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Typical examples are the generalized autoregressive 
conditional heteroskedasticity (GARCH) models of 
Engle (1982) and Bollerslev (1986), the autoregressive 
conditional duration and intensity (ACD and ACI, 
respectively) models of Engle and Russell (1998) and 
the dynamic copula models of Patton (2006). Creal, 
Koopman, and Lucas (2012) argue that the score 
function is an effective choice for introducing a driving 
mechanism for time-varying parameters. In particular, 
by scaling the score function appropriately, standard 
dynamic models such as the GARCH, ACD, and ACI 
models can be recovered. Application of this framework 
to other non-linear, non-Gaussian, possibly multivariate, 
models will lead to the formulation of new time-varying 
parameter models. 

They have labeled their model as the generalized auto-
regressive score (GAS) model. Here we aim to introduce 
the GAS model and to illustrate the approach for a class 
of multivariate point-process models that is used empiri-
cally for the modeling credit risk. We further aim to show 

that time-varying parameters in a multi-state model for 
pooled marked point-processes can be introduced natu-
rally in our framework.

The GAS model
Let N × 1 vector yt denote the dependent variable of 
interest, ft the time-varying parameter vector, xt a vector 
of exogenous variables (covariates), all at time t, and θ 
a vector of static parameters. Define Yt = {y1, . . . , yt}, 
Ft = {f0, f1, . . . , ft}, and Xt = {x1, . . . , xt}. The available 
information set at time t consists of {ft,Ft} (1)

1

 where

Ft = {Y t−1 , F t−1l , Xt}, for t = 1, . . . , n. (1)

1

We assume that yt is generated by the observation density      

yt ∼ p(yt | ft , Ft ; θ). (1)

1

(1)

Furthermore, we assume that the mechanism for updating 
the time-varying parameter ft is given by the familiar 
autoregressive updating equation

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1, (2)

1

(2)

where ω (1)

1

 is a vector of constants, coefficient matrices Ai 
and Bj have appropriate dimensions for i = 1, . . . , p and 
j = 1, . . . , q, while st is an appropriate function of past     
data,                                    . The unknown coefficients in 
(2) are functions of θ, that is ω (1)

1

 = ω (1)

1

(θ), Ai = Ai(θ), and Bj 
= Bj(θ) for i = 1, . . . , p and j = 1, . . . , q.

st = st(yt, ft,Ft; θ)

To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters 
to be time-varying by having them as functions of lagged dependent variables as well as exogenous variables. 
Although other approaches of introducing time dependence exists, the GAS models, Generalized Autoregressive 
Score, particular approach have become popular in applied statistics and econometrics. Here we discuss a further 
development of Creal, Koopman, and Lucas (2012) which is based on the score function of the predictive model 
density at time t.
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The approach is based on the observation density (1) 
for a given parameter ft. When observation yt is realized, 
time-varying ft to the next period t + 1 is updated using 
(2) with

st = St · ∇t, ∇t =
∂ ln p(yt | ft , Ft ; θ)

∂ft
,

St = S(t , ft , Ft ; θ),

(3)

where S(·) is a matrix function. Given the dependence 
of the driving mechanism in (2) on the scaled score 
vector (3), the equations (1) – (3) define the generalized 
autoregressive score model with orders p and q. We 
refer to the model as GAS (p, q) and we typically take                 
p = q = 1.

The use of the score for updating ft is intuitive. It 
defines a steepest ascent direction for improving the 
model’s local fit in terms of the likelihood or density 
at time t given the current position of the parameter 
ft. This provides the natural direction for updating 
the parameter. In addition, the score depends on the 
complete density, and not only on the first or second 
order moments of the observations yt. Via its choice 
of the scaling matrix St, the GAS model allows for 
additional flexibility in how the score is used for 
updating ft. In many situations, it is natural to consider 
a form of scaling that depends on the variance of the 
score. For example, we can define the scaling matrix 
as

St = I−1
t|t−1, It|t−1 = Et−1 [∇t∇′

t] ,

where Et−1 is expectation with respect to the density 
p(yt|ft,Ft; θ). For this choice of St, the GAS model 
encompasses well-known models such as GARCH, ACD 
and ACI. Another possibility for scaling is

where St is defined as the square root matrix of the 
(pseudo)-inverse information matrix for (1) with 
respect to ft. An advantage of this specific choice for 
St is that the statistical properties of the corresponding 
GAS model become more tractable. In particular, the 
driver st becomes a martingale difference with unity 
variance.

