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Generalized Autoregressive

Score Models

by: Drew Creal, Siem Jan Koopman, André Lucas

To capture the dynamic behavior of univariate and multivariate time series processes, we can allow parameters
to be time-varying by having them as functions of lagged dependent variables as well as exogenous variables.
Although other approaches of introducing time dependence exists, the GAS models, Generalized Autoregressive
Score, particular approach have become popular in applied statistics and econometrics. Here we discuss a further
development of Creal, Koopman, and Lucas (2012) which is based on the score function of the predictive model

density at time t.

Typical examples are the generalized autoregressive
conditional heteroskedasticity (GARCH) models of
Engle (1982) and Bollerslev (1986), the autoregressive
conditional duration and intensity (ACD and ACI,
respectively) models of Engle and Russell (1998) and
the dynamic copula models of Patton (2006). Creal,
Koopman, and Lucas (2012) argue that the score
function is an effective choice for introducing a driving
mechanism for time-varying parameters. In particular,
by scaling the score function appropriately, standard
dynamic models such as the GARCH, ACD, and ACI
models can be recovered. Application of this framework
to other non-linear, non-Gaussian, possibly multivariate,
models will lead to the formulation of new time-varying
parameter models.

They have labeled their model as the generalized auto-
regressive score (GAS) model. Here we aim to introduce
the GAS model and to illustrate the approach for a class
of multivariate point-process models that is used empiri-
cally for the modeling credit risk. We further aim to show
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that time-varying parameters in a multi-state model for
pooled marked point-processes can be introduced natu-
rally in our framework.

The GAS model

Let N x 1 vector y, denote the dependent variable of
interest, / the time-varying parameter vector, x, a vector
of exogenous variables (covariates), all at time ¢, and 8
a vector of static parameters. Define ¥ = {y, ..., »},
F=.f, ...f},and X'= {x,...,x}. The available
information set at time ¢ consists of { It .7'}} where

Fr={yt=t ptml ) xty fort=1,...,n.

We assume that y, is generated by the observation density

ye ~ (e | fe, Fi (M

Furthermore, we assume that the mechanism for updating
the time-varying parameter f; is given by the familiar
autoregressive updating equation

p q
ftri=w+ Z Aist—iv1 + Z Bj fi—j+1, )

i=1 j=1

where w is a vector of constants, coefficient matrices 4,
and B, have appropriate dimensions for /=1, ..., p and
Jj=1,...,¢q, while s is an appropriate function of past
data, st =st(ye, fi: F:0)  The unknown coefficients in
(2) are functions of 0, that is w = w(0), 4,= 4(0), and B,
=Bj(6)fori=l,...,pandj=1,...,q.
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The approach is based on the observation density (1)
for a given parameter f. When observation y, is realized,
time-varying f to the next period ¢ + 1 is updated using
(2) with
~ Olp(ye| fe, Fi; 0)

Ofe ’

sy =S+ Vi, Vi
(3)

St:S(taftaft;e)a

where S(-) is a matrix function. Given the dependence
of the driving mechanism in (2) on the scaled score
vector (3), the equations (1) — (3) define the generalized
autoregressive score model with orders p and g. We
refer to the model as GAS (p, ¢) and we typically take
p=q=1

The use of the score for updating f is intuitive. It
defines a steepest ascent direction for improving the
model’s local fit in terms of the likelihood or density
at time ¢ given the current position of the parameter
/. This provides the natural direction for updating
the parameter. In addition, the score depends on the
complete density, and not only on the first or second
order moments of the observations y,. Via its choice
of the scaling matrix S, the GAS model allows for
additional flexibility in how the score is used for
updating /. In many situations, it is natural to consider
a form of scaling that depends on the variance of the
score. For example, we can define the scaling matrix

as (4)

St = It_|t1—1’ Tiji—1 = Ei1 [V VY],

where E_, is expectation with respect to the density
p(ye| fe, Fi;0). For this choice of S, the GAS model
encompasses well-known models such as GARCH, ACD
and ACI. Another possibility for scaling is

) . )
St = L7t|t717 \Zf‘t—lk7t|t71 = Zt\t—l’
where S, is defined as the square root matrix of the
(pseudo)-inverse information matrix for (1) with
respect to f. An advantage of this specific choice for
S, is that the statistical properties of the corresponding
GAS model become more tractable. In particular, the
driver s, becomes a martingale difference with unity
variance.

