optimizing the sample option portfolio in
Subsection IV.A.

We minimize the expected shortfall of this portfolio at the 95 percent confidence
level by solving the optimization problem of equation (22) with the constraints of
equations (23)–(25). The sample size is 1,000. The portfolio expected return is con-
strained to be a constant ranging from US$0 to US$10,000 in US$250 increments.
To ensure the convergence of the solution, we add the constraint that neither short
sales of stocks nor long positions on the call options are allowed.



Figure 11 shows the efficient frontier of the portfolio in the return-expected
shortfall space. It is seen that this frontier is convex, and is similar to the one
obtained in the return-VaR space when VaR is calculated by the variance-covariance
method. Table 20 shows the composition of this efficient frontier when the portfolio
expected return is US$5,000. 
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Figure 11  Efficient Frontier of Expected Shortfall

Table 20  Portfolio Composition of Minimum Expected Shortfall

Investment amount (US$1,000)

General Electric stock 0

McDonald’s stock 1,714.45

Intel stock 1,113.05

Call option on GE stock 0

Call option on McDonald’s stock 0

Call option on Intel stock –127.50

Note: Expected profit = US$5,000; expected shortfall = US$154,400.

VII. Concluding Remarks

We compared expected shortfall with VaR in three aspects: their estimation errors,
their decomposition into risk factors, and their optimization. We showed that
expected shortfall is easily decomposed and optimized, while VaR is not. We also
showed that expected shortfall requires a larger size of sample than VaR for the same
level of accuracy.

Note: Sample size is 1,000.
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APPENDIX 1: CLOSED-FORM FORMULAS OF ESTIMATION
ERRORS

A. Closed-Form Formulas
The estimator of VaR is a quantile of the empirical loss distribution. We take the 
estimator of VaR at the 100(1 – α ) percent confidence level to be X (nα +1), where X (n ),
X (n –1), . . . , X (nα +1), X (nα ), . . . , X (1) are loss samples arranged in increasing order.

Stuart and Ord ([1994], pp. 356–358) show that the quantiles of distributions
asymptotically obey the normal distribution and their asymptotic standard deviation
is given in a closed-form formula. From this result, we obtain the following closed-
form formula for the asymptotic standard deviation of VaR estimates: 

————
1      α (1 – α )σVaRα (X ) = ——    ————, (A.1)

f (xα) √ n

where f (xα) is the probability density function of loss evaluated at the 100(1 –α ) percent
quantile, and n is the sample number.

We take the estimator of the expected shortfall to be

X (1) + X (2) + . . . + X (nα +1)ESα = ——————————. (A.2)
nα + 1

When the sample size n is large, the standard deviation of the expected shortfall 
estimates is approximated by

1     (1 – α )x 2
1–α + βx 2

1–β                  1         x 1–βσESα (X ) = —— [———————— + ———— ∫ x 2f (x )dx
√n
—           

(α – β)2                          (α – β)2    x 1–α

(A.3)
1                                         x 1–β– ———— { βx1–β + (1 – α )x1–α + ∫ xf (x )dx } 2]

1—
2,

(α – β)2                                                                        x 1–α

for some β such as β << α , where x1–α and x1–β are (1 – α ) and (1 – β) quantiles of
the underlying loss distribution.29

29. x 1–α = F –1(1 – α ), x 1–β = F –1(1 – β), where F –1(x ) is the inverse of the distribution function of loss F (x ).



B. Comparison between Closed-Form Approximation and Simulation Estimate
We compare the results obtained by the closed-form formulas (A.2) and (A.3) and
the results obtained by Monte Carlo simulation. We simulate random numbers from
the standard normal, t (degrees of freedom: 2),30 and Pareto (β = 2)31 as the loss 
samples,32 and compare the standard deviation estimates obtained by those methods.
Appendix Table 1 shows the results. When the underlying loss distribution is normal
or t , those numbers are almost equal. However, when the underlying distribution is
Pareto, they are different.

