Amath 546/Econ 589 Estimating Risk Measures and Risk Budgets

Eric Zivot

April 16, 2012

Outline

- Estimating Risk Measures from Return Data
- Nonparametric Estimates
- Parametric Estimates
- Simulation-based Estimates
- Estimating Portfolio Risk Budgets from Return Data

Reading

- FRF chapter 5, sections 2 and 3
- QRM chapter 2, section 3
- FMUND chapter 5, sections 2-5; chapter 8
- SADFE chapter 5 and chapter 18

Estimating Asset Risk Measures from Return Data

Let R denote the simple return on an asset or portfolio with CDF F_R and pdf f_R . Let $RM=\sigma, VaR_\alpha$ and ES_α be the risk measures of interest. Given a confidence level α and initial investment V_0 the loss-based risk measures are

$$\sigma_{L} = V_{0} \left(E[(R - \mu_{R})^{2}] \right)^{1/2} = V_{0} \sigma_{R}$$

$$VaR_{\alpha} = -V_{0}q_{1-\alpha}^{R} = -V_{0}F_{R}^{-1}(1-\alpha)$$

$$ES_{\alpha} = -V_{0}E[R|R \le q_{1-\alpha}^{R}] = \frac{V_{0}}{1-\alpha} \int_{-\infty}^{q_{1-\alpha}^{R}} x f_{R}(x) dx$$

We are interested in estimating

$$\sigma_R,\ q_{1-\alpha}^R$$
 and $E[R|R\leq q_{1-\alpha}^R]$

from an observed sample of returns $\{R_1 = r_1, \dots, R_T = r_T\}$.

Estimation Approaches

- Nonparametric
 - Use empirical distribution to estimate risk measures
- Parametric
 - Specify parametric distribution for returns,
 - estimate parameters of distribution,
 - estimate risk measures as functions of estimated parameters
- Semi-parametric (Cornish-Fisher)

Estimation Error

- Risk measure estimates are subject to estimation error
- Standard errors and confidence intervals can be used to gauge magnitude of estimation error
- Bootstrapping is often the easiest way to compute standard errors and confidence intervals
- Estimation error is often ignored in practice!

Assumptions

- Assume $R_t \sim iid \ F_R$ for $t=1,\ldots,T$ where F_R denotes the probability distribution of R
- $E[R_t] = \mu_R < \infty$
- $var(R_t) = \sigma_R^2 < \infty$
- $cov(R_t, R_s) = 0$ for all $t \neq s$

Note: Here, risk measures are based on the unconditional distribution of returns

Nonparametric Estimation of Risk Measures

ldea: ${\it F}_{\it R}$ is unknown and you estimate ${\it F}_{\it R}$ using the empirical distribution

$$\hat{F}_R(r) = rac{\# ext{ of returns less than or equal to } r}{T}$$

$$= rac{\sum_{t=1}^T \mathbf{1}\left\{R_t \leq r
ight\}}{T}$$
 $\mathbf{1}\left\{R_t \leq r
ight\} = \mathbf{1} ext{ if } R_t \leq r; \ \mathbf{0} ext{ otherwise}$

Properties

$$ullet$$
 $\hat{F}_R(r)
ightarrow F_T(r)$ as $T
ightarrow \infty$

Return Volatility σ

$$\hat{\sigma}_R = \left(\frac{1}{T-1} \sum_{t=1}^{T} (R_t - \hat{\mu}_R)^2\right)^{1/2}, \ \hat{\mu}_R = \frac{1}{T} \sum_{t=1}^{T} R_t$$

Properties

$$E[\hat{\sigma}_R]
eq \sigma_R$$
 $\sigma_R \stackrel{p}{ o} \sigma_R$ as $T o \infty$ $\hat{\sigma}_R \sim N\left(\sigma_R, rac{\sigma_R^2}{2T}
ight)$ $SE(\hat{\sigma}_R) = rac{\sigma_R}{\sqrt{2T}}$

Return quantile $q_{1-\alpha}^R$

$$\begin{array}{lll} \hat{q}_{1-\alpha}^R & = & \text{empirical } 1-\alpha \text{ quantile} \\ & = & r_t \text{ such that } 100 \times (1-\alpha) \text{ \% of data is less than } r_t \\ \widehat{VaR}_{\alpha}^{HS} & = & -V_0 \times \hat{q}_{1-\alpha}^R, \ HS = \text{ "historical simulation"} \end{array}$$

Properties

$$\begin{split} \hat{q}_{1-\alpha}^R & \to & q_{1-\alpha}^R \text{ as } T \to \infty \\ & \hat{q}_{1-\alpha}^R \sim N\left(q_{1-\alpha}^R, \frac{\alpha(1-\alpha)}{T \times f_R(q_{1-\alpha}^R)^2}\right) \\ SE(\hat{q}_{1-\alpha}^R) & = & \frac{\sqrt{\alpha(1-\alpha)}}{\sqrt{T} \times f_R(q_{1-\alpha}^R)} \end{split}$$

