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1 Lecture Outline

• Modeling Maxima and Worst Cases

• The Generalized Extreme Value Distribution

• Modeling Extremes Over a High Threshold

— Generalized Pareto Distribution

— Traditional Risk Measures



2 Reading

• MFTS, chapter 5

• FMUND, chapter 7



3 Modeling Maxima and Worst Cases

• Example: Analysis of daily negative returns on S&P 500 index

• What is the probability that next year’s annual maximum negative return
exceeds all previous negative returns? In other words, what is the proba-
bility that next year’s maximum negative return is a new record?

• What is the 20-year return level of the negative returns? That is, what
is the negative return which, on average, should only be exceeded in one
year every twenty years?

To answer these questions, the distribution of extreme negative returns on the
S&P 500 index is required.



4 The Generalized Extreme Value Distribution

Let X1,X2, . . . be iid random variables representing risks or losses with an
unknown CDF F (x) = Pr{Xi ≤ x}. DefineMn = max (X1, . . . ,Xn) as the
worst-case loss in a sample of n losses. From the iid assumption, the CDF of
Mn is

Pr{Mn ≤ x} = Pr{X1 ≤ x, . . . ,Xn ≤ x}

=
nY
i=1

F (x) = Fn(x)



Comments:

• The empirical distribution function is often a very poor estimator of Fn(x)

• Fn(x)→ 0 or 1 as n→∞



4.1 Fisher-Tippet Theorem

Define the standardized maximum value

Zn =
Mn − μn

σn
σn > 0 = scale parameter

μn = location parameter

Fisher-Tippet Theorem: If the standardized maximum converges to some non-
degenerate distribution function, it must be a generalized extreme value (GEV)
distribution of the form

Hξ(z) =

(
exp

n
−(1 + ξz)−1/ξ

o
exp {− exp(−z)}

ξ 6= 0, 1 + ξz > 0
ξ = 0, −∞ ≤ z ≤ ∞



Comments

• The CDF F of the underlying data is in the domain of attraction of Hξ.

• The Fisher-Tippet Theorem is the analog of the Central Limit Theorem
for extreme values.

• ξ is a shape parameter and determines the tail behavior of Hξ.

• The parameter α = 1/ξ is called the tail index if ξ > 0.



4.1.1 GEV Types

Result: The tail behavior of the distribution F of the underlying data determines
the shape parameter ξ of the GEV distribution

• If the tail of F declines exponentially, then Hξ is of the Gumbel type and
ξ = 0. Distributions in the domain of attraction of the Gumbel type are
thin tailed distributions such as the normal, log-normal, exponential, and
gamma. For these distributions, all moments usually exist



• If the tail of F declines by a power function, i.e.

1− F (x) = c · x−1/ξ = x−α

for some constant c, then Hξ is of the Fréchet type and ξ > 0. Distri-
butions in the domain of attraction of the Fréchet type include fat tailed
distributions like the Pareto, Cauchy, Student-t, alpha-stable with char-
acteristic exponent in (0, 2), as well as various mixture models. Not all
moments are finite for these distributions: E[Xk] =∞ for k ≥ α = 1/ξ.

This type is most relevant for financial data.



• if the tail of F is finite then Hξ is of the Weibull type and ξ < 0. Distrib-
utions in the domain of attraction of the Weibull type include distributions
with bounded support such as the uniform and beta distributions. All
moments exist for these distributions.



4.1.2 Unstandardized Distributions

For location and scale parameters μ and σ > 0 we have

Hξ(z) = Hξ

µ
x− μ

σ

¶
= Hξ,μ,σ(x)

For large enough n

Pr {Zn < z} = Pr
½
Mn − μn

σn
< z

¾
≈ Hξ(z)

Letting x = σnz + μn then

Pr{Mn < x} ≈ Hξ

µ
x− μn
σn

¶
= Hξ,μn,σn

(x)

This result is used in practice to make inferences about the maximum lossMn.



4.2 Maximum Likelihood Estimation

Let X1, . . . ,XT be iid losses with unknown CDF F and let MT denote the
sample maximum. Divide the sample into m non-overlapping blocks of essen-
tially equal size n = T/m

[X1, . . . ,Xn|Xn+1, . . . ,X2n| . . . |X(m−1)n+1, . . . ,Xmn]

M
(j)
n = maximum value of Xi in block j = 1, . . . ,m

• Construct likelihood for ξ, σn and μn from

{M(1)
n , . . . ,M

(m)
n }

• Assumed that the block size n is sufficiently large so that the Fisher-Tippet
Theorem holds.