A convenient property of the GAS model is the 
relatively simple way of estimating parameters by 
maximum likelihood (ML). This feature applies to all 
special cases of GAS models. For an observed time 
series y1, . . . , yn and by adopting the standard prediction 
error decomposition, we can express the maximization 
problem as

θ̂ = argmax
θ

n∑
t=1

�t, (6)

where �t = ln p(yt|ft,Ft; θ) for a realization of yt. Eva-
luating the log-likelihood function of the GAS model is 
particularly simple. It only requires the implementation 
of the GAS updating equation (2) and the evaluation of  
�t for a particular value θ* of θ.

Example : GARCH models Consider the basic model 
yt = σtεt where the Gaussian disturbance εt has zero mean 
and unit variance while σt is a time-varying standard de-
viation. It is a basic exercise to show that the GAS (1, 1) 
model with St = I−1

t|t−1 and ft = σt
2 reduces to

ft+1 = ω +A1

(
y2t − ft

)
+B1ft, (7)

which is equivalent to the standard GARCH(1, 1) model 
as given by

ft+1 = α0 + α1y
2
t + β1ft, ft = σ2

t , (8)

where coefficients α0 = ω (1)

1

, α1 = A1 and β1 = B1 − A1 are 
unknown. When we assume that εt follows a Student’s t 
distribution with ν degrees of freedom and unit variance, 
the GAS (1, 1) specification for the conditional variance 
leads to the updating equation

ft+1 = ω +A1 ·
(
1 + 3ν−1

)
·(

(1 + ν−1)

(1− 2ν−1)(1 + ν−1y2t /(1− 2ν−1) ft)
y2t − ft

)

+B1ft.

(9)

This model is clearly different compatered to the standard 
t-GARCH(1, 1) model which has the Student’s t density 
in (1) with the updating equation (7). The denominator 
of the second term in the right-hand side of (9) causes a 
more moderate increase in the variance for a large
realization of |yt| as long as ν is finite. The intuition is 
clear: if the errors are modeled by a fattailed distribution, 
a large absolute realization of yt does not necessitate a 
substantial increase in the variance. Multivariate exten-
sions of this approach are developed in Creal, Koopman,
and Lucas (2011).

Example : Regression model The time-varying linear 
regression model yt = xt′βt + εt has a k × 1 vector xt of 
exogenous variables, a k × 1 vector of time-varying re-
gression coefficients βt and normally independently dis-
tributed disturbances εt ~ N(0, σ2). Let ft = βt. The scaled 
score function based on St = Jt|t−1  in for this regres-
sion model is given by

st = (x′
txt)

−1/2xt(yt − x′
tft)/σ, (10)

where the inverse It|t−1  of used to construct Jt|t−1 is 
the Moore-Penrose pseudo inverse to account for the 
singularity of xt xt′. The GAS (1, 1) specification for the 
time-varying regression coefficient becomes

St = Jt|t−1, J ′
t|t−1Jt|t−1 = I−1

t|t−1,
(5)

(4)
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ft+1 = ω +A1
xt

(x′
txt)1/2

· (yt − x′
tft)

σ
+B1ft. (11)

The updating equation (11) can be extended by 
including σ2 as a time-varying factor and by adjusting the 
scaled score function (10) for the time-varying parameter 
vector ft = (βt′ , σt

2 )′.

Illustration: dynamic pooled marked point 
process
Statistical models with time-varying intensities have 
received much attention in finance and econometrics. 
The principal areas of application in economics include 
intraday trade data (market microstructure), defaults of 
firms, credit rating transitions and (un)employment spells 
over time. To illustrate the GAS model in this setting, we 
consider an application from the credit risk literature in 
which pooled marked point-processes play an important 
role. We empirically analyze credit risk and rating 
transitions within the GAS framework for Moody’s data.

