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Introduction

Factor models for asset returns (equity, fixed income, hedge funds, etc.) are
used to

• Decompose risk and return into explanable and unexplainable components

• Generate estimates of abnormal return

• Describe the covariance structure of returns

• Predict returns in specified stress scenarios

• Provide a framework for portfolio risk analysis



Three Types of Asset Return Factor Models

1. Macroeconomic factor model

(a) Factors are observable economic and financial time series

2. Fundamental factor model

(a) Factors are created from observerable asset characteristics

3. Statistical factor model

(a) Factors are unobservable and extracted from asset returns



Factor Model Specification

The three types of multifactor models for asset returns have the general form

 =  + 11 + 22 + · · ·+  +  (1)
=  + β0f + 

•  is the simple return (real or in excess of the risk-free rate) on asset 
( = 1     ) in time period  ( = 1      ),

•  is the 
 common factor ( = 1    ),

•  is the factor loading or factor beta for asset  on the 
 factor,

•  is the asset specific factor.



Assumptions

1. The factor realizations, f are stationary with unconditional moments

[f] = μ
(f) = [(f − μ)(f  − μ)

0] = Ω
×

2. Asset specific error terms, , are uncorrelated with each of the common
factors, ,

( ) = 0 for all   and 

3. Error terms  are serially uncorrelated and contemporaneously uncorre-



lated across assets

( ) = 2 for all  =  and  = 

= 0 otherwise



Remarks:

• Statistical modeling of returns involves statistical modeling of factors and
residuals

• Typical factor models have a small number of factors (e.g.,   10)

• Multivariate modeling of factors is a relatively low dimensional problem

— Copula models are feasible for factors

— Multivariate GARCH (e.g. DCC) is feasible for factor covariances



• ( ) = 0 ( 6= ) ⇒ only need univariate statistical models for




Notation

Vectors with a subscript  represent the cross-section of all assets

R
(×1)

=

⎛⎜⎝ 1
...



⎞⎟⎠   = 1     

Vectors with a subscript  represent the time series of a given asset

R
(×1)

=

⎛⎜⎝ 1
...



⎞⎟⎠   = 1     

Matrix of all assets over all time periods (columns = assets, rows = time period)

R
(×)

=

⎛⎜⎝ 11 · · · 1
... . . . ...

1 · · · 

⎞⎟⎠



Cross Section Regression

The multifactor model (1) may be rewritten as a cross-sectional regression
model at time  by stacking the equations for each asset to give

R
(×1)

= α
(×1)

+ B
(×)

f
(×1)

+ ε
(×1)

  = 1      (2)

B
(×)

=

⎡⎢⎣ β01...
β0

⎤⎥⎦ =
⎡⎢⎣ 11 · · · 1... . . . ...
1 · · · 

⎤⎥⎦
[εε

0
|f] = D = (21     

2
)

Note: Cross-sectional heteroskedasticity

This representation is useful for risk analysis across assets.



Time Series Regression

The multifactor model (1) may also be rewritten as a time-series regression
model for asset  by stacking observations for a given asset  to give

R
(×1)

= 1
(×1)


(1×1)

+ F
(×)

β
(×1)

+ ε
(×1)

  = 1      (3)

F
(×)

=

⎡⎢⎣ f 01...
f 0

⎤⎥⎦ =
⎡⎢⎣ 11 · · · 1

... . . . ...
1 · · · 

⎤⎥⎦
[εε

0
] = 2 I

Note: Time series homoskedasticity

This representation is useful for estimating  and  using linear regression



Multivariate Regression

Collecting data from  = 1      allows the model (3) to be expressed as the
multivariate regression

[R1    R ] = 1 [1      ] + F[β1    β ] + [ε1     ε ]

or

R
(×)

= 1
(×1)

α0
(1×)

+ F
(×)

B0
(×)

+ E
(×)

= XΓ0 + E

X
(×(+1))

= [1
... F] Γ0

((+1)×)
=

"
α0

B0

#




Alternatively, collecting data from  = 1      allows the model (2) to be
expressed as the multivariate regression

[R1    R ] = [α    α] +B[f1     f ] + [ε1     ε ]

or

R0
(× )

= α
(×1)

10
(1× )

+ B
(×)

F0
(× )

+ E0
(× )

= ΓX0 + E0

X0
((+1)× )