Return tail average $E[R|R \leq q_{1-\alpha}^R]$

$$\begin{split} \widehat{E}[R|R &\leq q_{1-\alpha}^R] = \frac{1}{B_{1-\alpha}} \sum_{t=1}^T R_t \cdot \mathbf{1} \left\{ R_t \leq \widehat{q}_{1-\alpha}^R \right\} \\ \mathbf{1} \left\{ R_t \leq \widehat{q}_{\alpha}^R \right\} &= \mathbf{1} \text{ if } R_t \leq \widehat{q}_{1-\alpha}^R; \text{ 0 otherwise} \\ B_{1-\alpha} &= \sum_{t=1}^T \mathbf{1} \left\{ R_t \leq \widehat{q}_{1-\alpha}^R \right\} = \# \text{ of returns } \leq \widehat{q}_{1-\alpha}^R \\ \widehat{ES}_{\alpha}^{HS} &= -V_0 \times \widehat{E}[R|R \leq \widehat{q}_{1-\alpha}^R] \end{split}$$

Properties

$$\begin{split} \hat{E}[R|R & \leq \ q_{1-\alpha}^R] \to E[R|R \leq q_{1-\alpha}^R] \text{ as } T \to \infty \\ \hat{E}[R|R & \leq \ q_{1-\alpha}^R] \sim N\left(E[R|R \leq q_{1-\alpha}^R], \frac{\sigma_R^2}{B_{1-\alpha}}\right) \end{split}$$

Parametric Estimation of Risk Measures

- Assume $F_R = F_R(r; \theta)$ and $f_R(r; \theta)$ are parametric CDFs and pdfs that depends on p unknown parameters $\theta = (\theta_1, \dots, \theta_p)'$.
- Estimate θ (typically by maximum likelihood) from observed data giving $\hat{\theta}$, $F_R(r, \hat{\theta})$ and $f_R(r; \hat{\theta})$
- Estimate risk measures from $F_R(r, \hat{\theta})$ and $f_R(r; \hat{\theta})$.

Maximum Likelihood Estimation of θ

Let R_1, \ldots, R_n be an iid sample with pdf $f_R(r_i; \theta)$, where θ is a $(p \times 1)$ vector of parameters

The *joint density* of the sample $\mathbf{r} = (r_1, \dots, r_n)'$ is, by independence, equal to the product of the marginal densities

$$f_R(\mathbf{r}; \boldsymbol{\theta}) = f_R(r_1; \boldsymbol{\theta}) \cdots f_R(r_n; \boldsymbol{\theta}) = \prod_{i=1}^n f_R(r_i; \boldsymbol{\theta}).$$

The *likelihood function* is defined as the joint density treated as a functions of the parameters $oldsymbol{ heta}$:

$$L_R(\boldsymbol{\theta}|\mathbf{r}) = f_R(\mathbf{r};\boldsymbol{\theta}) = \prod_{i=1}^n f_R(r_i;\boldsymbol{\theta}).$$

The maximum likelihood estimator, denoted $\hat{\theta}_{mle}$, is the value of θ that maximizes $L_R(\theta|\mathbf{r})$. That is,

$$\hat{m{ heta}}_{mle} = rg \max_{m{ heta}} L_R(m{ heta}|\mathbf{r})$$

It usually much easier to maximize the log-likelihood function $\ln L_R(\boldsymbol{\theta}|\mathbf{r})$. Since $\ln(\cdot)$ is a monotonic function, equivalently

$$\hat{m{ heta}}_{mle} = rg\max_{m{ heta}} \ln L_R(m{ heta}|\mathbf{r})$$

With random sampling, the log-likelihood has the particularly simple form

$$\ln L_R(oldsymbol{ heta}|\mathbf{r}) = \ln \left(\prod_{i=1}^n f_R(r_i;oldsymbol{ heta})
ight) = \sum_{i=1}^n \ln f_R(r_i;oldsymbol{ heta})$$

Typically, we find the MLE by differentiating $\ln L_R(\theta|\mathbf{r})$ and solving the first order conditions

$$rac{\partial \ln L_R(\hat{ heta}_{mle}|\mathbf{r})}{\partial oldsymbol{ heta}} = \mathbf{0}$$

Since θ is $(p \times 1)$ the first order conditions define p, potentially nonlinear, equations in p unknown values:

$$rac{\partial \ln L_R(\hat{oldsymbol{ heta}}_{mle}|\mathbf{r})}{\partial oldsymbol{ heta}} = \left(egin{array}{c} rac{\partial \ln L_R(\hat{oldsymbol{ heta}}_{mle}|\mathbf{r})}{\partial heta_1} \ dots \ rac{\partial \ln L_R(\hat{oldsymbol{ heta}}_{mle}|\mathbf{r})}{\partial heta_p} \end{array}
ight) = \mathbf{0}$$