Let yk,t = (y1k,t, . . . , yJk,t)′ be a vector of marks of J 
competing risk processes for firms k = 1, . . . ,N. We have 
yjk,t = 1 if event type j out of J materializes for firm k 
at time t, and zero otherwise, and we assume that the 
pooled point process is orderly, such that with probability 
1 precisely one event occurs at each event time. Let t* 

denote the last event time before time t and let λk,t = (λ1k,t, 
. . . , λJk,t)′ be a J × 1 vector of log-intensities. We model 
the log intensities by

λk,t = d+ Zft +Xk,tβ, (12)

where d is a J × 1 vector of baseline intensities, Z is a 
J × r matrix of factor loadings, and β is a p × 1 vector 
of regression parameters for the exogenous covariates 
Xk,t. The r × 1 vector of dynamic factors ft is specified 
by the GAS (1, 1) updating equation (2) with ω (1)

1

 = 0. 
Since ft is not observed directly, we need to impose a sign 
restriction on Z to obtain economic interpretations for 
the time-varying parameters. We assume the model has 
a factor structure: intensities of all firms are driven by 
the same vector of time-varying systematic parameters 
ft. The log-likelihood specification using (12) is given by

(13)�t =

J∑
j=1

N∑
k=1

yjk,tλjk,t −Rjk,t·

(t− t∗) · exp (λjk,t∗) ,

where Rk,t = (R1k,t, . . . ,RJk,t)′ and Rjk,t is a zero-one variable 
indicating whether company k is potentially subject to 
risk j at time t. Define P as a J × J diagonal matrix with 
jth diagonal element pj,t = 

∑
k Rjk,t · exp[λjk,t] / 

∑
j,k Rjk,t · 

exp[λjk,t] = P[
∑

k yjk,t = 1 | 
∑

j,k yjk,t = 1], i.e., the probability 

Figure 1: The estimated intensities (in basis points) for each transition type for the one-factor marked point
process model. Moody’s rating histories are for all US corporates between January 1981 and March 2010.
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that the next event is of type j given that an event happens 
for firm k. Based on the first and second derivative of �t  
and setting St = Jt|t−1 , we obtain the score and scaling 
matrix

By combining these basic elements into a GAS 
specification, we have obtained a new timevarying 
parameter model for credit rating transitions. In 
comparison with related models, parameter estimation 
for the current model is much easier.

Application to Moody’s credit rating data
For our illustration, we adopt the marked point-process 
model (12), (13) and (2) with ω (1)

1

 = 0 and st = St
�

t given 
by (14) for a data set which contains Moody’s rating 
histories of all US corporates over the period January 
1981 to March 2010. The initial credit ratings for each 
firm are known at the beginning of the sample and we 
observe the transitions from one rating category to 
another over time. Moody’s ratings include 21 different 
categories, some of which are sparsely populated. For the 
sake of this illustration, therefore, we pool the ratings into 
a much smaller set of 2 credit classes: investment grade 
(IG) and sub-investment grade (SIG). Default is treated 
as an absorbing category: it makes for J = 4 possible 
events. It is often concluded in credit risk studies that 
default probabilities are countercyclical. We therefore 
allow the log-intensities (12) to depend upon the annual 
growth rate (standardized) of US industrial production as 
an exogenous variable. We only present the results for a 
single factor, r = 1. In order to identify the parameters in 
the 1 × 4 vector Z, we set its last element to unity so that 
our single factor is common to all transition types but is 
identified as the event representing a move from SIG to 
default.

For the one-factor model (r = 1), we perform a full 
benchmark analysis for the new GAS model in relation to 
our benchmark model of Koopman et al. (2008), hereafter 
referred to as KLM08 . The marked point process KLM08 
model has the same observation density (13) as the GAS 
model. However, the time-varying parameter ft follows 
an Ornstein-Uhlenbeck process driven by an independent 
stochastic process. Parameter estimation for the KLM08 
model is more involved than for the GAS model due to 
the presence of a dynamic, non-predictable stochastic 
component.

Figure 1 compares the estimates of ft obtained from 
the two model specifications. For each of the four 
possible rating transitions, we plot the intensity of 
the transition (in basis points on a log scale). These 
intensities, after dividing them by the number of days 
in a year, can approximately be interpreted as the daily 
transition probabilities for each rating transition type. We 
learn from Figure 1 that the estimates of the time-varying 
probabilities of the GAS model are almost identical to 
those of the KLM08 model. However, in our current 
GAS framework, the results can be obtained without the 
need of computationally intensive simulation methods 
required for models such as KLM08 . It underlines an 
attractive feature of our GAS approach.
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∇t = Z ′

(
N∑

k=1

yk,t −Rk,t · (t− t∗) · exp(λk,t∗)

)
,

St = (Z ′PZ)
− 1

2 .