The log-likelihood function for ξ 6= 0 is

l(μ, σ, ξ) = −m ln(σ)

−(1 + 1/ξ)
mX
i=1

ln

⎡⎣1 + ξ

⎛⎝M(i)
n − μ

σ

⎞⎠⎤⎦
−

mX
i=1

⎡⎣1 + ξ

⎛⎝M(i)
n − μ

σ

⎞⎠⎤⎦−1/ξ

and is maximized imposing the constraint

1 + ξ

⎛⎝M(i)
n − μ

σ

⎞⎠ > 0



Remarks:

• For ξ > −0.5 the mles for μ, σ and ξ are consistent and asymptotically
normally distributed with asymptotic variance given by the inverse of the
observed information matrix

• The bias of the mle is reduced by increasing the block size n, and the
variance of the mle is reduced by increasing the number of blocks m.



4.3 Example: S&P 500 negative returns

The maximum likelihood estimates of ξ, μ and σ based on annual block maxima
are

ξ̂ = 0.334, dSE(ξ̂) = 0.208
μ̂ = 1.975, dSE(μ̂) = 0.151
σ̂ = 0.672, dSE(σ̂) = 0.131

What is the probability that next year’s annual maximum negative return ex-
ceeds all previous negative returns?

Pr
µ
M
(29)
260 > max

µ
M
(1)
260, . . . ,M

(28)
260

¶¶
= Pr(M

(29)
260 > 6.68)

= 1−H
ξ̂,μ̂,σ̂

(6.68) = 0.0267



4.4 Return Level

The k n-block return level, Rn,k, is that level which is exceeded in one out of
every k blocks of size n. That is, Rn,k is the loss value such that

Pr{Mn > Rn,k} = 1/k

Rn,k is simply the 1− 1/k quantile of limiting GEV distribution:

Rn,k ≈ H−1ξ,μ,σ(1− 1/k) = μ− σ

ξ

³
1− (− log(1− 1/k))−ξ

´



5 Modeling Extremes Over High Thresholds

Idea: Modeling only block maxima data is inefficient if other data on extreme
values are available. A more efficient alternative approach that utilizes more
data is to model the behavior of extreme values above some high threshold.
This method is often called peaks over thresholds (POT).

• An advantage of the POT approach is that common risk measures like
Value-at-Risk (VaR) and expected shortfall (ES) may easily be computed



5.1 Risk Measures

Value-at-Risk (VaR). For 0.95 ≤ q < 1, say, V aRq is the qth quantile of the
loss distribution F

V aRq = F−1(q)

where F−1 is the inverse of F.

Expected Shortfall (ES). ESq is the expected loss size, given that V aRq is
exceeded:

ESq = E[X|X > V aRq]

Note: ESq is related to V aRq via

ESq = V aRq +E[X − V aRq|X > V aRq]



5.2 The Generalized Pareto Distribution

Let X1,X2, . . . be a sequence of iid random losses with an unknown CDF F
and let Mn = max{X1, . . . ,Xn}. A natural measure of extreme events are
values of the Xi that exceed a high threshold u. Define the excedences above
the high threhold u:

Y = X − u, X > u

Then the excess distribution (aka tail distribution) above the threshold u is the
conditional probability

Fu(y) = Pr(Y ≤ y) = Pr{X − u ≤ y|X > u} = F (y + u)− F (u)

1− F (u)
,

for y > 0.



Result: For the class of distributions F such that the CDF of the standardized
value ofMn converges to a GEV distribution, for large enough u there exists a
positive function β(u) such that Fu(y) is well approximated by the generalized
Pareto distribution (GPD)

Gξ,β(u)(y) =

(
1− (1 + ξy/β(u)) for ξ 6= 0
1− exp(−y/β(u)) for ξ = 0 , β(u) > 0

defined for y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −β(u)/ξ when ξ < 0

Remarks:

• For a sufficiently high threshold u, Fu(y) ≈ Gξ,β(u)(y) for a wide class of
loss distributions F. To implement this result, the threshold value u must
be specified and estimates of the unknown parameters ξ and β(u) must
be obtained.



• There is a close connection between the limiting GEV distribution for block
maxima and the limiting GPD for threshold excesses. The shape parameter
ξ of the GEV distribution is the same shape parameter ξ in the GPD and
is independent of the threshold value u.

• Consider a limiting GPD with shape parameter ξ and scale parameter
β(u0) for an excess distribution Fu0 with threshold u0. For an arbitrary
threshold u > u0, the excess distribution Fu has a limiting GPD dis-
tribution with shape parameter ξ and scale parameter β(u) = β(u0) +

ξ(u− u0). Alternatively, for any y > 0 the excess distribution Fu0+y has
a limiting GPD distribution with shape parameter ξ and scale parameter
β(u0) + ξy



5.3 Mean Excess Function

Suppose the threshold excess X − u0 follows a GPD with parameters ξ < 1
and β(u0). Then the mean excess over the threshold u0 is

E[X − u0|X > u0] =
β(u0)

1− ξ

For any u > u0, define the mean excess function e(u) as

e(u) = E[X − u|X > u] =
β(u0) + ξ(u− u0)

1− ξ

Alternatively, for any y > 0

e(u0 + y) = E[X − (u0 + y)|X > u0 + y] =
β(u0) + ξy

1− ξ

• The mean excess function is a linear function of y = u− u0.