The $p \times 1$ vector of derivatives of the log-likelihood function is called the *score* vector

$$S_R(\boldsymbol{\theta}|\mathbf{r}) = \frac{\partial \ln L_R(\boldsymbol{\theta}|\mathbf{r})}{\partial \boldsymbol{\theta}}$$

By definition, the MLE satisfies

$$S_R(\hat{\boldsymbol{\theta}}_{mle}|\mathbf{r}) = \mathbf{0}$$

The $p \times p$ matrix of second derivatives of the log-likelihood is called the *Hessian*

$$H_R(oldsymbol{ heta}|\mathbf{r}) = rac{\partial^2 \ln L_R(oldsymbol{ heta}|\mathbf{r})}{\partial oldsymbol{ heta} \partial oldsymbol{ heta} \partial oldsymbol{ heta}'} = \left(egin{array}{ccc} rac{\partial^2 \ln L_R(oldsymbol{ heta}|\mathbf{r})}{\partial heta_1^2} & \cdots & rac{\partial^2 \ln L_R(oldsymbol{ heta}|\mathbf{r})}{\partial heta_1 \partial heta_p} \ dots & \cdots & dots \ rac{\partial^2 \ln L_R(oldsymbol{ heta}|\mathbf{r})}{\partial heta_p \partial heta_1} & \cdots & rac{\partial^2 \ln L_R(oldsymbol{ heta}|\mathbf{r})}{\partial heta_p^2} \end{array}
ight)$$

The information matrix is defined as minus the expectation of the Hessian

$$I_R(\boldsymbol{\theta}|\mathbf{r}) = -E[H_R(\boldsymbol{\theta}|\mathbf{r})]$$

Computing the MLE

- With certain simple pdfs $f_R(r_i; \theta)$ (e.g., normal pdf) $\hat{\theta}_{mle}$ can be obtained in closed form.
- ullet In general, numerical maximization of $\ln L_R(m{ heta}|\mathbf{r})$ is based on Newton-Raphson iteration

$$\hat{\boldsymbol{\theta}}_{mle,n+1} = \hat{\boldsymbol{\theta}}_{mle,n} - H(\hat{\boldsymbol{\theta}}_{mle,n}|\mathbf{r})^{-1}S(\hat{\boldsymbol{\theta}}_{mle,n}|\mathbf{r})$$
 $\hat{\boldsymbol{\theta}}_{mle,0} = \boldsymbol{\theta}_0 = \text{starting values}$

and iteration stops when $S(\hat{\boldsymbol{\theta}}_{mle,n}|\mathbf{r}) \approx \mathbf{0}.$

Asymptotic Properties of Maximum Likelihood Estimators

Under general regularity conditions, $\hat{\pmb{\theta}}_{mle}$ has the following asymptotic properties as $T\to\infty$

$$\begin{split} \hat{\boldsymbol{\theta}}_{mle} & \xrightarrow{p} \boldsymbol{\theta} \\ \hat{\boldsymbol{\theta}}_{mle} & \sim N\left(\boldsymbol{\theta}, \frac{1}{T} H(\hat{\boldsymbol{\theta}}_{mle} | \mathbf{r})\right) \\ SE(\hat{\boldsymbol{\theta}}_{i,mle}) & = \quad \text{ith diagonal element of } \frac{1}{T} H(\hat{\boldsymbol{\theta}}_{mle} | \mathbf{r}) \end{split}$$

Parametric Estimates of VaR_{α} and ES_{α}

$$\hat{m{ heta}} = \hat{m{ heta}}_{mle}$$
 $F_R(r,\hat{m{ heta}}) = ext{parametric estimate of } F_R$ $F_R^{-1}(r,\hat{m{ heta}}) = ext{parametric estimate of } F_R^{-1}$ $f_R(r,\hat{m{ heta}}) = ext{parametric estimate of } f_R$

Then

$$\widehat{VaR}_{\alpha}^{par} = -V_0 \times F_R^{-1}(1-\alpha; \hat{\boldsymbol{\theta}}) = -V_0 q_{1-\alpha}^R(\hat{\boldsymbol{\theta}})$$

$$\widehat{ES}_{\alpha}^{par} = \frac{-V_0}{1-\alpha} \int_{-\infty}^{q_{1-\alpha}^R(\hat{\boldsymbol{\theta}})} x f_R(x; \hat{\boldsymbol{\theta}}) dx$$

Here, the superscript "par" refers to "parametric distribution".

