Amath 546 /Econ 589

Factor Models for Asset Returns

Eric Zivot

March 22, 2012

QOutline

1. Introduction

2. Factor Model Specification

3. Macroeconomic factor models

4. Fundamental factor models

5. Statistical factor models




Introduction

Factor models for asset returns are used to

Decompose risk and return into explanable and unexplainable components

Generate estimates of abnormal return

Describe the covariance structure of returns

Predict returns in specified stress scenarios

e Provide a framework for portfolio risk analysis

Three Types of Factor Models

1. Macroeconomic factor model

(a) Factors are observable economic and financial time series

2. Fundamental factor model

(a) Factors are created from observerable asset characteristics

3. Statistical factor model

(a) Factors are unobservable and extracted from asset returns




Factor Model Specification

The three types of multifactor models for asset returns have the general form

Ryt = o+ Brifie+ Boifar + -+ + Brif ke + €t (1)
= a;+ Bifi + eyt
e R;; is the simple return (real or in excess of the risk-free rate) on asset i
(i=1,...,N)intime period t (t =1,...,T),
o fi is the k" common factor (k =1,...,K),
e 3y is the factor loading or factor beta for asset i on the kt" factor,
e ¢, is the asset specific factor.

Assumptions

1. The factor realizations, f;, are stationary with unconditional moments

Elfi] = py
cov(fy) = E[(f; — pp)(f, — py)] = Q

2. Asset specific error terms, ;4, are uncorrelated with each of the common
factors, fi¢,

cov( frt,€it) = 0, for all k, i and t.

3. Error terms g;; are serially uncorrelated and contemporaneously uncorre-
lated across assets

cov(git, €j5) = 012 foralli=jandt=s
= 0, otherwise




Notation

Vectors with a subscript t represent the cross-section of all assets

Ryy
R: = : ,t=1,...,T
(Nx1) Ry
Vectors with a subscript 7 represent the time series of a given asset
Ri1
R, = : ,1=1...,N
(T'x1) R;T
Matrix of all assets over all time periods (columns = assets, rows = time period)

Ry1 -+ Ry

TRN — H H
(TXN) Ry Ryt

Cross Section Regression

The multifactor model (1) may be rewritten as a cross-sectional regression
model at time ¢ by stacking the equations for each asset to give

R; = a + B fr + e ,t=1,...,T (2)
(Nx1) (Nx1) (NxK)(Kx1) (Nx1)
B1 P11 -+ Bik
B = : = : :
(NxK) BN BN1 ' BNK
Eleel|fi] = D =diag(o3,...,0%)

Note: Cross-sectional heteroskedasticity




Time Series Regression

The multifactor model (1) may also be rewritten as a time-series regression
model for asset ¢ by stacking observations for a given asset ¢ to give

R, = 17 o + F B; + & ,i=1,...,N (3)
(T'x1) (Tx1)(1x1) (TxE)(Kx1) (Tx1)
f] fuii o fre
F = : = : :
(T<K) £ fir -+ fkT
E[Eié'g] = O‘%IT

Note: Time series homoskedasticity

Multivariate Regression

Collecting data from s = 1,..., N allows the model (3) to be expressed as the
multivariate regression

[Ry,...,Ry] =17[ag,...,an] + F[B1,...,Bn] + [e1,-- -, en]

or
R = 1 & + F B + E
(TxN) (T><1)(1><T) (TxK)(KxN) (TxN)
= XI'+E

/
— [17:F r =
(T><(>I((+1)) [+ Fl, ((K+1)xN) [B’ ] ’




Alternatively, collecting data from ¢ = 1,...,T allows the model (2) to be
expressed as the multivariate regression

[Ri1,...,Rp] =[a,...,a] + B[f1,....fr] + [e1,. .., eT]

or
/ — /’I’ + B FI E/
(NXT) (le)(le) (NXK)(KXT) (NXxT)
= I'X' +FE
! = 1y = [ : B]
((K11)xT) F' | (Nx(K+1)) ’

Expected Return (o — 3) Decomposition

E[Rj) = oy + BLE[f]