A convenient property of the GAS model is the
relatively simple way of estimating parameters by
maximum likelihood (ML). This feature applies to all
special cases of GAS models. For an observed time
series y,, . . . , , and by adopting the standard prediction
error decomposition, we can express the maximization
problem as

n
f=a
rg mgxx Z ly, (6)
t=1
AENORM vol. 20 (75) May 2012

where ¢; = Inp(y;|fi, Ft; 0) for a realization of y. Eva-
luating the log-likelihood function of the GAS model is
particularly simple. It only requires the implementation
of the GAS updating equation (2) and the evaluation of
¢, for a particular value 8" of 6.

Example : GARCH models Consider the basic model
v, = og, where the Gaussian disturbance ¢, has zero mean
and unit variance while o, is a time-varying standard de-
viation. It is a basic exercise to show that the GAS (1, 1)
model with S; =T t_l t1—1 and f, = o reduces to

frri=w+ Ay (v = fi) + Bife, ()

which is equivalent to the standard GARCH(1, 1) model
as given by

fir1 = a0 + aryi + Bufy, fi=0%, ®)
where coefficients o, = w, o, =4, and , = B, — A, are
unknown. When we assume that ¢, follows a Student’s ¢
distribution with v degrees of freedom and unit variance,
the GAS (1, 1) specification for the conditional variance
leads to the updating equation

firi=w+ AL (1 +31/’1) .
(1+v7h
((1 —2w ) (L+v 1y /(1 —207) ft)th - ft) ©
+ B fi.

This model is clearly different compatered to the standard
t-GARCH(1, 1) model which has the Student’s ¢ density
in (1) with the updating equation (7). The denominator
of the second term in the right-hand side of (9) causes a
more moderate increase in the variance for a large
realization of [y| as long as v is finite. The intuition is
clear: if the errors are modeled by a fattailed distribution,
a large absolute realization of y, does not necessitate a
substantial increase in the variance. Multivariate exten-
sions of this approach are developed in Creal, Koopman,
and Lucas (2011).

Example : Regression model The time-varying linear
regression model y, = x, + ¢ has a k x 1 vector x, of
exogenous variables, a k x 1 vector of time-varying re-
gression coefficients §, and normally independently dis-
tributed disturbances ¢ ~ N(0, 6°). Let f, = B. The scaled
score function based on S; = J;|;—1 in for this regres-
sion model is given by

S¢ = (x;xt)_lﬂxt(yt —xyfi)/o, (10)

where the inverse Z,,_; of used to construct Jy¢—1 is
the Moore-Penrose pseudo inverse to account for the
singularity of x x,. The GAS (1, 1) specification for the
time-varying regression coefficient becomes
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Lt ) (Yt
(whae) /2

—x.ft)

feor =w+ Ay +Bife.  (11)

The updating equation (11) can be extended by
including o2 as a time-varying factor and by adjusting the
scaled score function (10) for the time-varying parameter

vectorf,=(B',0)".

[llustration:
process
Statistical models with time-varying intensities have
received much attention in finance and econometrics.
The principal areas of application in economics include
intraday trade data (market microstructure), defaults of
firms, credit rating transitions and (un)employment spells
over time. To illustrate the GAS model in this setting, we
consider an application from the credit risk literature in
which pooled marked point-processes play an important
role. We empirically analyze credit risk and rating
transitions within the GAS framework for Moody’s data.
Lety,, =y, - - -»¥,,) beavector of marks of J
competing risk processes for firms k=1, ... ,N. We have
Vi, =1 if event type j out of J materializes for firm &
at time ¢, and zero otherwise, and we assume that the
pooled point process is orderly, such that with probability
1 precisely one event occurs at each event time. Let ¢

dynamic pooled marked point

Figure 1: The estimated intensities (in basis points) for each transition

evel

denote the last event time before time £ and let 4, = (4, ,
-5 4,,) be aJ x 1 vector of log-intensities. We model
the log intensities by

