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Volatility Signature Plots

e Observed log price (transaction price or mid-quote) for day t = 1,...,n
is denoted Py

e Divide each day into M subperiods and define § = 1/M. This creates a
regularly spaced time clock

e Align observed prices to time clock
— Previous tick method

— Linear interpolation between adjacent ticks



e Define the jth inter-daily return for day ¢

Tjt = Pt—-1)+j6 — Pt-1)+(j-1)80 J =1,..., M

e Define realized variance (RV) for day t at frequency M

(M) Z

Result: If returns are free of microstructure noise and prices follow a continuous
time diffusion then

(M) Lorv = /tt . o?(s)ds



Result: If M is chosen too large (§ is too small) then RVt( ) becomes biased
due to microstructure noise.

Lack of liquidity could cause observed price to differ from true price (e.g.
large trades or short time periods)

Bid-Ask spread and discrete nature of price price data that implies rounding
errors

Econometric method to construct price data (infer prices from transaction
data or mid-quotes; impute prices at times when no prices are observed)

Data recording errors



Variance Signature Plots can be used to uncover biases due to microstructure

noise

e Plot average realized variance, RV(M) = %2?21 RVt(M), against the
sampling frequency M, where the average is taken over n days

Example: Hansen and Lund (2004)

5 years of intra-day data for Alcoa and Microsoft (n = 1250)

Compute RVt(M) for M = 1,...,3600 seconds using transactions and mid-
quotes and prices aligned using previous tick and linear interpolation methods.



Realized Variance and Market Microstructure Noise

Bandi, F. and J. Russell (2006). “Separating Microstucture Noise from Volatil-
ity”, Journal of Financial Economics, 79, 655-692

Bandi, F. and J. Russell (2008). “Microstructure Noise, Realized Variance, and
Optimal Sampling. Review of Financial Studies, 79, 339-369.

Main Points

e Observed HF log price = log efficient price + microstructure noise

— Variance of daily return = variance of efficient returns + variance of
microstructure noise



e Both unobserved components of variance can be estimated using HF data

sampled at different frequencies
— High frequency sampling captures microstructure noise
— Low frequency sampling captures efficient return variance
e Provide procedure to purge HF return data of microstructure components

and extract information on efficient return variance by sampling at optimal

frequencies



Price Formation Mechanism

e Considert =1,...,n trading days.

e Observed log price at time ¢

Dt = Dpt+n
pt = unobserved efficient price
1 = unobserved microstructure noise

e Divide each day into M subperiods and define § = 1/M. Define the jth
inter-daily return for day ¢

it = P(t—1)+46 — Pe—1)+(j-1)8 J=1,..., M



e Return decomposition

~

it = Tit T €t
Tit P(t—1)+j6 — P(t—1)+(j—1)8 : efficient return
Ejt = M(t—1)+46 — M(t—1)+(j—1)s - Microstructure noise



Assumption 1 (Efficient Price Process)

1. p¢ is is a continuous stochastic volatility local martingale. Specifically,

t
Pt = m¢ = /0 osdWs, Wi = Wiener process

2. Spot volatility o is cadlag and bounded away from zero
3. ot is independent of W} for all t
4. Integrated volatility: IV; = [§ o2ds

5. Quarticity Q¢ = fg otds < M < o0



Assumption 2 (Microstructure Noise)
1. The random shocks 7, are iid, E[n] = 0, E[n7] = 0727, E[nf] < oo
2. True return process r;; is independent of 7, ; for all ¢ and j
Remarks

e o0 can display jumps, diurnal effects, high persistence (long memory) and
nonstationarities



e ¢, follows an MA(1) process independent of §, with negative first order
autocovariance

Blej) = 2Blnj ) =20}
Elejiei—14] = —E[?? d=—00,Elejicj_ k=0, k>1
justified by Roll’'s bid-ask bounce model

e Efficient returns r;; are of order Op(~+/8) over periods of size &

e Microstructure noise returns €;; are Op(1) over any time period

— Price discreteness, bid-ask spread

e Longer period intra-day returns are less contaminated by noise than shorter
period returns



Identification at High Frequencies: Volatility of the Unobserved Mi-
crostructure Noise

Squared Return Decomposition
M 5 M 5 M 5 M
D i = 2 miat D it 2D TieEst
J=1 J=1 J=1 J=1
1
= Op(V8) 4+ Op(1) + Op (5)
Result (Bandi and Russell, 2004). As M — oo

72, L Bl Z 2 L EMm?