° ﬁ;E[ft] = explained expected return due to systematic risk factors

e a; = E[R;] — BLE[ft] = unexplained expected return (abnormal return)

Note: Equilibrium asset pricing models impose the restriction a; = 0 (no
abnormal return) for all assetsi =1,..., N




Covariance Structure

Using the cross-section regression

€t

Rt = a + B fr + ,t=1,...,T
(Nx1) (Nx1) (NxK)(Kx1) (Nx1)

and the assumptions of the multifactor model, the (/N x N) covariance matrix
of asset returns has the form

cov(Ry) = Qpy = BQ;B' + D (4)
Note, (4) implies that

var(Ryt) = BiQB; + o7
cov(Ry, Rjt) = BiQB;

Portfolio Analysis

Let w = (wq,...,wn) be a vector of portfolio weights (w; = fraction of
wealth in asset 7). If Ry is the (IV x 1) vector of simple returns then

N
/
Rp,t =W Rt = E wiRit
1=1

Portfolio Factor Model

R: = a+Bf;+¢& =
Ry: = wa + w'Bf; + wep = op + ,Bé)ft +éept
ap = wWa, B, =wB, gy =wey
var(Rpt) = ,Bg)Qf,Bp +var(ept) = W’BQfB/W +w'Dw




Active and Static Portfolios

e Active portfolios have weights that change over time due to active asset
allocation decisions

e Static portfolios have weights that are fixed over time (e.g. equally weighted
portfolio)

e Factor models can be used to analyze the risk of both active and static
portfolios

Macroeconomic Factor Models

/
Ry = o;+ B+ ey
f; = observed economic/financial time series

Econometric problems:

e Choice of factors

e Estimate factor betas, 3;, and residual variances, 022, using time series

regression techniques.

e Estimate factor covariance matrix, Qf, from observed history of factors




Shape’s Single Factor Model

Sharpe’s single factor model is a macroeconomic factor model with a single

market factor:

Ryt =o; + B;Rye +€4¢, 1 =1,...,N;t=1,...,T (5)

where R ; denotes the return or excess return (relative to the risk-free rate)
on a market index (typically a value weighted index like the S&P 500 index) in
time period t.

Risk-adusted expected return and abnormal return

E[Ry] = B;E[Ryy)
a; = E[Ry] — B;E[Rp)

Covariance matrix of assets

Qpy =088 +D (6)
where
O'%W var(Rpst)
B = (B Bn)
D = diag(a%, e ,O'%V),
of = var(ey)




Estimation

Because Rj; is observable, the parameters (3; and 022 of the single factor
model (5) for each asset can be estimated using time series regression (i.e.,

ordinary least squares) giving

R, = ailT—l—RMBi—ng, 1=1,...,N

Bi = cov(Ryt, Ragy)/var(Rage) = 601/ 6%
a; = R;—B;R)y
1
~2 ~ ~
O'i = T—2€i€i

The estimated single factor model covariance matrix is

o~ R /\/\/ o~
Qpy =03,868 +D

Remarks

1. Computational efficiency may be obtained by using multivariate regression.

The coefficients «; and 3; and the residual variances O'ZZ may be computed

in one step in the multivariate regression model
R=XI"+E
The multivariate OLS estimator of I is
I = (X'X)"1X'R/.
The estimate of the residual covariance matrix is
L

~ a/ o . :
where E = R — XTI is the multivariate least squares residual matrix. The
diagonal elements of 3 are the diagonal elements of D.




2. The R? from the time series regression is a measure of the proportion of
“market” risk, and 1 — R2 is a measure of asset specific risk. Additionally,
0; is a measure of the typical size of asset specific risk. Given the variance
decomposition

var(Ry) = B2var(Ryp) + var(ey) = 203, + o7

R? can be estimated using

/\2/\
R2 — 510’%\/[
var(R;)

3. Robust regression techniques can be used to estimate [3; and a%. Also, a
robust estimate of U%\J could be computed.

4. The single factor covariance matrix (6) is constant over time. This may
not be a good assumption. There are several ways to allow (6) to vary
over time. In general, j3;, 012 and O'%W can be time varying. That is,

