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Statistical Factor Models for Returns

• In statistical factor models, the factor realizations f in (??) are not directly
observable and must be extracted from the observable returns R using
statistical methods. The primary methods are factor analysis and principal
components analysis.

• Traditional factor analysis and principal component analysis are usually
applied to extract the factor realizations if the number of time series ob-
servations,  , is greater than the number of assets,  .

• If    , then the sample covariance matrix of returns becomes singular
which complicates traditional factor and principal components analysis. In
this case, the method of asymptotic principal component analysis is more
appropriate.



Statistical Factor Models: Advantages and Disadvantages

• Extracted factors often explain a large portion of the variability of returns
- typically more than fundamental factors

• Interpretation of statistical factors can be difficult

— For equity returns, typically only a few factors can be easily interpreted
(e.g. market and industry factors)

— For fixed income returns, extracted factors can be interpreted as yield
curve descriptors (e.g. level, slope, curvature)

— For hedge funds, extracted factors can be interpreted as strategy de-
scriptors



Statistical Factor Models: Estimation

 =  + β0f + 

Ω
×

= (R)

Econometric problems:

• Both factor loadings β and factor returns f are not observed - only asset
returns  are observed

• First, extract f from covariance/correlation matrix of returns

• Second estimate β by regressing asset returns on extracted factors



Sample Covariance Matrices

Traditional factor and principal component analysis is based on the ( ×)

sample covariance matrix

bΩ
(×)

=
1


R0R

where R is the ( ×  ) matrix of observed returns.

Asymptotic principal component analysis is based on the ( ×  ) covariance
matrix bΩ

(× )
=
1


RR0



Principal Components

• Principal component analysis (PCA) is a dimension reduction technique
used to explain the majority of the information in the sample covariance
matrix of returns.

• With  assets there are  principal components, and these principal
components are just linear combinations of the returns.

• The principal components are constructed and ordered so that the first
principal component explains the largest portion of the sample covariance
matrix of returns, the second principal component explains the next largest
portion, and so on. The principal components are constructed to be or-
thogonal to each other and to be normalized to have unit length.



• In terms of a multifactor model, the  most important principal compo-
nents are the factor realizations. The factor loadings on these observed
factors can then be estimated using regression techniques.



Population Principal Components

Let R denote the  × 1 vector of returns with  ×  covariance matrix
Ω = [(R − [R])(R − [R])

0] Consider creating factors from the
linear combinations (portfolios) of returns

1 = p01R = 111 + · · ·+ 1

2 = p02R = 211 + · · ·+ 2
...

 = p0R = 11 + · · ·+ 

Note:

() = p
0
Ωp ( ) = p

0
Ωp

The principal components are those uncorrelated factors 1 2      whose
variances are as large as possible.



Extracting Principal Components

The first population principal component is p∗01R where the ( × 1) vector
p∗1 solves

max
1

p01Ωp1 s.t. p
0
1p1 = 1

The solution p∗1 is the eigenvector associated with the largest eigenvalue of Ω.

The second principal component is p∗02R where the ( × 1) vector p∗2 solves

max
2

p02Ωp2 s.t. p
0
2p2 = 1 and p

∗0
1 p2 = 0

The solution p∗2 is the eigenvector associated with the second largest eigenvalue
of Ω. This process is repeated until all  principal components are computed.



Spectral (Eigenvalue) Decomposition of Ω

Ω = PΛP0

P
(×)

= [p∗1
... p∗2

... · · · ... p∗ ] P0 = P−1

Λ = (1     ) 1  2  · · ·  

• P is the orthonormal maxtrix of eigen-vectors

• Λ is the diaganol matrix of ordered eigen-values



Variance Decomposition

X
=1

() =
X
=1

() =
X
=1



where  are the ordered eigenvalues of (R) = Ω. Therefore, the ratio

P
=1 

gives the proportion of the total variance
P
=1 () attributed to the th

principal component factor return, and the ratioP
=1 P
=1 

gives the cumulative variance explained. Examination of these ratios help in
determining the number of factors to use to explain the covariance structure of
returns.