Note: if  are iid across days (t =1,...,n)

1 & 2 >

—E E 75, — Ble”]
2t

nM¢:1j:1

Use highest possible sample frequency to construct estimates



Identification at Low Frequencies: Volatility of the Unobserved Efficient
Return

Result (Bandi and Russell, 2004). As M — oo

M 5 p 1t Mo op
er,tﬁ 108ds:IVt, Zaj,t—>oo
M
> riigjt = Op(1)
j=1

Consequently,
M
> Ty — o0
7=1

Hence, traditional RV estimator is inconsistent in the presence of microstructure
noise!



Optimal Sampling: Balancing Bias-Variance Tradeoff

Intuition: RV estimator is expected to be less biased when sampled at low
frequencies, since noise plays less of a roll when ¢ is large, but considerably
more volatile. The optimal sampling frequency minimizes the MSE.

Result (Bandi and Russell, 2004)

M (M 2]
MSE [ S 72, IVi| = Es || #2,— 1V
j=1 j=1

2% (Q¢ + o(1)) + MB + M?a +~

o = (E[Y)°, B=2E[" -3a
v = 4E[e’]IV; — E[e*] + 2a



Remarks:

e The necessary indegrediants to compute the minimum of the MSE are

E[e?], E[e*] and Q;

e Consistent estimators for E[e?] and E[e*] (as M — o0)

— E E re, — BElet|, — g g ri, — Fle
th 121 It [ ] nM , J:t [ ]
=1j= t=1j5=1

e Under microstructure noise, the BNS estimator of (); is inconsistent

. MM
Qt:?Zfit%ooasM%oo
Jj=1



e Bandi and Russell suggest to estimate (J+ using Qt with a low sampling
frequency (e.g. 15 minutes)

MlO’LU Mlow

IR

j=1

Qt =




Result (Approximate optimal sampling frequency). The approximate optimal
sampling frequency is chosen as the value 6 = 1/M;" with

A\ 1/3
i = (3)

o)
[ Mgk 2
a = — Z Z fit , M is highest frequency
nM™It i3 i3
A 2 plow Mlow
Qtr = 3 Zl fit, M'"" is low frequency (15 mins)
j=

Optimal sampling frequency RV estimate

My

(M) ~D

RV, — Z Tyt
j=1



Empirical Applications

e S&P 100 Stocks: 1993 - 2003

e Use mid-quotes as observed prices

e Compute optimal sampling frequencies for 100 stocks
— Mean value of 4 minutes

— Vary considerably over time



Hansen, P.R. and A. Lunde (2006). “Realized Variance and Market
Microstructure Noise,” Journal of Business and Economic Statistics,
24(2), 127-161.

Main points:

e Characterize how RV is affected by market microstructure noise under a
general specification for the noise that allows for various forms of stochastic
dependencies

e Market microstructure noise is time-dependent and correlated with efficient
returns

e For Dow 30 stocks, noise may be ignored when returns are sampled a low
frequencies (e.g. 20 mins)



Ugly Facts about Market Microstructure Noise

e Noise is correlated with efficient price

e Noise is time dependent

e Noise is quite small in Dow Jones 30 stocks

e Properties of noise have changed substantially over time



Notation and Assumptions
o p*(t) = p(t) + u(t) = efficient price + noise
o dp*(t) = o(t)dW(t)
e Data are observed on interval [a, b] (e.g. trading day)

o IV = [Po2(t)dt



e Partition [a, b] into m subintervals

e ith subinterval is [t; _1 1, t; m]

[a = t07m<t1’m<“°<tm,m:b]