Bi = Bit, 05 = 051, 0 = Tt
To capture time varying betas, rolling regression or Kalman filter techniques
could be used. To capture conditional heteroskedasticity, GARCH models
may be used for U%t and U%Wt' One may also use exponential weights in
computing estimates of 3,4, Uzzt and U%\/It' A time varying factor model
covariance matrix is

~ 255 —~
Qpae = 0aBeBy + Du,




General Multi-factor Model

Model specifies K observable macro-variables

Ryt = a; + Bif + €44

e Chen, Roll and Ross (1986) provides a description of commonly used
macroeconomic factors for equity. Lo (2008) discusses hedge funds.

e Sometimes the macroeconomic factors are standardized to have mean zero
and a common scale.

e The factors must be stationary (not trending).

e Sometimes the factors are made orthogonal.

Estimation

Because the factor realizations are observable, the parameter matrices B and
D of the model may be estimated using time series regression:

R, = ailT—FFBZ'—Fé\i:;(’S’—ng,iZl,...,N
X = [1p: F], y = (&, 8;) = (X'X)"'X'R
~2 A/A
< = — F.E:
g T K 1%
The covariance matrix of the factor realizations may be estimated using the
time series sample covariance matrix
R 1 T _ Y = 1 T
Qr=—— fi —f)(fy — ), f=—
e G- DE - =23k
The estimated multifactor model covariance matrix is then




Remarks

1. As with the single factor model, robust regression may be used to compute
B; and 022. A robust covariance matrix estimator may also be used to
compute and estimate of 2.

2. Qs can be made time varying by allowing 3;, €2 and 0% (i=1,...,N)
to be time varying

Example: Estimation of Single Index Model in R using investment data from
Berndt (1991).




Fundamental Factor Models

Fundamental factor models use observable asset specific characteristics (fun-
damentals) like industry classification, market capitalization, style classification
(value, growth) etc. to determine the common risk factors.

e Factor betas are constructed from observable asset characteristics (i.e., B
is known)

e Factor realizations, f;, are estimated/constructed for each t given B

e In practice, fundamental factor models are estimated in two ways.

BARRA Approach

e This approach was pioneered by Bar Rosenberg, founder of BARRA Inc.,
and is discussed at length in Grinold and Kahn (2000), Conner et al (2010),
and Carifio et al (2010).

e In this approach, the observable asset specific fundamentals (or some trans-
formation of them) are treated as the factor betas, 3;, which are time
invariant.

e The factor realizations at time ¢, f;, are unobservable. The econometric
problem is then to estimate the factor realizations at time ¢ given the factor
betas. This is done by running T cross-section regressions.




Fama-French Approach
e This approach was introduced by Eugene Fama and Kenneth French (1992).

e For a given observed asset specific characteristic, e.g. size, they determined
factor realizations using a two step process. First they sorted the cross-
section of assets based on the values of the asset specific characteristic.
Then they formed a hedge portfolio which is long in the top quintile of the
sorted assets and short in the bottom quintile of the sorted assets. The
observed return on this hedge portfolio at time ¢ is the observed factor
realization for the asset specific characteristic. This process is repeated for
each asset specific characteristic.

e Given the observed factor realizations for t = 1,...,T, the factor betas
for each asset are estimated using N time series regressions.

BARRA-type Single Factor Model

Consider a single factor model in the form of a cross-sectional regression at
time ¢

Rt = /8 ft + &t 7t:17"'7T
(Nx1) (Nx1)(1x1l) (Nx1)

e 3isan N x 1 vector of observed values of an asset specific attribute (e.g.,
market capitalization, industry classification, style classification)

e fi is an unobserved factor realization.

o var(fy) = O'%; cov(ft,eit) = 0, for all 4, t; var(e;y) = J%,z’ =1,...,N.