Example: Normal Distribution

$$\begin{split} R_t \sim iid \ N(\mu_R, \sigma_R^2), \ \theta &= (\mu_R, \sigma_R^2)' \\ \mathbf{r} &= (r_1, \dots, r_T) = \text{ observed sample} \\ f_R(r; \boldsymbol{\theta}) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{r-\mu_r}{\sigma_r}\right)^2\right), \\ \ln L(\boldsymbol{\theta}|\mathbf{r}) &= -\frac{T}{2} \ln(2\pi) - \frac{T}{2} \ln(\sigma_r^2) - \frac{1}{2\sigma_r^2} \sum_{t=1}^T (r_t - \mu_r)^2 \\ \hat{\mu}_{R,mle} &= \frac{1}{T} \sum_{t=1}^T r_t, \ \hat{\sigma}_{R,mle}^2 &= \frac{1}{T} \sum_{t=1}^T \left(r_t - \hat{\mu}_{R,mle}\right)^2 \\ \hat{\theta}_{mle} &= (\hat{\mu}_{R,mle}, \hat{\sigma}_{R,mle}^2)' \end{split}$$

Example: Normal Distribution continued

$$F_R^{-1}(1-\alpha; \hat{\boldsymbol{\theta}}_{mle}) = q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle}) = \hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times q_{1-\alpha}^Z$$

$$q_{1-\alpha}^Z = 1 - \alpha \text{ quantile of } Z \sim N(0,1)$$

$$E[R|R \leq q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle})] = -\left(\hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times \frac{\phi(q_{1-\alpha}^Z)}{1-\alpha}\right)$$

$$\widehat{VaR}_{\alpha}^{norm} = -V_0 \times \left(\hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times q_{1-\alpha}^Z\right)$$

$$\widehat{ES}_{\alpha}^{norm} = -V_0 \left(\hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times \frac{\phi(q_{1-\alpha}^Z)}{1-\alpha}\right)$$

Accuracy of VaR and ES Estimates

Using the Central Limit Theorem Result (see homework)

$$\left(egin{array}{c} \hat{\mu}_{R,mle} \ \hat{\sigma}_{R,mle} \end{array}
ight) \sim N \left(\left(egin{array}{c} \mu_R \ \sigma_R \end{array}
ight), \left(egin{array}{c} rac{\sigma_R^2}{T} & \mathbf{0} \ \mathbf{0} & rac{\sigma_R^2}{2T} \end{array}
ight)
ight)$$

it is straightforward to show that

$$SE\left(q_{1-\alpha}^{R}(\hat{\boldsymbol{\theta}}_{mle})\right) = \frac{\sigma_{R}}{\sqrt{T}}\left(1 + \frac{1}{2}\left(q_{1-\alpha}^{Z}\right)^{2}\right)^{1/2}$$

For a given values of σ_R and T, $SE\left(q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle})\right)$ increases nonlinearly with α . Very small quantiles (i.e., $1-\alpha\approx 0$) are estimated very imprecisely.

Example: Student's t Distribution (see QRM pgs 40 and 46)

$$R_t \sim iid \ t(\mu_R, \sigma_R^2, v_R), \ \theta = (\mu_R, \sigma_R^2, v_R)'$$

$$E[R_t] = \mu_R, \ var(R_t) = \frac{\sigma_R^2 v_R}{(v_R - 2)} \neq \sigma_R^2$$

$$\mathbf{r} = (r_1, \dots, r_T) = \text{ observed sample}$$

$$f_R(r; \boldsymbol{\theta}) = \left[\frac{\Gamma((v_R + 1)/2}{(\sigma_R^2 \pi v_R)^{1/2} \Gamma(v_R/2)} \right] \left(1 + \frac{1}{v_R} \left(\frac{r - \mu_R}{\sigma_R} \right)^2 \right)^{-(v_R + 1)/2}$$

$$\ln L(\boldsymbol{\theta}|\mathbf{r}) = \sum_{i=1}^n \ln f_R(r_i; \boldsymbol{\theta}) = \text{complicated nonlinear equation in } \boldsymbol{\theta}$$

Here, there are no closed form solutions for $\hat{\mu}_{R.mle}$, $\hat{\sigma}_{R,mle}^2$ and $\hat{v}_{R,mle}$. We have to obtain these values by numerical maximization of the log-likelihood.

Example: Student's t Distribution continued

$$\begin{split} F_R^{-1}(1-\alpha; \hat{\boldsymbol{\theta}}_{mle}) &= q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle}) = \hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times q_{1-\alpha}^{t_{\hat{v}_{mle}}} \\ q_{1-\alpha}^{t_{\hat{v}_{mle}}} &= 1-\alpha \text{ quantile of standard Student's t with } \hat{v}_{R,mle} \text{ df} \\ E[R|R \leq q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle})] &= -(\hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle}) \\ &\times \left(\frac{f_{\hat{v}_{mle}}(q_{1-\alpha}^{t_{\hat{v}_{mle}}})}{1-\alpha} \left(\frac{\hat{v}_{mle} + \left(q_{1-\alpha}^{t_{\hat{v}_{mle}}}\right)^2}{\hat{v}_{mle} - 1}\right)\right) \\ \widehat{VaR}_{\alpha}^t &= -V_0 \times \left(\hat{\mu}_{R,mle} + \hat{\sigma}_{R,mle} \times q_{1-\alpha}^{t_{\hat{v}_{mle}}}\right) \\ \widehat{ES}_{\alpha}^t &= -V_0 \times E[R|R \leq q_{1-\alpha}^R(\hat{\boldsymbol{\theta}}_{mle})] \end{split}$$