5i,m — ti,m_ti—l,m

e Intra-day returns

p(ti,m) — p(ti—l,m)ai =1,....m
y;,km —|_ ei,m
Yim = P (tim) — P (ti—1,m)

€iom — u(ti,m)_u(ti—l,m)

Yi,m



o IVover [t;_1 m,tim]

t.
O',Lz’m = /t o 0'2(8)d8 = var(y;;':m)

1—1,m

e RV of efficient price

(m) <
RV™ =3 yr2,
=1

e RV of observed price

m
RV(m™) =32
1=1



Sampling Schemes

e Calendar time sampling (CTS)
— Align prices to common regularly spaced time clock associated with
la =tom <tim <+ <tmm =]
e Tick time sampling (TTS)
— t; ;m denotes actual transaction time

— e.g. sample every fifth transaction



Characterizing the Bias of RV

Assumption 2: The noise process, wu, is covariance stationary with mean 0, such
that its autocovariance function is defined by 7(s) = E[u(t)u(t + s)]

Remark: Assumption 2 allows for dependence between p™ and u

Decomposition of RV (M) when Yim = Yipy, + €im



Theorem 1. Given Assumptions 1 and 2, the bias of RV (™) under CTS is given
by

E[RV™ _ V] = 25 +2m [77(0) o (b - “)

m
m
. *
Z €Z7myiym
1=1

pm = L

Remarks

e Bias always positive when cov(y}, ., €;m) =0

e Bias can be negative when cov(y; ,e; ) < 0 and large



Bias Corrected RV

Assumption 4: The noise process has finite dependence in the sense that 7(s) =
0 for all s > 60 for some 6g > 0, and E[u(t)|p*(s)] = 0 for all |t — s| > 6

Theorem 2. Suppose Assumptions 1,2, and 4 hold and let ¢, be such that
gm/m > 6. Then under CTS,

E[RVSE) —1V]=0
where
(m) m 5 dm
BV icy,, = 21 Yim + 2 hzl Tn
1= =

m—h
__m S Yimyi
Yh m— ~ i,mYi+h.m



Remarks

° va(lggm may be negative because 7, is not scaled downward in a way that
would guarantee positivity (e.g. as with the NW type long-run variance
estimator)

e One could use various kernels (e.g. Bartlett) to ensure positivity but the
resulting estimators may not be unbiased

° RVXS; L, I'V as m — oo because gm,/m — 0O sufficiently fast



Realized Kernel Estimators

Barndorff-Nielsen, O.E., P. Hansen, A. Lunde, N. Shephard (2008). “Designing
realised kernels to measure the ex-post variation of equity prices in the presence
of noise,” Unpublished Working Paper (http://ssrn.com /abstract=620203)

|dea: Create approximately unbiased RV estimators that have good finite sam-
ple properties



Ry™

kergm,

Th

k(-)

dm

h—1
dm

m dm
Z yi2,m + 2 Z k (
1=1 h=1

m m—h

T — h z:zjl YimYi+h,m
kernel weight function

lag truncation parameter

)’Vh



Realized Covariance Estimation

Griffin, J.E. and R.C.A. Oomen (2006). “Covariance Measurement in the Pres-
ence of Non-Synchronous Trading and Market Microstructure Noise,” Unpub-
lished paper, Department of Statistics, University of Warwick.

Payseur, S. (2008). “Essays on Realized Covariance Estimation,” Phd thesis,
University of Washington.

Payseur, S. (2008). Realized Software Package.



Notation

e Observed vector of log prices for k assets, aligned to a common time
clock equally spaced by 6 = 1/M, for day t = 1,...,n is denoted py =
(2

e Define the jth inter-daily return vector for day ¢

Ljt = f)(t—l)—l—jé — ﬁ(t_1)+(j_1)5, j=1,....M

e Define k X k realized covariance (RCOV) matrix for day ¢ at frequency M

M
ROV = S 77,
j=1



e For 2 assets with intra-day returns rl define

jtandr

7,t

RCOV%(M) _ Z ~1 ~2
7=1



Result: If returns are free of microstructure noise and prices follow a continuous

time diffusion then

4
rcovi™ 2 1cov, = /t  D(t)dt

Result: If M is chosen too large (4 is too small) then RCOV%M) becomes
biased due to microstructure noise. However, the bias of the off diagonal terms
is different from the bias observed in realized variance due to non-synchronous

trading.



