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Volatility Signature Plots

• Observed log price (transaction price or mid-quote) for day t = 1, . . . , n

is denoted p̃t

• Divide each day into M subperiods and define δ = 1/M . This creates a
regularly spaced time clock

• Align observed prices to time clock

— Previous tick method

— Linear interpolation between adjacent ticks



• Define the jth inter-daily return for day t

r̃j,t = p̃(t−1)+jδ − p̃(t−1)+(j−1)δ, j = 1, . . . ,M

• Define realized variance (RV) for day t at frequency M

RV
(M)
t =

MX
j=1

r̃2j,t

Result: If returns are free of microstructure noise and prices follow a continuous
time diffusion then

RV
(M)
t

p→ IVt =
Z t

t−1
σ2(s)ds



Result: If M is chosen too large (δ is too small) then RV (M)
t becomes biased

due to microstructure noise.

• Lack of liquidity could cause observed price to differ from true price (e.g.
large trades or short time periods)

• Bid-Ask spread and discrete nature of price price data that implies rounding
errors

• Econometric method to construct price data (infer prices from transaction
data or mid-quotes; impute prices at times when no prices are observed)

• Data recording errors



Variance Signature Plots can be used to uncover biases due to microstructure
noise

• Plot average realized variance, RV (M) ≡ 1
n

Pn
t=1RV

(M)
t , against the

sampling frequency M, where the average is taken over n days

Example: Hansen and Lund (2004)

5 years of intra-day data for Alcoa and Microsoft (n = 1250)

Compute RV (M)
t for M = 1, . . . , 3600 seconds using transactions and mid-

quotes and prices aligned using previous tick and linear interpolation methods.



Realized Variance and Market Microstructure Noise

Bandi, F. and J. Russell (2006). “Separating Microstucture Noise from Volatil-
ity”, Journal of Financial Economics, 79, 655-692

Bandi, F. and J. Russell (2008). “Microstructure Noise, Realized Variance, and
Optimal Sampling. Review of Financial Studies, 79, 339-369.

Main Points

• Observed HF log price = log efficient price + microstructure noise

— Variance of daily return = variance of efficient returns + variance of
microstructure noise



• Both unobserved components of variance can be estimated using HF data
sampled at different frequencies

— High frequency sampling captures microstructure noise

— Low frequency sampling captures efficient return variance

• Provide procedure to purge HF return data of microstructure components
and extract information on efficient return variance by sampling at optimal
frequencies



Price Formation Mechanism

• Consider t = 1, . . . , n trading days.

• Observed log price at time t

p̃t = pt + ηt
pt = unobserved efficient price

ηt = unobserved microstructure noise

• Divide each day into M subperiods and define δ = 1/M . Define the jth
inter-daily return for day t

r̃j,t = p̃(t−1)+jδ − p̃(t−1)+(j−1)δ, j = 1, . . . ,M



• Return decomposition

r̃j,t = rj,t + εj,t

rj,t = p(t−1)+jδ − p(t−1)+(j−1)δ : efficient return

εj,t = η(t−1)+jδ − η(t−1)+(j−1)δ : microstructure noise



Assumption 1 (Efficient Price Process)

1. pt is is a continuous stochastic volatility local martingale. Specifically,

pt = mt =
Z t

0
σsdWs, Wt = Wiener process

2. Spot volatility σt is cadlag and bounded away from zero

3. σt is independent of Wt for all t

4. Integrated volatility: IVt =
R t
0 σ

2
sds

5. Quarticity Qt =
R t
0 σ

4
sds < M ≤ ∞



Assumption 2 (Microstructure Noise)

1. The random shocks ηt are iid, E[ηt] = 0, E[η
2
t ] = σ2η, E[η

8
t ] <∞

2. True return process rj,t is independent of ηj,t for all t and j

Remarks

• σs can display jumps, diurnal effects, high persistence (long memory) and
nonstationarities



• εj,t follows an MA(1) process independent of δ, with negative first order
autocovariance

E[ε2j,t] = 2E[η2j,t] = 2σ
2
η

E[εj,tεj−1,t] = −E[η2j,t] = −σ2η, E[εj,tεj−k,t] = 0, k > 1

justified by Roll’s bid-ask bounce model

• Efficient returns rj,t are of order Op(
√
δ) over periods of size δ

• Microstructure noise returns εj,t are Op(1) over any time period

— Price discreteness, bid-ask spread

• Longer period intra-day returns are less contaminated by noise than shorter
period returns



Identification at High Frequencies: Volatility of the Unobserved Mi-
crostructure Noise