Remark

- Suppose you don't know how to calculate $E[R|R \leq q_{1-\alpha}^R(\hat{\pmb{\theta}}_{mle})]$ when $R \sim t(\mu_R, \sigma_R, v_R)$
- \bullet You could easily approximate $E[R|R \leq q_{1-\alpha}^R(\hat{\pmb{\theta}}_{mle})]$ by Monte Carlo simulation
 - Simulate N values $ilde{R}_1,\ldots, ilde{R}_N$ from $f(r,\hat{m{ heta}}_{mle})$
 - Approximate $E[R|R \leq q_{1-lpha}^R(\hat{m{ heta}}_{mle})]$ using nonparametric estimate

$$\hat{E}[R|R \leq q_{1-\alpha}^{R}(\hat{\boldsymbol{\theta}}_{mle})] = \frac{1}{B_{1-\alpha}} \sum_{t=1}^{T} \tilde{R}_{t} \cdot 1 \left\{ \tilde{R}_{t} \leq \hat{q}_{1-\alpha}^{\tilde{R}} \right\}$$

Semi-Parametric Estimation

- Hybrid of nonparametric and parametric estimation
 - Some parts of F_R are treated nonparametrically and some parts are treated parametrically

Example: Cornish-Fisher (Modified) VaR

Idea: Approximate unknown CDF F_Z of $Z=(R-\mu_R)/\sigma_R$ using 2 term Edgeworth expansion around normal CDF $\Phi(\cdot)$ and invert expansion to get quantile approximation:

$$F_{Z,CF}^{-1}(1-\alpha) = z_{1-\alpha} + \frac{1}{6}(z_{1-\alpha}^2 - 1) \times skew + \frac{1}{24}(z_{1-\alpha}^3 - 3z_{1-\alpha}) \times ekurt$$
$$-\frac{1}{36}(2z_{1-\alpha}^3 - 5z_{1-\alpha}) \times skew$$
$$z_{1-\alpha} = \Phi^{-1}(1-\alpha) = N(0,1) \text{ quantile,}$$
$$skew = E[Z^3], \ ekurt = E[Z^4] - 3$$

This quantile approximation is called the Cornish-Fisher approximation. The Cornish-Fisher return quantile and VaR are

$$q_{1-\alpha}^{CF} = \mu_R + \sigma_R \times F_{Z,CF}^{-1} (1 - \alpha)$$

$$VaR_{\alpha}^{CF} = -V_0 \times q_{1-\alpha}^{CF}$$

Remarks:

ullet The values of $skew=E[Z^3]$ and $ekurt=E[Z^4]-3$ depend on the unknown CDF F_Z and are estimated nonparametrically using sample estimates \widehat{skew} and \widehat{ekurt} computed from returns. The estimated CF quantile is

$$\hat{q}_{1-\alpha}^{CF} = \hat{\mu}_R + \hat{\sigma}_R \times \hat{F}_{Z,CF}^{-1}(1-\alpha)$$

- ullet Because \hat{q}_{1-lpha}^{CF} is an approximation based on sample estimates, it can produce strange results in some cases and should be used with care.
- For modified ES, See Boudt, Peterson and Croux (2008) "Estimation and Decomposition of Downside Risk for Portfolios with Nonnormal Returns," *Journal of Risk*.

Estimating Portfolio Risk Measures and Risk Budgets

Let $\mathbf{R} = (R_1, \dots, R_n)'$ denote the vector of simple returns on n assets, and let $\mathbf{w} = (w_1, \dots, w_n)'$ denote portfolio weights such that $\sum_{i=1}^n w_i = 1$.