Estimation

For each time period t = 1,... T, the vector of factor betas, 3, is treated as
data and the factor realization f¢, is the parameter to be estimated. Since the
error term &; is heteroskedastic, efficient estimation of f; is done by weighted

least squares (WLS) (assuming the asset specific variances a% are known)

fows = (BD7IB) 1D IRy, t=1,...,T (8)
D = diag(c3,...,0%)

Note 1: 022 can be consistently estimated and a feasible WLS estimate can be
computed
fifwis = (BD7IB)IFD IRy, t=1,....T
D = diag(6%,...,6%)
Note 2: Other weights besides 622 could be used; e.g., market capitalization

weights

Factor Mimicking Portfolio

The WLS estimate of f; in (8) has an interesting interpretation as the return
on a portfolio h = (hq, ..., hy)’ that solves

1
m}in Eh’Dh subject to '3 =1

The portfolio h minimizes asset return residual variance subject to having unit
exposure to the attribute 3 and is given by

h/ — (,B/D_lﬁ)_l,B/D_l
The estimated factor realization is then the portfolio return
ft,wls = h/Rt

When the portfolio h is normalized such that ZZN h; =1, it is referred to as a
factor mimicking portfolio.




BARRA-type Industry Factor Model

Consider a stylized BARRA-type industry factor model with K mutually ex-
clusive industries. The factor sensitivities 3, in (1) for each asset are time

invariant and of the form

Bir = 1 if asset ¢ is in industry k
= 0, otherwise

and fi; represents the factor realization for the kth industry in time period t.

e The factor betas are dummy variables indicating whether a given asset is

in a particular industry.

e The estimated value of fi; will be equal to the weighted average excess

return in time period t of the firms operating in industry k.

Industry Factor Model Regression

The industry factor model with K industries is summarized as

Ry = Bufu+-+Bikfre+eit, t=1,...,N;t=1,...

var(e;t) = 012, 1=1,...,N

COV(Eit,fjt) O,j:].,...,K;i:l,...,N

cov(fit, fjt) = 0{;, ij=1,...,K

where

B;r. = 1ifassetiisinindustry k (k=1,...,K)

= 0, otherwise

It is assumed that there are N, firms in the kth industry such Zszl N = N.




Estimation of Industry Factor Model Factors

Consider the cross-section regression at time ¢

Rt = Bifue+- +Brfre+ et
= Bf;+¢
E[Eité‘;] = D, COV(ft):Qf

Since the industries are mutually exclusive it follows that
/3;',31@ = Ny, for j = k, 0 otherwise

An unbiased but inefficient estimate of the factor realizations f; can be obtained
by OLS:

-~ 1 1 1
R e J1t,0Ls Ny Zi—1 I
fiors=(BB) " BR=| = ¢

frt0Ls N il RE

Estimation of Factor Realization Covariance Matrix

Given (?1,0LSa . afT,OLS): the covariance matrix of the industry factors may
be computed as the time series sample covariance

AF 1 L yo 2 ye /

Q15 = 77 > _(fioLs — fors)(fr.oLs — fors)’,

Tt t=1

_ 1L
fors = =D fiois
T3




Estimation of Residual Variances

The residual variances, var(e;;) = 022, can be estimated from the time series

of residuals from the T cross-section regressions as follows. Let €; g5, t =

1,...,T, denote the (N x 1) vector of OLS residuals, and let &;; o 5 denote

the i row of €t 0Ls: Then 02 may be estimated using

T
1
~2 ~ _ 2 .
7i0Ls T T q > Eitols —EoLs)5 i=1,...,N
t=1
1 T
g, 0Ls = 523@5,05
t=1

Estimation of Industry Factor Model Asset Return Covariance Matrix

The covariance matrix of the N assets is estimated using
. ~r o =
Qo1s = B sB" + Dois

where ﬁOLS is a diagonal matrix with azZ,OLS along the diagonal.




Weighted Least Squares Estimation

e The OLS estimation of the factor realizations f; is inefficient due to the
cross-sectional heteroskedasticity in the asset returns.

e The estimates of the residual variances may be used as weights for weighted
least squares (feasible GLS) estimation:
ficls = (BDglsB) 'BDglRy, t=1,...,T
1 T

- . . _
QWis = 77 > (fi.oLs — fors)(froLs — fous)’
=1
2 1 a 2
Ui,GLS - T _ Z(‘Sit,GLS - gi,GLS) ,1=1,...,N
t=1

Qcls = BQE B’ +Dgis

Example: Estimation of Industry Factor Model in R using investment data
from Berndt (1991).