=

"
10
F0

#
 Γ
(×(+1))

= [α ... B]



Expected Return (− ) Decomposition

[] =  + β0[f]

• β0[f] = explained expected return due to systematic risk factors

•  = []− β0[f] = unexplained expected return (abnormal return)

Note: Equilibrium asset pricing models impose the restriction  = 0 (no
abnormal return) for all assets  = 1     



Covariance Structure

Using the cross-section regression

R
(×1)

= α
(×1)

+ B
(×)

f
(×1)

+ ε
(×1)

  = 1     

and the assumptions of the multifactor model, the ( ×) covariance matrix
of asset returns has the form

(R) = Ω = BΩB
0 +D (4)

Note, (4) implies that

() = β0Ωβ + 2
() = β0Ωβ

() =
β0Ωβh³

β0Ωβ + 2

´
(β0Ωβ + 2)

i12



Conditional Covariance Structure

Let  denote the information available at time  We can allow the factor
covariances and residual variances to be time varying

f
×1

= μ|−1 + ε

ε = Ω
12
 z⇒ (ε|−1) = Ω

×
 = ⇒ (|−1) = 2  = 1     

Then the factor model conditional covariance matrix is

(R|−1) = Ω = BΩB
0 +D

Note: We can also allow the factor betas to be time varying (i.e., B = B)



Portfolio Analysis

Let w = (1     ) be a vector of portfolio weights ( = fraction of
wealth in asset ). If R is the ( × 1) vector of simple returns then

 = w
0R =

X
=1



Portfolio Factor Model

R = α+Bf  + ε⇒
 = w0α+w0Bf  +w0ε =  + β0f + 

 = w0α β0 = w
0B  = w0ε

() = β0Ωβ + () = w
0BΩB

0w+w0Dw



Active and Static Portfolios

• Active portfolios have weights that change over time due to active asset
allocation decisions

• Static portfolios have weights that are fixed over time (e.g. equally weighted
portfolio)

• Factor models can be used to analyze the risk of both active and static
portfolios



Unconditional Asset Risk Measures: Factor Model and Normal Distrib-
ution

 =  + β0f + 

f ∼  (μ Ω) () = 2 ( ) = 0 for all   

Then

[] =  =  + β0μ
() = 2 = β0Ωβ + 2

 =

r
β0Ωβ + 2

 
 =  +  × 


 =  − 

1


()

Note: In practice,  = 0 is typically imposed so that  = β0μ .



Conditional Asset Risk Measures: Factor Model and Normal Distribution

(|−1) = 2 = β0Ωβ + 2

 =

r
β0Ωβ + 2

 

 =  +  × 



 =  − 

1


()

whereΩ is modeled as an EWMA or DCC and 
2
 is modeled as an EWMA

or GARCH.

Note 1: For daily data it is typically assumed that  = 0

Note 2: We could also allow β = β (e.g. estimate β over rolling windows
for each )



Factor Risk Budgeting

• Additively decompose (slice and dice) individual asset or portfolio return
risk measures into factor contributions

• Allow portfolio manager to know sources of factor risk for allocation and
hedging purposes

• Allow risk manager to evaluate portfolio from factor risk perspective



Factor Risk Decompositions

Assume asset or portfolio return  can be explained by a factor model

 = + β0f + 

f ∼  (μ Ω)  ∼  (0 2) ( ) = 0 for all   

Re-write the factor model as

 = + β0f +  = + β0f +  × 

= + β̃
0
f̃

β̃ = (β0 )0 f̃ = (f )0  =



∼  (0 1)

Then

2 = β̃
0
Ω
̃
β̃ Ω

̃
=

Ã
Ω 0
0 1

!



Linearly Homogenous Risk Functions

Let(β̃) denote the risk measures   
 and  as functions

of β̃

Result 1: (β̃) is a linearly homogenous function of β̃ for  = 

 
 and   That is, (·β̃) =·(β̃) for any constant  ≥ 0

Example: Consider (β̃) = (β̃) Then

( · β̃) =
³
 · β̃0Ω

̃
 · β̃

´12
=  ·

³
β̃
0
Ω
̃
β̃
´12

=  · (β̃)



Euler’s Theorem and Additive Risk Decompositions

Result 2: Because (β̃) is a linearly homogenous function of β̃ by Euler’s
Theorem