Assumptions

- ullet $\mathbf{R}_t = (R_{1t}, \dots, R_{nt})'$ is iid with joint CDF $F_{\mathbf{R}}$ and pdf $f_{\mathbf{R}}$
- $E[\mathbf{R}_t] = \boldsymbol{\mu} = (\mu_1, \dots, \mu_n)'$ for all t

•
$$var(\mathbf{R}_t) = E[(\mathbf{R}_t - \boldsymbol{\mu})(\mathbf{R}_t - \boldsymbol{\mu})'] = \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1n} & \sigma_{2n} & \cdots & \sigma_n^2 \end{pmatrix}$$

Portfolio Return Distribution

•
$$R_{pt} = \mathbf{w}' \mathbf{R}_t = \sum_{i=1}^{N} w_i R_{it}$$

– $R_{pt} \sim iid~F_{R_p}$ which depends on the joint distribution $F_{\mathbf{R}}$

•
$$\mu_p = \mathbf{w}' \boldsymbol{\mu}$$
,

$$ullet$$
 $\sigma_p^2 = \mathbf{w}' oldsymbol{\Sigma} \mathbf{w}$ and $\sigma_p = (\mathbf{w}' oldsymbol{\Sigma} \mathbf{w})^{1/2}$

Fixed and Active Portfolios

Fixed Portfolio

• $\mathbf{w} = (w_1, \dots, w_n)'$ is fixed over time (e.g., 60% stocks and 40% bonds)

Active Portfolio

• $\mathbf{w}_t = (w_{1t}, \dots, w_{nt})'$ depends on time (e.g., portfolio manager actively rebalances portfolio every period)

Remark: Treatment of \mathbf{w} influences how we compute portfolio risk measures. It what follows, we will treat \mathbf{w} as fixed.

Portfolio Risk Measures

Given a confidence level lpha and initial investment V_0 the loss-based portfolio risk measures are

$$\sigma_{L} = V_{0} \left(E[(R_{p} - \mu_{p})^{2}] \right)^{1/2} = V_{0} \sigma_{p}$$

$$VaR_{\alpha} = -V_{0} q_{1-\alpha}^{R_{p}} = -V_{0} F_{R_{p}}^{-1} (1 - \alpha)$$

$$ES_{\alpha} = -V_{0} E[R_{p} | R_{p} \leq q_{1-\alpha}^{R_{p}}] = \frac{V_{0}}{1 - \alpha} \int_{-\infty}^{q_{1-\alpha}^{R_{p}}} x f_{R_{p}}(x) dx$$

Note: Because $R_p = \mathbf{w'R}$ the above risk measures are functions of \mathbf{w}

$$\sigma_L = \sigma_L(\mathbf{w}), \ VaR_\alpha = VaR_\alpha(\mathbf{w}) \text{ and } ES_\alpha = ES_\alpha(\mathbf{w})$$

Portfolio Risk Budgets

Let $RM(\mathbf{w})$ denote the risk measures $\sigma_L(\mathbf{w})$, $VaR_\alpha(\mathbf{w})$ and $ES_\alpha(\mathbf{w})$ as functions of the portfolio weights \mathbf{w} . The portfolio risk budgets are the quantities

$$MCR_i^j = \frac{\partial RM(\mathbf{w})}{\partial w_i} = \text{asset } i \text{ marginal contribution to risk}$$

$$CR_i^j = w_i \frac{\partial RM(\mathbf{w})}{\partial w_i} = \text{asset } i \text{ contribution to risk}$$

$$PCR_i^j = \frac{w_i \frac{\partial RM(\mathbf{w})}{\partial w_i}}{RM(\mathbf{w})} = \text{asset } i \text{ percent contribution to risk}$$

$$j = \sigma_L, VaR_\alpha \text{ and } ES_\alpha$$

Recall,

$$\frac{\partial \sigma_p(\mathbf{w})}{\partial w_i} = \left[\frac{1}{\sigma_p(\mathbf{w})} \mathbf{\Sigma} \mathbf{w} \right]_i = MCR_i^{\sigma}$$

$$\frac{\partial VaR_{\alpha}(\mathbf{w})}{\partial w_i} = E[R_i | R_p = VaR_{\alpha}(\mathbf{w})] = MCR_i^{VaR}$$

$$\frac{\partial ES_{\alpha}(\mathbf{w})}{\partial w_i} = E[R_i | R_p \le VaR_{\alpha}(\mathbf{w})] = MCR_i^{ES}$$

We are interested in estimating the portfolio return risk measures

$$\begin{array}{rcl} \sigma_p, \ q_{1-\alpha}^{R_p}, \ E[R_p|R_p & \leq & q_{1-\alpha}^{R_p}] \ \text{and} \ MCR_i^j \\ j & = & \sigma, \ VaR \ \text{and} \ ES \end{array}$$

from an observed sample of return vectors $\{\mathbf{R}_1=\mathbf{r}_1,\ldots,\mathbf{R}_T=\mathbf{r}_T\}.$

Nonparametric Estimation of Portfolio Risk Measures

Portfolio Volatility $\sigma_p(\mathbf{w})$

Note: There are two equivalent ways to estimate portfolio volatility σ_p

Method 1:

ullet Create time series of portfolio returns $R_{pt}=\mathbf{w}'\mathbf{R}_t$

• Compute sample standard deviation of portfolio returns

$$\hat{\sigma}_{p} = \left(\frac{1}{T-1} \sum_{t=1}^{T} (R_{pt} - \hat{\mu}_{p})^{2}\right)^{1/2}$$

$$\hat{\mu}_{p} = \frac{1}{T} \sum_{t=1}^{T} R_{pt}$$

Method 2:

- ullet Utilize the formula $\sigma_p(\mathbf{w}) = \left(\mathbf{w}' \mathbf{\Sigma} \mathbf{w}
 ight)^{-1/2}$
- Compute sample covariance matrix of return vector

$$\hat{\Sigma} = \frac{1}{T-1} \sum_{t=1}^{T} (\mathbf{R}_t - \hat{\mu}) (\mathbf{R}_t - \hat{\mu})'$$
 $\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{R}_t$

$$ullet$$
 Compute $\hat{\sigma}_p(\mathbf{w}) = \left(\mathbf{w}'\hat{\Sigma}\mathbf{w}
ight)^{1/2}$

Estimating
$$MCR_i^{\sigma} = \frac{\partial \sigma_p(\mathbf{w})}{\partial w_i}$$

Recall

$$rac{\partial \sigma_p(\mathbf{w})}{\partial \mathbf{w}} = rac{1}{\sigma_p(\mathbf{w})} \mathbf{\Sigma} \mathbf{w} = \left(\mathbf{w}' \mathbf{\Sigma} \mathbf{w}
ight)^{-1/2} \mathbf{\Sigma} \mathbf{w}$$

Simply plug-in $\hat{\Sigma}$ for Σ giving

$$\frac{\partial \widehat{\sigma_p(\mathbf{w})}}{\partial \mathbf{w}} = \left(\mathbf{w}' \hat{\mathbf{\Sigma}} \mathbf{w}\right)^{-1/2} \hat{\mathbf{\Sigma}} \mathbf{w}$$

Portfolio VaR and ES

$$\begin{split} \widehat{VaR}_{\alpha}^{HS} &= -V_0 \times \widehat{q}_{1-\alpha}^{R_p}, \ HS = \text{ "historical simulation"} \\ \widehat{q}_{1-\alpha}^{R} &= \text{ empirical quantile of } R_{p,t} \\ \widehat{ES}_{\alpha}^{HS} &= -V_0 \times \widehat{E}[R_p|R_p \leq \widehat{q}_{1-\alpha}^{R}] \\ \widehat{E}[R_p|R_p &\leq q_{1-\alpha}^{R}] = \frac{1}{B_{1-\alpha}} \sum_{t=1}^{T} R_{pt} \cdot \mathbf{1} \left\{ R_{pt} \leq \widehat{q}_{1-\alpha}^{R_p} \right\} \end{split}$$

$$RM(\mathbf{w}) = VaR_{\alpha}$$
 and ES_w

Assume the $n \times 1$ vector of returns \mathbf{R}_t is iid but make no distributional assumptions:

$$\{\mathbf{R}_1,\dots,\mathbf{R}_T\} = ext{observed iid sample} \ R_{p,t} = \mathbf{w}'\mathbf{R}_t$$

Estimate marginal contributions to risk using historical simulation

$$\hat{E}^{HS}[R_{it}|R_{p,t} = VaR_{\alpha}] = \frac{1}{m} \sum_{t=1}^{T} R_{it} \cdot 1 \left\{ \widehat{VaR}_{\alpha}^{HS} - \varepsilon \leq R_{p,t} \leq \widehat{VaR}_{\alpha}^{HS} + \varepsilon \right\}
\hat{E}^{HS}[R_{it}|R_{p,t} \leq VaR_{\alpha}] = \frac{1}{B_{1-\alpha}} \sum_{t=1}^{T} R_{it} \cdot 1 \left\{ R_{p,t} \leq \widehat{VaR}_{\alpha}^{HS} \right\}$$

Here, $VaR_{\alpha}=q_{1-\alpha}^R$ and $\widehat{VaR}_{\alpha}^{HS}=\hat{q}_{1-\alpha}^R$ is the empirical $1-\alpha$ quantile of returns.

Parametric Estimation of Portfolio Risk Measures: Multivariate Normal Distribution

$$\mathbf{R} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \; \boldsymbol{\theta} = (\boldsymbol{\mu}, vech(\boldsymbol{\Sigma}))'$$

 $\Rightarrow R_p \sim N(\mu_p, \sigma_p^2), \; \mu_p = \mathbf{w}' \boldsymbol{\mu} \; \text{and} \; \sigma_p^2 = \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w}$

MLEs of μ and Σ

$$egin{array}{lll} f_R(\mathbf{r}) &=& (2\pi)^{-n/2}\det(\mathbf{\Sigma})^{-1/2}\exp\left(-rac{1}{2}(\mathbf{r}-oldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{r}-oldsymbol{\mu})
ight) \ \hat{oldsymbol{\mu}}_{mle} &=& rac{1}{T}\sum_{t=1}^T\mathbf{R}_t \ \hat{oldsymbol{\Sigma}}_{mle} &=& rac{1}{T}\sum_{t=1}^T(\mathbf{R}_t-\hat{oldsymbol{\mu}})(\mathbf{R}_t-\hat{oldsymbol{\mu}})' \end{array}$$