114 MONETARY AND ECONOMIC STUDIES/JANUARY 2002

30. The probability density function of the t -distribution with degrees of freedom of m is

m+1Γ (———)                 m +1
2                 x2   – ——

f (x) = —————— (1 + —) 2 where Γ ( ) is the Gamma function.——    m m√π.m .Γ (—)2

31. The probability density function of the Pareto distribution is

β
f (x) = ——,   x ≥ 1.

x β+1

32. We used normal, t , and Pareto distributions since they have closed-form representation of probability density
functions, and are convenient methods of evaluating the standard deviation using equation (A.3).

33. See Huber (1981) for the details of robust statistics.

Appendix Table 1  Standard Deviation of VaR and Expected Shortfall Estimates:
Comparison between Closed-Form and Simulation Methods

[1] 95 Percent Confidence Interval

VaR Expected shortfall

Closed-form Simulation Closed-form Simulation

Normal 0.0668 0.0664 0.0780 0.0773

t 0.1080 0.1074 0.1885 0.1872

Pareto 0.3082 0.3090 1.6124 2.0818

[2] 99 Percent Confidence Interval

VaR Expected shortfall

Closed-form Simulation Closed-form Simulation

Normal 0.1181 0.1153 0.1449 0.1386

t 0.2884 0.2839 0.5346 0.5068

Pareto 1.5732 1.5721 7.0509 8.9681

Note: Sets of simulation = 100,000; sample size = 1,000; β in equation (A.3) = 10–5.

C. Derivation of Closed-Form Formula
Equation (A.3) is derived using the result of robust statistics.33 We utilize the fact that
the estimator of expected shortfall is the L-estimate in robust statistics literature. Under
certain conditions, the L-estimate asymptotically obeys the normal distribution, and 
its asymptotic variance is given in closed-form formula.
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Suppose X (n ), X (n –1), . . . , X (nα ), . . . , X (nβ), . . . , X (1) are losses of n samples from 
simulation, rearranged in increasing order. Take some constant β such that β << α .
Consider the following estimator.

X (nβ) + . . . + X (nα ) 1  nα 1
ESα,β = ——————— = —∑———X (i ). (A.4)

n (α – β)          n i=nβ  α – β

This estimator approximates to the estimator of expected shortfall (equation [A.2])
when n is large and β is efficiently small. We define a weighting function h as follows:

h (u ) = { 1/(α – β) 1 – α ≤ u ≤ 1 – β,
(A.5)

0 otherwise.

Using this function, equation (A.4) becomes

n 1         iESα,β = ∑— • h(——)X (i ). (A.6)
i =1 n       n + 1

Let F (x ) denote the distribution function of the loss, f (x ) denote its probability
density function, and T (x ) = F –1(x ) denote the inverse of the distribution function.
With equation (3.12) in Huber (1981), the influence function34 of this estimator is
given as follows:

IC (x , F, T ) = ∫
x

–∞h (F (y ))dy – ∫
∞

–∞(1 – F (y ))h (F (y ))dy

1= ——— { (1 – β)F –1(1 – β) – (1 – α )F –1(1 – α ) (A.7)
α – β

1–β                                            1
– ∫ F –1(v )dv } – ∫ h (v )(F –1(v ))'dv .

1–α                                         F (x )

Theorem 3.2 of Huber (1981) says that, under certain conditions,35 L-estimates
asymptotically obey the normal distribution with asymptotic variance of (1/n)∫

∞

–∞IC (x ,
F, T )2f (x )dx. We apply this theorem to ESα,β and obtain the following result. 

1σ 2
ESα ,β

= —∫
∞

–∞IC (x , F, T )2f (x )dx
n

1   (1 – α )x 2
1–α + βx 2

1–β 1      x1–β
= —[———————— + ————∫ x 2f (x )dx (A.8)

n (α – β)2 (α – β)2 x1–α

1                                         x1–β– ———— { βx1–β + (1 – α )x1–α + ∫ xf (x )dx } 2].(α – β)2                                                                     x1–α

This proves equation (A.3).