5.3.1 Graphical Diagnostic for determining u0

Define the empirical mean excess function

en(u) =
1

nu

nuX
i=1

(x(i) − u)

where x(i) (i = 1, . . . , nu) are the values of xi such that xi > u.

• The mean excess plot is a plot of en(u) against u and should be linear in
u for u > u0



5.4 Maximum Likelihood Estimation

Let x1, . . . , xn be iid sample of losses with unknown CDF F .

• For a given u, extreme values are those xi values for which xi − u > 0.
Denote these values x(1), . . . , x(k)

• Define the threshold excesses as yi = x(i) − u for i = 1, . . . , k.

If u is large enough, then {y1, . . . , yk} may be thought of as a random sample
from a GPD with unknown parameters ξ and β(u). For ξ 6= 0, the log-likelihood
function based on the GPD is

l(ξ, β(u)) = −k ln(β(u))− (1 + 1/ξ)
kX
i=1

ln(1 + ξyi/β(u))



5.5 Estimating the Tails of the Loss Distribution

For a sufficiently high threshold u, Fu(y) ≈ Gξ,β(u)(y). Seting x = u + y,
an approximation to the tails of F (x) for x > u is given by

F (x) = (1− F (u))Gξ,β(u)(y) + F (u)

• Estimate F (u) using the empirical CDF

F̂ (u) =
(n− k)

n
k = number of exceedences over u



• Combine F̂ (u) with G
ξ̂,β̂(u)

(y) to give

F̂ (x) = 1− k

n

Ã
1 + ξ̂ · x− u

β̂(u)

!

• This approximation is used for VaR computations based on the fitted GPD



5.6 Risk Measures Again

• VaR for GPD. Compute F̂−1(q) using

dV aRq = u+
β̂(u)

ξ̂

⎛⎝µn
k
(1− q)

¶−ξ̂
− 1

⎞⎠

• ES for GPD

dESq = dV aRq

1− ξ̂
+
β̂(u)− ξ̂u

1− ξ̂



5.7 Non-Parametric Tail Estimation

• The shape parameter ξ, or equivalently, the tail index a = 1/ξ, of the GEV
and GPD distributions may be estimated non-parametrically in a number
of ways.

• A popular method due to Hill (1975) applies to the case where ξ > 0

(α > 0) so that the data is generated by some fat-tailed distribution in
the domain of attraction of a Fréchet type GEV.

• Consider a sample of losses X1, . . . ,XT and define the order statistics as

X(1) ≥ X(2) ≥ · · · ≥ X(T )



For a positive integer k, the Hill estimator of ξ is defined as

ξ̂
Hill

(k) =
1

k

kX
j=1

³
logX(j) − logX(k)

´
and the Hill estimator of α is

α̂Hill(k) = 1/ξ̂
Hill

(k)



• The Hill estimators of ξ and α depend on the integer k, which plays the
same role as k in the analysis of the GPD.

• It can be shown that if F is in the domain of attraction of a GEV distrib-
ution, then ξ̂

Hill
(k) converges in probability to ξ as k→∞ and k

n → 0,

and that ξ̂
Hill

(k) is asymptotically normally distributed with asymptotic
variance

avar(ξ̂
Hill

(k)) =
ξ2

k

By the delta method, α̂Hill(k) is asymptotically normally distributed with
asymptotic variance

avar(α̂Hill(k)) =
α2

k



• In practice, the Hill estimators ξ̂Hill
(k) or α̂Hill(k) are often plotted

against k to find the value of k such that the estimator appears stable.



5.7.1 Hill Tail and Quantile Estimation

Suppose that the loss distribution F is such that 1− F (x) = x−αL(x) with
α = 1/ξ > 0, where L(x) is a slowly varying function. Let x > X(k+1) where
X(k+1) is a high order statistic. The Hill estimator of F (x) is given by

F̂Hill(x) = 1− k

n

⎛⎝ x

X(k+1))

⎞⎠−α̂Hill(k)

, x > X(k+1)

Inverting the Hill tail estimator gives the Hill quantile estimator

x̂Hill
q,k = X(k+1) −X(k+1)

⎛⎜⎝µn
k
(1− q)

¶−ξ̂Hill
(k)
− 1

⎞⎟⎠
where q > 1− k/n.