Statistical Factor Models for

e In statistical factor models,

Returns

the factor realizations f; in (1) are not directly

observable and must be extracted from the observable returns R; using
statistical methods. The primary methods are factor analysis and principal

components analysis.

e Traditional factor analysis

and principal component analysis are usually

applied to extract the factor realizations if the number of time series ob-
servations, T', is greater than the number of assets, N.

e If N > T, then the sample covariance matrix of returns becomes singular
which complicates traditional factor and principal components analysis. In
this case, the method of asymptotic principal component analysis is more

appropriate.

Sample Covariance Matrices

Traditional factor and principal
sample covariance matrix

component analysis is based on the (N x N)

Qy = lrmr

(NxXN)

where R is the (N x T') matrix of observed returns.

Asymptotic principal component analysis is based on the (7" x T') covariance

matrix

Qr = lrr

(TxT)




Factor Analysis

Traditional factor analysis assumes a time invariant orthogonal factor structure

R; = + B f; + 9
(Nxtl) (NP>L<1) (NxK)(Kfa) (N€>§1) ©)
cov(fr,e;) = 0, forallt,s
Elfi] = Eleg] =0
var(f) = Ik
var(ey) = D

where D is a diagonal matrix with 012 along the diagonal. Then, the return
covariance matrix, {2, may be decomposed as

Q =BB'+D

Hence, the K common factors f; account for all of the cross covariances of
asset returns.

Variance Decomposition

For a given asset ¢, the return variance variance may be expressed as

K
var(Ry) = Y B3+ o7
j=1

2

e variance portion due to common factors, Zszl Bij, is called the commu-

nality,

e variance portion due to specific factors, a%, is called the uniqueness.




Non-Uniqueness of Factors and Loadings

The orthogonal factor model (9) does not uniquely identify the common factors
f, and factor loadings B since for any orthogonal matrix H such that H'= H~!
R; = p+BHH'f; +¢
= u+ B*f£|< + &t

where B*= BH, = H'f; and var(f}) = Ig.
Because the factors and factor loadings are only identified up to an orthogonal

transformation (rotation of coordinates), the interpretation of the factors may
not be apparent until suitable rotation is chosen.

Estimation

Estimation using factor analysis consists of three steps:

e Estimation of the factor loading matrix B and the residual covariance
matrix D.

e Construction of the factor realizations f;.

e Rotation of coordinate system to enhance interpretation




Maximum Likelihood Estimation of B and D

Maximum likelihood estimation of B and D is performed under the assumption
that returns are jointly normally distributed and temporally z:d.

Given estimates B and D, an empirical version of the factor model (2) may be

constructed as
R; — fi = Bf; + & (10)

where [1 is the sample mean vector of R;. The error terms in (10) are het-
eroskedastic so that OLS estimation is inefficient.

Estimation of Factor Realizations f't

Using (10), the factor realizations in a given time period ¢, f;, can be estimated
using the cross-sectional feasible weighted least squares (FWLS) regression

fi puts = (B'D™'B)'BD (R, — 1) (1)
Performing this regression for t = 1,...,T times gives the time series of factor
realizations (fy, ..., fr).

The factor model estimated covariance matrix is then given by

QF = BB + D




Tests for the Number of Factors

Using the maximum likelihood estimates of B and D based on a K —factor
model and the sample covariance matrix €2, a likelihood ratio test (modified
for improved small sample performance) of the adequacy of K factors is of the

form
LR(K)=—(T—-1- %(2N +5) — %K) - (In|€ —In|BB’ + DJ).

LR(K) is asymptotically chi-square with % ((N — K)?— N — K) degrees of
freedom.