Sample Principal Components and Estimated Factors

Sample principal components are computed from the spectral decompositon of
the  × sample covariance matrix Ω̂ when    :

Ω̂ = P̂Λ̂P̂
0

P̂
(×)

= [p̂∗1
... p̂∗2

... · · · ... p̂∗ ] P̂0 = P̂−1

Λ̂ = (̂1     ̂) ̂1  ̂2  · · ·  ̂

The estimated factor realizations are simply the first  sample principal com-
ponents

b = p̂∗0R  = 1     (1)

f̂ = (̂1     ̂)
0



The factor loadings for each asset, β, and the residual variances, () =
2 can be estimated via OLS from the time series regression

 =  + β0f̂ +   = 1      (2)

giving bβ and b2 for  = 1      . The factor model covariance matrix of
returns is then bΩ = bB bΩ

bB0 +cD (3)

where

bB =
⎛⎜⎜⎝

bβ01...bβ0
⎞⎟⎟⎠  cD =

⎛⎜⎝ b21 0 0
0 . . . 0
0 · · · b2

⎞⎟⎠ 

and

bΩ =
1

 − 1

X
=1

(bf − f)(bf − f)0 f = 1



X
=1

bf



Factor Mimicking Portfolios

Since each sample principal component (factor), ̂ is a linear combinations
of the returns, it is possible to construct portfolios that are perfectly correlated
with the principal components by re-normalizing the weights in the p̂∗ vectors
so that they sum to unity. Hence, the weights in the factor mimicking portfolios
have the form

ŵ =

Ã
1

10 p̂
∗


!
· p̂∗  = 1     (4)

where 1 is a (×1) vector of ones, and the factor mimicking portfolio returns
are

 = ŵ
0
R



Example: Estimation of Statistical Factor Model in R using investment data
from Berndt (1991).



Asymptotic Principal Components

• Asymptotic principal component analysis (APCA), proposed and developed
in Conner and Korajczyk (1986), is similar to traditional PCA except that
it relies on asymptotic results as the number of cross-sections  (assets)
grows large.

• APCA is based on eigenvector analysis of the  ×  matrix bΩ . Conner
and Korajczyk prove that as  grows large, eigenvector analysis of bΩ is
asymptotically equivalent to traditional factor analysis. That is, the APCA
estimates of the factors f are the first  eigenvectors of bΩ . Specifically,
let bF denote the orthornormal  ×  matrix consisting of the first 
eigenvectors of bΩ . Then bf is the  column of bF.



The main advantages of the APCA approach are:

• It works in situations where the number of assets,  , is much greater
than the number of time periods,  . Eigenvectors of the smaller  × 

matrix bΩ only need to be computed, whereas with traditional principal
component analysis eigenvalues of the larger  × matrix bΩ need to
be computed.

• The method allows for an approximate factor structure of returns. In an
approximate factor structure, the asset specific error terms  are allowed
to be contemporaneously correlated, but this correlation is not allowed
to be too large across the cross section of returns. Allowing an approxi-
mate factor structure guards against picking up local factors, e.g. industry
factors, as global common factors.



Determining the Number of Factors

• In practice, the number of factors is unknown and must be determined
from the data.

• If traditional factor analysis is used, then there is a likelihood ratio test for
the number of factors. However, this test will not work if    .

• Connor and Korajczyk (1993) described a procedure for determining the
number of factors in an approximate factor model that is valid for    .
Bai and Ng (2002) proposed an information criteria that is easier and more
reliable to use.



Bai and Ng Method

Bai and Ng (2002) propose some panel  (Mallows-type) information criteria
for choosing the number of factors. Their criteria are based on the observation
that eigenvector analysis on bΩ or bΩ solves the least squares problem

min
βf 

( )−1
X
=1

X
=1

( −  − β0f)
2

Bai and Ng’s model selection or information criteria are of the form

() = b2() + · ( )

b2() =
1



X
=1

b2
where b2() is the cross-sectional average of the estimated residual variances
for each asset based on a model with  factors and ( ) is a penalty
function depending only on  and  .



The preferred model is the one which minimizes the information criteria ()
over all values of   max Bai and Ng consider several penalty functions
and the preferred criteria are

1() = b2() + · b2(max)µ + 



¶
· ln

µ


 + 

¶


2() = b2() + · b2(max)µ + 



¶
· ln

³
2

´


 = min(
√

√
 )



Algorithm

First, select a number max indicating the maximum number of factors to be
considered. Then for each value of   max, do the following:

1. Extract realized factors bf using the method of APCA.
2. For each asset , estimate the factor model

 =  + β0
bf + 

where the superscript  indicates that the regression has  factors, using
time series regression and compute the residual variances

b2 () = 1

 − − 1

X
=1

b2



3. Compute the cross-sectional average of the estimated residual variances
for each asset based on a model with  factors

b2() = 1



X
=1

b2 ()
4. Compute the cross-sectional average of the estimated residual variances
for each asset based on a model with max factors, b2(max).

5. Compute the information criteria 1() and 2()

6. Select the value of  that minimized either 1() or 2()

Bai and Ng perform an extensive simulation study and find that the selection
criteria 1 and 2 yield high precision when min( )  40