Squared Return Decomposition

MX
j=1

r̃2j,t =
MX
j=1

r2j,t +
MX
j=1

ε2j,t + 2
MX
j=1

rj,tεj,t

= Op(
√
δ) +Op(1) +Op

µ
1

2

¶

Result (Bandi and Russell, 2004). As M →∞

1

M

MX
j=1

r̃2j,t
p→ E[ε2],

2

M

MX
j=1

r̃2j,t
p→ E[η2]



Note: if η are iid across days (t = 1, . . . , n)

1

nM

nX
t=1

MX
j=1

r̃2j,t
p→ E[ε2]

Use highest possible sample frequency to construct estimates



Identification at Low Frequencies: Volatility of the Unobserved Efficient
Return

Result (Bandi and Russell, 2004). As M →∞
MX
j=1

r2j,t
p→
Z t

t−1
σ2sds = IVt,

MX
j=1

ε2j,t
p→∞

MX
j=1

rj,tεj,t = Op(1)

Consequently,

MX
j=1

r̃2j,t→∞

Hence, traditional RV estimator is inconsistent in the presence of microstructure
noise!



Optimal Sampling: Balancing Bias-Variance Tradeoff

Intuition: RV estimator is expected to be less biased when sampled at low
frequencies, since noise plays less of a roll when δ is large, but considerably
more volatile. The optimal sampling frequency minimizes the MSE.

Result (Bandi and Russell, 2004)

MSE

⎛⎝ MX
j=1

r̃2j,t, IVt

⎞⎠ = Eσ

⎡⎢⎣
⎛⎝ MX
j=1

r̃2j,t − IVt

⎞⎠2
⎤⎥⎦

= 2
1

M
(Qt + o(1)) +Mβ +M2α+ γ

α =
³
E[ε2]

´2
, β = 2E[ε4]− 3α

γ = 4E[ε2]IVt −E[ε4] + 2α



Remarks:

• The necessary indegrediants to compute the minimum of the MSE are

E[ε2], E[ε4] and Qt

• Consistent estimators for E[ε2] and E[ε4] (as M →∞)

1

nM

nX
t=1

MX
j=1

r̃2j,t
p→ E[ε2],

1

nM

nX
t=1

MX
j=1

r̃4j,t
p→ E[ε4]

• Under microstructure noise, the BNS estimator of Qt is inconsistent

Q̂t =
M

3

MX
j=1

r̃4j,t→∞ as M →∞



• Bandi and Russell suggest to estimate Qt using Q̂t with a low sampling
frequency (e.g. 15 minutes)

Q̂t =
Mlow

3

MlowX
j=1

r̃4j,t



Result (Approximate optimal sampling frequency). The approximate optimal
sampling frequency is chosen as the value δ∗t = 1/M

∗
t with

M∗
t =

Ã
Q̂t

α̂

!1/3

α̂ =

⎛⎜⎝ 1

nMhigh

nX
t=1

MhighX
j=1

r̃2j,t

⎞⎟⎠
2

, M is highest frequency

Q̂t =
Mlow

3

MlowX
j=1

r̃4j,t, M
low is low frequency (15 mins)

Optimal sampling frequency RV estimate

RV
(M∗

t )
t =

M∗
tX

j=1

r̃2j,t



Empirical Applications

• S&P 100 Stocks: 1993 - 2003

• Use mid-quotes as observed prices

• Compute optimal sampling frequencies for 100 stocks

— Mean value of 4 minutes

— Vary considerably over time



Hansen, P.R. and A. Lunde (2006). “Realized Variance and Market
Microstructure Noise,” Journal of Business and Economic Statistics,
24(2), 127-161.

Main points:

• Characterize how RV is affected by market microstructure noise under a
general specification for the noise that allows for various forms of stochastic
dependencies

• Market microstructure noise is time-dependent and correlated with efficient
returns

• For Dow 30 stocks, noise may be ignored when returns are sampled a low
frequencies (e.g. 20 mins)



Ugly Facts about Market Microstructure Noise

• Noise is correlated with efficient price

• Noise is time dependent

• Noise is quite small in Dow Jones 30 stocks

• Properties of noise have changed substantially over time



Notation and Assumptions

• p∗ (t) = p(t) + u(t) = efficient price + noise

• dp∗(t) = σ(t)dW (t)

• Data are observed on interval [a, b] (e.g. trading day)

• IV =
R b
a σ

2(t)dt



• Partition [a, b] into m subintervals

• ith subinterval is [ti−1,m, ti,m]

[a = t0,m < t1,m < · · · < tm,m = b]

δi,m = ti,m − ti−1,m

• Intra-day returns

yi,m = p(ti,m)− p(ti−1,m), i = 1, . . . ,m

= y∗im + ei,m

y∗i,m = p∗(ti,m)− p∗(ti−1,m)

ei,m = u(ti,m)− u(ti−1,m)



• IV over [ti−1,m, ti,m]