Aot =d+ Zfe + Xi B, (12)

where d is a J x 1 vector of baseline intensities, Z is a
J % r matrix of factor loadings, and f is a p X I vector
of regression parameters for the exogenous covariates
X, The r x 1 vector of dynamic factors f; is specified
by the GAS (1, 1) updating equation (2) with w = 0.
Since f; is not observed directly, we need to impose a sign
restriction on Z to obtain economic interpretations for
the time-varying parameters. We assume the model has
a factor structure: intensities of all firms are driven by
the same vector of time-varying systematic parameters
/.. The log-likelihood specification using (12) is given by

J N
= Z Z Yikt Nkt — Bjre

j=1k=1
(t =) -exp (Ajrer)

whereR, =(R,,,....R, ) and R, ,1s a zero-one variable
1ndlcat1ng whether company ki 1s potent1a11y subject to
risk j at time ¢. Define P as a J x J diagonal matrix with
Jth diagonal elementp, = > R, -exp[4, 1/ > R, -

exp[4, 1=P[> .y, = 1|ijykt 1] i.e., the probability

(13)

type for the one-factor marked point

process model. Moody'’s rating histories are for all US corporates between January 1981 and March 2010.
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that the next event is of type j given that an event happens
for firm k. Based on the first and second derivative of /;
and setting S; = $|t_1 , we obtain the score and scaling
matrix

N

Vi=2' (Z Yt — Rig - (L —17) - eXPO\k,t*)> ;
k=1

S, = (Z'PZ)"% .

By combining these basic elements into a GAS
specification, we have obtained a new timevarying
parameter model for credit rating transitions. In
comparison with related models, parameter estimation
for the current model is much easier.

Application to Moody'’s credit rating data

For our illustration, we adopt the marked point-process
model (12), (13) and (2) with w = 0 and s, = S/, given
by (14) for a data set which contains Moody’s rating
histories of all US corporates over the period January
1981 to March 2010. The initial credit ratings for each
firm are known at the beginning of the sample and we
observe the transitions from one rating category to
another over time. Moody’s ratings include 21 different
categories, some of which are sparsely populated. For the
sake of this illustration, therefore, we pool the ratings into
a much smaller set of 2 credit classes: investment grade
(IG) and sub-investment grade (SIG). Default is treated
as an absorbing category: it makes for J = 4 possible
events. It is often concluded in credit risk studies that
default probabilities are countercyclical. We therefore
allow the log-intensities (12) to depend upon the annual
growth rate (standardized) of US industrial production as
an exogenous variable. We only present the results for a
single factor, » = 1. In order to identify the parameters in
the 1 x 4 vector Z, we set its last element to unity so that
our single factor is common to all transition types but is
identified as the event representing a move from SIG to
default.

For the one-factor model (» = 1), we perform a full
benchmark analysis for the new GAS model in relation to
our benchmark model of Koopman et al. (2008), hereafter
referred to as KLMO08 . The marked point process KLMOS
model has the same observation density (13) as the GAS
model. However, the time-varying parameter /. follows
an Ornstein-Uhlenbeck process driven by an independent
stochastic process. Parameter estimation for the KLMOS
model is more involved than for the GAS model due to
the presence of a dynamic, non-predictable stochastic
component.
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Figure 1 compares the estimates of f obtained from
the two model specifications. For each of the four
possible rating transitions, we plot the intensity of
the transition (in basis points on a log scale). These
intensities, after dividing them by the number of days
in a year, can approximately be interpreted as the daily
transition probabilities for each rating transition type. We
learn from Figure 1 that the estimates of the time-varying
probabilities of the GAS model are almost identical to
those of the KLMO08 model. However, in our current
GAS framework, the results can be obtained without the
need of computationally intensive simulation methods
required for models such as KLMOS . It underlines an
attractive feature of our GAS approach.
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