(β̃) =
+1X
=1

̃
(β̃)

̃

= ̃1
(β̃)

̃1
+ · · ·+ ̃+1

(β̃)

̃+1

= 1
(β̃)

1
+ · · ·+ 

(β̃)


+ 

(β̃)





Terminology

Factor  marginal contribution to risk

(β̃)

̃

Factor  contribution to risk

̃
(β̃)

̃

Factor  percent contribution to risk

̃
(β̃)

̃

(β̃)



Analytic Results for (β̃) = (β̃)

(β̃) =
³
β̃
0
Ω
̃
β̃
´12

(β̃)

β̃
=

1

(β̃)
Ω
̃
β̃

Factor  = 1     percent contribution to (β̃)

1(1 ) + · · ·+ 2() + · · ·+ ( )

2(β̃)


Asset specific factor contribution to risk

2

2(β̃)
  =  + 1



Results for (β̃) =  
 (β̃)  (β̃)

Based on arguments in Scaillet (2002), Meucci (2007) showed that

 
 (β̃)

̃
= [̃| =  

 (β̃)]  = 1     + 1

 (β̃)

̃
= [̃| ≤  

 (β̃)]  = 1     + 1

Remarks

• Intuitive interpretation as stress loss scenario

• Analytic results are available under normality



Marginal Contributions to Tail Risk: Non-Parametric Estimates

Assume  and f̃ are iid but make no distributional assumptions:

{(1 f̃1)     (  f̃ )} = observed iid sample

Estimate marginal contributions to risk using historical simulation

̂[̃| =  ] =

1



X
=1

̃ · 1
½ d 

 −  ≤  ≤ d 
 + 

¾

̂[̃| ≤  ] =
1

[]

X
=1

̃ · 1
½ d 

 ≤ 

¾
Problem: Not reliable with small samples or with unequal histories for 



Simulating Returns: Factor Model Monte Carlo

Assume asset or portfolio return  can be explained by a factor model

 =  + β0f + 

f ∼  (μ Ω)  ∼  (0 2) ( ) = 0 for all    

To simulate returns 

• Simulate from the pdf of f

• Simulate from the pdf of  (independent of f)

This method is often called Factor Model Monte Carlo (FMMC)



Advantages of FMMC

• Number of factors is typically much smaller than the number of assets (e.g.
5 factors vs. 1000 assets)

• Multivariate modeling of  is feasible with a small number of factors

• Univariate models can be used for residuals  because of independence
across assets

• Dependence structure across assets is defined by factor loadings and de-
pendence structure of factors

• Can deal with unequal histories for asset returns (e.g. hedge fund data)



Short History for Returns but Long History for Factors

1 · · ·  ... ... ... ...
1−+1 · · · 1−+1 −+1... ... ... 

11 · · · 1 

• Observe full history for factors {f1     f}

• Observe partial history for assets (monotone missing data)

{−+1     }
 = 1     ;  =  −  + 1     



Simulation Algorithm

• Estimate factor models for each asset using partial history for assets and
risk factors

 = ̂ + β̂
0
f + ̂  =  −  + 1     

• Simulate  values of the risk factors from the pdf of f:

{f∗1      f∗}

• Simulate  values of the factor model residuals from the pdf of 

{̂∗1     ̂∗}



• Create pseudo factor model returns from fitted factor model parameters,
simulated factor variables and simulated residuals:

{∗1     ∗}
∗ = β̂

0
f
∗
 + ̂∗  = 1     



Simulating Factor Realizations: Distribution choices

• Multivariate distributions (e.g., multivariate normal, t, copula distributions
etc) (parametric, unconditional)

• Conditional multivariate distributions (e.g. normal DCC model)

• Empirical distribution (non-parametric, unconditional)

— Resample with replacement from observed history of factors

• Filtered historical simulation (semi-parametric, conditional)



— use local time-varying factor covariance matrices to standardize factors
prior to re-sampling and then re-transform with covariance matrices
after re-sampling



Simulating Residuals: Distribution choices

• Normal distribution (parametric, unconditional)

• Non-normal: Student’s t, Skewed Student’s t etc. (parametric, uncondi-
tional)

• Empirical (resample with replacement from observed residuals) (nonpara-
metric, unconditional)

• GARCH(1,1) (parametric, conditional)

• Filtered historical simulation (semi-parametric, conditional)
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