σ2i,m =
Z ti,m

ti−1,m
σ2(s)ds = var(y∗i,m)

• RV of efficient price

RV
(m)
∗ =

mX
i=1

y∗2i,m

• RV of observed price

RV (m) =
mX
i=1

y2i,m



Sampling Schemes

• Calendar time sampling (CTS)

— Align prices to common regularly spaced time clock associated with
[a = t0,m < t1,m < · · · < tm,m = b]

• Tick time sampling (TTS)

— ti,m denotes actual transaction time

— e.g. sample every fifth transaction



Characterizing the Bias of RV

Assumption 2: The noise process, u, is covariance stationary with mean 0, such
that its autocovariance function is defined by π(s) = E[u(t)u(t+ s)]

Remark: Assumption 2 allows for dependence between p∗ and u

Decomposition of RV (m) when yi,m = y∗im + ei,m

RV (m) =
mX
i=1

y∗2i,m + 2
mX
i=1

ei,my
∗
i,m +

mX
i=1

e2i,m



Theorem 1. Given Assumptions 1 and 2, the bias of RV (m) under CTS is given
by

E[RV (m) − IV ] = 2ρm + 2m
∙
π(0)− π

µ
b− a

m

¶¸

ρm = E

⎡⎣ mX
i=1

ei,my
∗
i,m

⎤⎦

Remarks

• Bias always positive when cov(y∗im, ei,m) = 0

• Bias can be negative when cov(y∗im, ei,m) < 0 and large



Bias Corrected RV

Assumption 4: The noise process has finite dependence in the sense that π(s) =
0 for all s > θ0 for some θ0 > 0, and E[u(t)|p∗(s)] = 0 for all |t− s| > θ0

Theorem 2. Suppose Assumptions 1,2, and 4 hold and let qm be such that
qm/m > θ0. Then under CTS,

E[RV
(m)
ACqm

− IV ] = 0

where

RV
(m)
ACqm

=
mX
i=1

y2i,m + 2
qmX
h=1

γ̃h

γ̃h =
m

m− h

m−hX
i=1

yi,myi+h,m



Remarks

• RV
(m)
ACqm

may be negative because γ̃h is not scaled downward in a way that
would guarantee positivity (e.g. as with the NW type long-run variance
estimator)

• One could use various kernels (e.g. Bartlett) to ensure positivity but the
resulting estimators may not be unbiased

• RV
(m)
ACqm

p→ IV as m→∞ because qm/m→ 0 sufficiently fast



Realized Kernel Estimators

Barndorff-Nielsen, O.E., P. Hansen, A. Lunde, N. Shephard (2008). “Designing
realised kernels to measure the ex-post variation of equity prices in the presence
of noise,” Unpublished Working Paper (http://ssrn.com/abstract=620203)

Idea: Create approximately unbiased RV estimators that have good finite sam-
ple properties



RV
(m)
kerqm

=
mX
i=1

y2i,m + 2
qmX
h=1

k

Ã
h− 1
qm

!
γ̃h

γ̃h =
m

m− h

m−hX
i=1

yi,myi+h,m

k(·) = kernel weight function

qm = lag truncation parameter



Realized Covariance Estimation

Griffin, J.E. and R.C.A. Oomen (2006). “Covariance Measurement in the Pres-
ence of Non-Synchronous Trading and Market Microstructure Noise,” Unpub-
lished paper, Department of Statistics, University of Warwick.

Payseur, S. (2008). “Essays on Realized Covariance Estimation,” Phd thesis,
University of Washington.

Payseur, S. (2008). Realized Software Package.



Notation

• Observed vector of log prices for k assets, aligned to a common time
clock equally spaced by δ = 1/M, for day t = 1, . . . , n is denoted p̃t =
(p1t , . . . , p

2
t )
0.

• Define the jth inter-daily return vector for day t

r̃j,t = p̃(t−1)+jδ − p̃(t−1)+(j−1)δ, j = 1, . . . ,M

• Define k×k realized covariance (RCOV) matrix for day t at frequencyM

RCOV
(M)
t =

MX
j=1

r̃j,tr̃
0
j,t



• For 2 assets with intra-day returns r1j,t and r2j,t define

RCOV
(M)
t =

MX
j=1

r̃1j,tr̃
2
j,t



Result: If returns are free of microstructure noise and prices follow a continuous
time diffusion then

RCOV
(M)
t

p→ ICOVt =
Z t

t−1
Σ(t)dt

Result: If M is chosen too large (δ is too small) then RCOV(M)
t becomes

biased due to microstructure noise. However, the bias of the off diagonal terms
is different from the bias observed in realized variance due to non-synchronous
trading.



Covariance Signature Plots

Average Plot: Plot average pairwise realized covariance variance,RCOV (M) ≡
1
n

Pn
t=1RCOV

(M)
t , against the sampling frequency M, where the average is

taken over n days.