34. See Huber (1981) for definitions and concepts of the influence function.
35. The conditions are (1) the support of h is contained in [α , 1 – α ] for some α > 0, and (2) no discontinuity of h

coincides with a discontinuity of the inverse of the distribution function, etc. All of those conditions are satisfied here.



APPENDIX 2: METHOD OF SIMULATING LOSS FOR OPTION
PORTFOLIO

This appendix describes the method of simulating loss for the sample option portfolio
in Subsection IV.A.

A. Stock Price
The log returns on stocks are assumed to obey the multivariate normal distribution.
The variance-covariance matrix of the log returns is estimated using historical stock
price data for the past three years. Independently and identically distributed standard
normal random variables are transformed into correlated normal random numbers
with the Cholesky factors of the historical variance-covariance matrix. The average of
historical log returns is added to obtain the simulated log returns of stock prices. 

B. Option Premium
Option premiums are simulated using the Black-Scholes formula assuming that the
implied volatility is constant. The implied volatilities of the options are calibrated
from the data in Table 5. 

Even though those options are American, they are priced using the Black-Scholes
formula, since the dividend payments on the underlying stocks are not expected until
the option maturity. Prices of American call options are shown to be equal to those of
European call options in such circumstances.36

APPENDIX 3: METHOD OF SIMULATING LOSS FOR LOAN 
PORTFOLIO

This appendix describes the method of simulating loss of the sample loan portfolio in
Subsection IV.B. The method is developed by Ieda, Marumo, and Yoshiba (2000),
and the description here is totally dependent on them.

We consider the random variable Di(i = 1, 2, . . . , n ) which has a Bernoulli 
distribution:

1 (with probability p ),Di = { (A.9)
0 (with probability 1–p ).

In other words, Di(i = 1, 2, . . . , n ) for exposure i in the portfolio (comprising n
exposures) takes the value 1 (default) with probability p and 0 (non-default) 
with probability 1–p . Also, the correlation coefficient of each Di is ρ (constant). 
The process of generating multivariate Bernoulli random numbers that takes account
of the correlation is not a simple application of the Cholesky decomposition.
However, the Cholesky decomposition can be used for normal distributions, so one
method is to use the normal distribution as a medium for generating Bernoulli 
random numbers.
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36. See Hull ([2000], pp. 175–176).
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We first consider a random variable X i(i = 1, 2, . . . , n ) that follows the standard
normal distribution with 0 for its mean and 1 for its variance. (However, individual
variables are correlated rather than independent.) At this time, Di is expressed as

1 (–∞ < X i ≤ Φ–1(p )),Di = { (A.10)
0 (Φ–1(p ) < X i < ∞),

where Φ–1( • ) is the inverse function of the distribution function of the standard 
normal distribution.

For the correlation coefficient of Di(i = 1, 2, . . . , n ) to be ρ, one need properly
set a correlation coefficient ρ∼ for X i(i = 1, 2, . . . , n ). ρ can be expressed as

E [DiDj] – p 2

ρ = ————————, (A.11)———— ————
√p (1 – p )√p (1 – p )

where

1 (–∞ < X i ≤ Φ–1(p ), –∞ < X j ≤ Φ–1(p ))DiDj = { (A.12)
0                     (otherwise).

Therefore, E [DiDj] is the distribution function of a two-dimensional normal 
distribution with a correlation coefficient of ρ∼ .

Φ–1(p ) Φ–1(p ) 1                         1E [DiDj] = ∫ ∫ ————— exp(– ————{xi
2 + xj

2 – 2ρ∼ xixj})dxidxj .
–∞ –∞ ———            

2(1 – ρ∼ 2)2π√1 – ρ∼ 2

(A.13)

This makes it possible to use equations (A.13) and (A.11) to obtain a ρ∼ that will
satisfy equation (A.11). (However, numerical calculations will be required to obtain
the definite integral above.)

It is, therefore, possible to obtain multivariate Bernoulli random numbers Di

by using equation (A.10) after generating multivariate normal random numbers in
the n -th dimension with a mean of 0, a variance of 1, and a constant correlation
coefficient of ρ∼ .