Remarks:

e Traditional factor analysis starts with a v/T- consistent and asymptotically
normal estimator of €2, usually the sample covariance matrix ﬁ and makes
inference on K based on £2. A likelihood ratio test is often used to select K
under the assumption that £;; is normally distributed (see below). However,
when N — oo consistent estimation of €2, an N X N matrix, is not a well
defined problem. Hence, if IV is large relative to T', then traditional factor
analysis may run into problems. Additionally, typical algorithms for factor
analysis are not efficient for very large problems.

e Traditional factor analysis is only appropriate if €;; is cross-sectionally un-
correlated, serially uncorrelated, and serially homoskedastic.




Principal Components

e Principal component analysis (PCA) is a dimension reduction technique
used to explain the majority of the information in the sample covariance
matrix of returns.

e With N assets there are N principal components, and these principal
components are just linear combinations of the returns.

e The principal components are constructed and ordered so that the first
principal component explains the largest portion of the sample covariance
matrix of returns, the second principal component explains the next largest
portion, and so on. The principal components are constructed to be or-
thogonal to each other and to be normalized to have unit length.

e In terms of a multifactor model, the K most important principal compo-
nents are the factor realizations. The factor loadings on these observed
factors can then be estimated using regression techniques.




Population Principal Components

Let Ry denote the N x 1 vector of returns with N X NN covariance matrix
Q = E[(Rt — E[R¢])(Rt — E[R4])']. Consider creating factors from the

linear combinations (portfolios) of returns

fir = PRt =p11Ry+ - +pinRyy
far = POR: =po1Rys+ -+ + pon Ry

fne = PvRe=pniRit+ -+ pNNENy
Note:

var(fit) = PPk, cov(fit, frt) = PSQPk:

The principal components are those uncorrelated factors fi¢, fot, - - -

variances are as large as possible.

, [t whose

Extracting Principal Components

The first population principal component is PT/Rt where the (IV x 1) vector

pj solves

max p12p; st. pip1 = 1.

The solution pJ is the eigenvector associated with the largest eigenvalue of £2.

The second principal component is PEIRt where the (IV x 1) vector p3 solves

max p5Qps s.t. pop2 = 1 and pi'pr =0

The solution p3 is the eigenvector associated with the second largest eigenvalue
of £2. This process is repeated until all N principal components are computed.




Spectral (Eigenvalue) Decomposition of (2

Q = PAP’

oy = PIiP2i PRl P’ =p

A = diag(MA1,-- -, AN), AL > A0 > - > AN
e P is the orthonormal maxtrix of eigen-vectors

e A is the diaganol matrix of ordered eigen-values

Variance Decomposition

N N N
Y war(Ry) =Y var(fi) = Y A
i=1 i=1 i=1

where \; are the ordered eigenvalues of var(R;) = €2. Therefore, the ratio
Ai
APV
gives the proportion of the total variance Zg\il var(R;;) attributed to the ith
principal component factor return, and the ratio

Z{il >\i

Zi\il )‘i
gives the cumulative variance explained. Examination of these ratios help in
determining the number of factors to use to explain the covariance structure of
returns.




Sample Principal Components and Estimated Factors

Sample principal components are computed from the spectral decompositon of
the N x N sample covariance matrix {2y when N < T :

N A AAf

Oy = PAP

P
(NxN)
A = diag(M, .., AN), A1 > Ao > o> Ay
The estimated factor realizations are simply the first K sample principal com-
ponents

fit = PRy, k=1,..., K. (12)
fi = (fir---, Fict)

The factor loadings for each asset, 3;, and the residual variances, var(e;;) =

ag can be estimated via OLS from the time series regression
Riy=oa;+ B +ey, t=1,...,T (13)
giving Bl and 822 fori = 1,..., N. The factor model covariance matrix of
returns is then
Qpy =BQB +D (14)
where
) g1\ _ (82 0 o0
B = ; , D= 0 - 0 ,
B 0
and

. 1 L. - o, 15
Qr=—— f; —O)(f; — 1), f =— f,
/ T_ltgl(t )(t )7 T;t




Factor Mimicking Portfolios

Since each sample principal component (factor), ftk:, is a linear combinations
of the returns, it is possible to construct portfolios that are perfectly correlated
with the principal components by re-normalizing the weights in the pj. vectors
so that they sum to unity. Hence, the weights in the factor mimicking portfolios
have the form

1 B3
W= |——| P}, k=1,...,K 15
k (1,NAZ> P (15)

where 1 is a (INV x 1) vector of ones, and the factor mimicking portfolio returns

are

ot
Ry s = wi Ry

Example: Estimation of Statistical Factor Model in R using investment data
from Berndt (1991).