Remark: Payseur (2008) argues that averaging over days masks the instability of

RCOV
(M)
t for differentM, and advocates the use of 1-day pairwise covariance

signature plots.



Kernel Estimators for Realized Covariance

RCOV
(M)
t,kerqm

=
MX
j=1

rj,tr
0
j,t + 2

qmX
h=1

k

Ã
h− 1
qm

!
(Γ̃h + Γ̃0h)

Γ̃h =
M

M − h

M−hX
j=1

rj,tr
0
j+h,t

k(·) = kernel weight function

qm = lag truncation parameter



Realized Bipower Variation and Tests for Jumps

Barndorff-Nielsen, O.E. and N. Shephard (2004). “Power and Bipower Varia-
tion with Stochastic Volatility and Jumps,” Journal of Financial Econometrics,
2, 1-48.

Barndorff-Nielsen, O.E. and N. Shephard (2006). “Econometrics of Testing for
Jumps in Financial Economics Using Bipower Variation,” Journal of Financial
Econometrics, 4(1), 1-50.

Main point: Show how realized bipower variation can be used to create test
statistics to construct nonparametric tests for the presence of jumps in the price
process.



Notation and Quadratic Variation

• pt = continuous time log price process (semi-martingale)

pt = pct + pdt , t > 0

pct = continuous part
pdt = discontinuous (jump) part

• Quadratic variation defined

QVt = p− lim
n→∞

n−1X
j=0

(ptj+1 − ptj)
2

= QV c
t +QV d

t

QV d
t =

X
0≤u<t

∆Y 2u , ∆Yt = Yt − Yt− = jumps



• Intra-day returns for δ = 1/m

rj = pjδ − p(j−1)δ, j = 1, . . . , t/δ

• Realized quadratic variation (realized variance)

RV
(m)
t =

[t/δ]X
j=1

y2j



Assume pt belongs to the Brownian semimartingale plus jump (BSMJ) process

pt =
Z t

0
asds+

Z t

0
σsdWs + Zt

Zt =
NtX
j=1

cj

Nt = counting process and cj are non-zero random variables.

Result:

QVt = QV c
t +QV d

t

QV c
t =

Z t

0
σ2sds

QV d
t =

NtX
j=1

c2j



Bipower Variation

Defn: The 1,1-order BPV process is

BPV
1,1
t = p− lim

δ→0

[t/δ]X
j=2

|yj−1||yj|

Result: If pt ∈ BSMJ with a = 0 and σ independent of W then

BPV
1,1
t = μ21

Z t

0
σ2sds = μ21QV

c
t

μ1 = E[z] =
√
2/
√
π, z ∼ N(0, 1)

Hence,

μ−21 BPV
1,1
t = QV c

t



Result:

QVt − μ−21 BPV
1,1
t = QV d

t =
NtX
j=1

c2j

Jump component can be estimated using realized variance and realized bipower
variation

QV d
t = RV

(m)
t − μ−21 RBPV

1,1(m)
t

RBPV
1,1(m)
t =

[t/δ]X
j=2

|yj−1||yj|



Testing for Jumps

Theorem 1. Let pt belong to the Brownian semimartingale (BSM) process
without jumps, and suppose that σs is independent of W. Then, as δ → 0

G =
δ−1/2

µ
μ−21 RBPV

1,1(m)
t −RV

(m)
t

¶
³
θ
R t
0 σ

4
udu

´1/2 → N(0, 1)

H =

δ−1/2
Ã
μ−21 RBPV

1,1(m)
t

RV
(m)
t

− 1
!

⎛⎜⎝θ R t
0 σ

4
udunR t

0 σ
2
udu

o2
⎞⎟⎠
1/2

→ N(0, 1)

where θ = (π2/4) + π − 5.



Feasible Tests

Problem: Need a consistent estimator of
R t
0 σ

4
udu under null and alternative

Solution: Use realized quadpower variation

RBPV
1,1,1,1(m)
t =

[t/δ]X
j=4

|yj−3||yj−2||yj−1||yj|

Result:

RBPV
1,1,1,1(m)
t → μ41

Z t

0
σ4udu



Ĝ =
δ−1/2

µ
μ−21 RBPV

1,1(m)
t −RV

(m)
t

¶
µ
θμ−41 RBPV

1,1,1,1(m)
t

¶1/2 → N(0, 1)

Ĥ =

δ−1/2
Ã
μ−21 RBPV

1,1(m)
t

RV
(m)
t

− 1
!

⎛⎜⎝θ RBPV
1,1,1,1(m)
tn

RBPV
1,1(m)
t

o2
⎞⎟⎠
1/2

→ N(0, 1)