Note: $vech(\Sigma)$ stacks the diagonal and unique off diagonal elements of the $n \times n$ matrix Σ into a n(n+1)/2 vector

Example:

$$\Sigma_{(3 \times 3)} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{pmatrix}$$
 $vech(\Sigma) = \begin{pmatrix} \sigma_1^2 \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_2^2 \\ \sigma_{23} \\ \sigma_3^2 \end{pmatrix}$

Estimates of portfolio Risk Measures

$$\hat{\sigma}_{p,mle} = (\mathbf{w}' \hat{\Sigma}_{mle} \mathbf{w})^{1/2}
\hat{q}_{1-\alpha}^{R_p} (\hat{\boldsymbol{\theta}}_{mle}) = \hat{\mu}_{p,mle} + \hat{\sigma}_{p,mle} \times q_{1-\alpha}^{Z} = \mathbf{w}' \boldsymbol{\mu}_{mle} + \hat{\sigma}_{p,mle} \times q_{1-\alpha}^{Z}
E[R_p|R_p \leq q_{1-\alpha}^{R_p} (\hat{\boldsymbol{\theta}}_{mle})] = -\left(\hat{\mu}_{p,mle} + \hat{\sigma}_{p,mle} \times \frac{\phi(q_{1-\alpha}^{Z})}{1-\alpha}\right)$$

Remark:

• Analytic formulas exist for risk budgets (see homework 3)

Parametric Estimation of Portfolio Risk Measures: Multivariate Student's t Distribution

A n imes 1 multivariate Student's t random vector $\mathbf Y$ with mean vector $\boldsymbol \mu,$ scale matrix $\boldsymbol \Sigma$ and degrees of freedom v can be defined from

$$\mathbf{Y} = oldsymbol{\mu} + \sqrt{rac{v}{W}} \mathbf{Z}$$
 $\mathbf{Z} \sim N(\mathbf{0}, \mathbf{\Sigma})$ $W \sim \chi^2_v$ independent of \mathbf{Z}

Here,

$$E[\mathbf{Y}] = \mu$$

$$var(\mathbf{Y}) = \frac{v}{(v-2)} \Sigma \neq \Sigma$$

Result:

$$\mathbf{R} \sim t(\boldsymbol{\mu}, \boldsymbol{\Sigma}, v)$$
 and $R_p = \mathbf{w}' \mathbf{R}$
 $\Rightarrow R_p \sim t(\mu_p, \sigma_p^2, v),$
 $\mu_p = \mathbf{w}' \boldsymbol{\mu}, \ \sigma_p^2 = \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w}$
 $var(R_p) = \frac{v}{v-2} \sigma_p^2$

Fitting the Multivariate t Distribution

SDAFE profile likelihood method (chapter 5)

- ullet Make a grid of v values between upper and lower bounds (e.g. $v_{lower}=2.1,\,v_{upper}=6)$
- ullet Find mle for $m{\mu}$ and $m{\Sigma}$ for each fixed v on grid and compute $\ln L(m{\mu}_{mle}, m{\Sigma}_{mle}, v)$
- ullet Define $v_{mle} = \mathsf{max}_v \, \mathsf{ln} \, L(oldsymbol{\mu}_{mle}, oldsymbol{\Sigma}_{mle}, v)$
- ullet Recompute mle for μ and Σ using $v_{mle}.$

Estimating Risk Measures and Risk Budgets from Simulated Returns

- ullet Generate B simulated values from $t(\hat{m{\mu}}_{mle},\hat{m{\Sigma}}_{mle},\hat{v}_{mlt})$ denoted $\{ ilde{R}_t\}_1^B$
- \bullet Estimate VaR and ES nonparametrically using $\{\tilde{R}_t\}_1^B$
- ullet Estimate risk budgets nonparametrically using $\{ ilde{R}_t\}_1^B$

General Multivariate Distributions (to be covered in more detail later)

- Elliptical Distributions
- Multivariate Skewed t
- Multivariate Generalized Hyperbolic
- Copula Generated Distributions

Asset	\$	w_i	μ	σ	Asset VaR	MCVaR	CVaR	PCVaR
Asset 1	10	.10	.01	.10	03	.003	.01	.10
Asset 2	20	.20	.02	.12	04	.002	.02	.11
1	:	:	:	:	:	:	:	:
Asset N	5	.05	.01	.07	07	.010	.04	.13
Portfolio	100	1	.03	.08			.08	1

Table 1: Portfolio VaR Report

Portfolio VaR and ES Reports

A common portfolio risk report summarizes asset and portfolio risk measures as well as risk budgets