Asymptotic Principal Components

Asymptotic principal component analysis (APCA), proposed and developed
in Conner and Korajczyk (1986), is similar to traditional PCA except that
it relies on asymptotic results as the number of cross-sections N (assets)
grows large.

APCA is based on eigenvector analysis of the T" X T" matrix flT. Conner
and Korajczyk prove that as N grows large, eigenvector analysis of SAZT is
asymptotically equivalent to traditional factor analysis. That is, the APCA
estimates of the factors f; are the first K eigenvectors of QT. Specifically,
let F denote the orthornormal K x T matrix consisting of the first K

tth

eigenvectors of QT. Then ft is the column of F.

The

main advantages of the APCA approach are:

It works in situations where the number of assets, IV, is much greater
than the number of time periods, T'. Eigenvectors of the smaller T" x T'
matrix QT only need to be computed, whereas with traditional principal
component analysis eigenvalues of the larger N X N matrix QN need to
be computed.

The method allows for an approximate factor structure of returns. In an
approximate factor structure, the asset specific error terms ¢;; are allowed
to be contemporaneously correlated, but this correlation is not allowed
to be too large across the cross section of returns. Allowing an approxi-
mate factor structure guards against picking up local factors, e.g. industry
factors, as global common factors.




Determining the Number of Factors

e In practice, the number of factors is unknown and must be determined
from the data.

e |f traditional factor analysis is used, then there is a likelihood ratio test for
the number of factors. However, this test will not work if N > T.

e Connor and Korajczyk (1993) described a procedure for determining the
number of factors in an approximate factor model that is valid for N > T.
Bai and Ng (2002) proposed an information criteria that is easier and more
reliable to use.

Bai and Ng Method

Bai and Ng (2002) propose some panel C}, (Mallows-type) information criteria
for choosing the number of factors. Their criteria are based on the observation
that eigenvector analysis on €27 or €2 solves the least squares problem

N T
mip (NT)LST ST (Ryy — o — Bify)?
Bisti i—1t=1

Bai and Ng's model selection or information criteria are of the form

IC(K) = %K)+ K -g(N,T)
N
FAK) = —3 42
(K) N;

where 52(K) is the cross-sectional average of the estimated residual variances
for each asset based on a model with K factors and g(N,T) is a penalty
function depending only on N and T




The preferred model is the one which minimizes the information criteria IC/(K)

over all values of K < Kmax. Bai and Ng consider several penalty functions

and the preferred criteria are

_ _ N+T NT
PCpi(K) J%K)+A30%Khw)<AH,)anV+T>,
_ _ N+T
PCp(K) 02(K)—|—K-02(Kmax)< ~7 >-|n (C%VT),
CnT min(v'N, V'T)
Algorithm

First, select a number Kmax indicating the maximum number of factors to be

considered. Then for each value of K < Kmax, do the following:
1. Extract realized factors ft using the method of APCA.

2. For each asset 7, estimate the factor model

Ryt = o + BiEE + ey,

where the superscript K indicates that the regression has K factors, using

time series regression and compute the residual variances
2 1 L
GHK)=—"Y &2
P (K) T-K-17"




3. Compute the cross-sectional average of the estimated residual variances
for each asset based on a model with K factors

F2(K) = NA2K
a( )—N;Uz‘( )

4. Compute the cross-sectional average of the estimated residual variances
for each asset based on a model with Kmax factors, 62(Kmax).

5. Compute the information criteria PCy,1(K) and PCpo(K).
6. Select the value of K that minimized either PCy,1(K) or PCpo(K).

Bai and Ng perform an extensive simulation study and find that the selection
criteria PC)p1 and PCyy yield high precision when min(NV,T") > 40.