Covariance Signature Plots

Average Plot: Plot average pairwise realized covariance variance, RC’OV(M) =
ﬁ > 1 RCOVt( ), against the sampling frequency M, where the average is
taken over n days.

Remark: Payseur (2008) argues that averaging over days masks the instability of

RCOVt(M) for different M, and advocates the use of 1-day pairwise covariance
signature plots.



Kernel Estimators for Realized Covariance

rcovM)

t,kergy,

~

[y

k()

dm

M dm (1
> a2 Y k(A
j=1 h=1

M M—h

/
14T ;
— Z 25t j+-h,t
M h,jzl

kernel weight function

lag truncation parameter

dm

) (Fp+F))



Realized Bipower Variation and Tests for Jumps

Barndorff-Nielsen, O.E. and N. Shephard (2004). “Power and Bipower Varia-
tion with Stochastic Volatility and Jumps,” Journal of Financial Econometrics,
2, 1-48.

Barndorff-Nielsen, O.E. and N. Shephard (2006). “Econometrics of Testing for
Jumps in Financial Economics Using Bipower Variation,” Journal of Financial
Econometrics, 4(1), 1-50.

Main point: Show how realized bipower variation can be used to create test
statistics to construct nonparametric tests for the presence of jumps in the price
process.



Notation and Quadratic Variation

e p; = continuous time log price process (semi-martingale)

pe = pi+pf, t>0
o continuous part

d
Pt

discontinuous (jump) part

e Quadratic variation defined

QV; = p— lim_ Z(pf;7+1 pt;)°
= QVf +QVt
Qv = Y AY2 AY;=Y;— Y = jumps

0<u<t



e Intra-day returns for 6 = 1/m

rj =Djs —P(j-1)5 J =1,...,t/0

e Realized quadratic variation (realized variance)

(m) /6] ,
RV =3y
i=1



Assume p; belongs to the Brownian semimartingale plus jump (BSMJ) process

Pt
Ny

Ly = ch
J=1

N¢ = counting process and c¢; are non-zero random variables.

t t
/0 ast -+ /O O-deS -+ Zt

Result:
QV; = QVFf+QVy
t
QVE = /Oagds

QVE = Y &



Bipower Variation

Defn: The 1,1-order BPV process is

1 [£/0]
BPV;" =p = lim > lyi—1lly;l
— j:2

Result: If p; € BSMJ with a = 0 and o independent of VW then
t
BPV = u%/o o5ds = pTQVY
pm = E[z] =v2/y/m, z~ N(0,1)
Hence,



Result:
1.1 N
QVi — p1 °BPV = Qv =Y o
=1

Jump component can be estimated using realized variance and realized bipower
variation

Qv = rv™ —u2rBPYHH

NP UL
RBPV,” = > |yj—1llyl
j=2



Testing for Jumps

Theorem 1. Let pt belong to the Brownian semimartingale (BSM) process
without jumps, and suppose that o is independent of W. Then, as 6 — 0

5—1/2 ( 2RBPV%1 ,1(m) R‘/%(m))

G = » N(0,1)
1/2 ’
(6,18 otdu)"!
1/2 <M ZRBP(Vt)l 1(m) B 1)
_ Vi \
H = i » N(0,1)
ft o4 du

where § = (72/4) + 7 — 5.



Feasible Tests

Problem: Need a consistent estimator of fg o du under null and alternative

Solution: Use realized quadpower variation

[t/4]
1,1,1,1
RBPVIYII™ = N 1y llyiallys—allyj|

Jj=4
Result:

t
rpyHLLIM M‘l‘/o o4 du



G = , PERTSNT: . N(0,1)
- YAl Rl m
<9u1 RBPYV, )
_ 1, 1(m
5-1/2 <u1 2RBP(77V5 o 1)
A RV,
1,1,1,1(m
rppyLLLH™)

{RBPth’l(m)}z