The portfolio loss L can be expressed as follows: 
n

L = ∑Divi(1 – ri), (A.14)
i=1

where vi is the amount of exposure and ri(0 ≤ ri ≤ 1) is the recovery rate at default 
of exposure i .



APPENDIX 4: PROOF OF THE THEOREM OF ROCKAFELLER AND
URYASEV (2000)

This appendix explains a theorem on expected shortfall established by Rockafeller
and Uryasev (2000). This theorem is used to develop an algorithm of efficiently 
minimizing expected shortfall.

Consider the following function:

Ψ(β) = ∫  dF (x ). (A.15)
x ≤β

Ψ(β) is the probability that the loss x does not exceed some threshold β, where F (x )
is the loss distribution function. VaR at the 100α percent confidence level is defined
as βα , where

βα = min{β∈ R |Ψ(β) ≥ α }. (A.16)

Expected shortfall at the 100α percent confidence level is defined as the following
function.

φα = (1 – α )–1∫  xdF (x ). (A.17)
x ≥βα

Theorem 1 below shows that expected shortfall is the minimization of a function
Fα(β) defined below with respect to β.

Fα(β) = β + (1 – α )–1∫ [x – β]+dF (x ). (A.18)
x ∈ R

THEOREM 1 (ROCKAFELLER AND URYASEV [2000])
Fα(β) is a convex function of β. It is also continuous and differentiable with
respect to β. Expected shortfall is given by

φα = minFα(β), (A.19)
β∈ R

where 37

Bα ≡ arg minFα(β). (A.20)
β∈ R

VaR is given by

βα = the left end-point of Bα . (A.21)

Furthermore, the following equality holds.
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37. arg minFα(β) is the β that minimizes Fα(β).
β∈ R
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βα = arg minFα(β) and φα = Fα(βα). (A.22)
β∈ R

Before proving Theorem 1, we prove the following Lemma. 

LEMMA

Suppose G (β) = ∫x ∈ R[x – β]+dF (x ) is a function of β with fixed x . G (β) is 
convex with respect to β, and G '(β) = Ψ(β) – 1.

Proof:
The convexity of G (β) is apparent from the convexity of β→[x – β]+.
From G (β) = ∫

∞

–∞(x – β)1{x–β≥0}dF (x ),38

∂1{x–β≥0}G '(β) = –∫
∞

–∞1{x–β≥0}dF (x ) + ∫
∞

–∞(x – β)————dF (x )
∂β

(A.23)
= – { 1 – ∫ dF (x )} = Ψ(β) – 1.

x ≤β
Q.E.D.

We prove Theorem 1 using this lemma.

Proof of Theorem 1:
From the Lemma, we obtain

∂——Fα(β) = 1 + (1 – α )–1[Ψ(β) – 1] = (1 – α )–1[Ψ(β) – α ]. (A.24)
∂β

Since Fα(β) is convex, Fα(β) is minimized when the first-order condition Ψ(β) – α =
0 is satisfied (or when β∈ Bα ). Since Ψ(β) is continuous and non-increasing with
respect to β, β takes the lowest value that satisfies Ψ(β) ≥ α when Ψ(β) – α = 0.
Therefore, β = βα when Ψ(β) – α = 0, and the following equality holds.

minFα(β) = Fα(βα) = βα + (1 – α )–1∫ [x – βα]+dF (x ). (A.25)
β∈ R x ∈ R

Thus, the integral in equation (A.25) is

∫ [x – βα]dF (x ) = ∫ xdF (x ) – βα ∫ dF (x ). (A.26)
x ≥βα x ≥βα x ≥βα

The first term of the right-hand side of equation (A.26) is (1 – α )φα by the definition
of expected shortfall. The second term is 1 – Ψ(βα ), by the definition of the 
distribution function. Since Ψ(βα ) = α , the following equality holds.

minFα(β) = βα + (1 – α )–1[(1 – α )φα – βα (1 – α )] = φα . (A.27)
38. 1A is an indicator function that takes the value of 1 when A is true and takes the value of zero otherwise.



β∈ R

This concludes the proof of Theorem 1.
Q.E.D.
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