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Reading

FRF chapter 5, sections 2 and 3

QRM chapter 2, section 3

FMUND chapter 5, sections 2-5; chapter 8

SADFE chapter 5 and chapter 18

Estimating Asset Risk Measures from Return Data

Let R denote the simple return on an asset or portfolio with CDF F'p and pdf
fr- Let RM = o,VaRy and ESq be the risk measures of interest. Given a
confidence level o and initial investment V{y the loss-based risk measures are

or = Vo(BUR-up))"? = Voon

VaRa = —Voalty = —VoFp(1—a)

V aft
0 / ! xfr(x)dz
l—a/—x

ESoa = —VE[RIR<qi",]=
We are interested in estimating
OR; qfi—a and E[R|R < qu—a]

from an observed sample of returns {Ry = r1,..., Rp = r}.




Estimation Approaches

e Nonparametric

— Use empirical distribution to estimate risk measures

e Parametric
— Specify parametric distribution for returns,
— estimate parameters of distribution,

— estimate risk measures as functions of estimated parameters

e Semi-parametric (Cornish-Fisher)

Estimation Error

Risk measure estimates are subject to estimation error

Standard errors and confidence intervals can be used to gauge magnitude

of estimation error

Bootstrapping is often the easiest way to compute standard errors and

confidence intervals

Estimation error is often ignored in practice!




Assumptions

Assume R; ~ iid Fp fort = 1,...,T where F'p denotes the probability
distribution of R

B[R] = pr < o0

var(Rt) = a% < oo

cov(Rt, Rs) = 0 for all t # s

Note: Here, risk measures are based on the unconditional distribution of returns

Nonparametric Estimation of Risk Measures

Idea: F'p is unknown and you estimate F'r using the empirical distribution

# of returns less than or equal to r
T
i 1{Re <1}

T
1{R; <r} = 1if Ry <r; 0 otherwise

Fp(r) =

Properties

o Fp(r) — Fp(r)as T — oo




Return Volatility o

1 & ) H2 1 &
OR = T—Z(Rt—ﬂR) aﬁR:?ZRt
=1 t=1
Properties

E[6R] # oR

O'RgO'RaSTHOO

2
o
6r~N <0’R, —R>

2T
N OR
SE(6R) = —F—=
) =77
; R
Return quantile qi*_,
c}f“_a = empirical 1 — « quantile
= ¢ such that 100 x (1 — &) % of data is less than ¢
— HS . . . .
VaR, = —Vpx (j{%_a, HS = "historical simulation"
Properties

(jfi_a — qu”_a as T — oo

~ oa(l — o
Q{DLQNN(Q{% ( ) )

T x freft )2

voa(l —«
SE((II\I—Q) = ( )

VT x fr(af )




Return tail average E[R|R < Q{%_a]

E[R|R
1{R; <}
Bi-a

BSL®

Properties
E[R|R

E[R|R

IA

IA

IA

R
ql—a] =

1if B < (j{z_a; 0 otherwise
T
Y1 {Rt < (j{%_a} = # of returns < gf*

t=1
—Vo x E[R|R < gf%,

q{%—a] - E[R|R < Q{%_a] as ' — oo

2
g
@t~ N (E[R!R <qft ], 5 R )

11—«

Parametric Estimation of Risk Measures

e Assume Fp = Fp(r;0) and fr(r; @) are parametric CDFs and pdfs that
depends on p unknown parameters 6 = (01, ...,0p).

e Estimate 0 (typically by maximum likelihood) from observed data giving
0, Fp(r,0) and fr(r;0)

e Estimate risk measures from F(r,8) and fr(r; ).




Maximum Likelihood Estimation of 6

Let Ry,..., Rp be an iid sample with pdf fr(r;; @), where 8 is a (p x 1)
vector of parameters

The joint density of the sample r = (r1,...,7r)" is, by independence, equal
to the product of the marginal densities

fr(x;0) = fr(r1;0)--- fr(rn; 0) = ] fr(ri; 6).

=1

The likelihood function is defined as the joint density treated as a functions of
the parameters 6 :

Lgr(0|r) = fr(r;0) = ﬁ fr(r:; 0).
i=1

The maximum likelihood estimator, denoted 9mle, is the value of @ that max-
imizes LR(@|r). That is,

Byt = arg max Lp(6r)

It usually much easier to maximize the log-likelihood function In L z(@]r). Since
In(-) is a monotonic function, equivalently

0,5 = arg max In Lr(0]|r)

With random sampling, the log-likelihood has the particularly simple form

In Lr(@[r) = In (H fr(ri; 9)) =Y Infr(r:0)
i=1 i=1




Typically, we find the MLE by differentiating In L z(@|r) and solving the first
order conditions
OIn L(Omielr) _

0
00

Since 0 is (p x 1) the first order conditions define p, potentially nonlinear,
equations in p unknown values:

) 01n Ly(0pyje|r)
dln LR(Hmle|r) _ 8‘.91

o0 91 Lp(Belr)
o0,

=0

The p X 1 vector of derivatives of the log-likelihood function is called the score
vector

dIn Lp(0|r)

Sn(6lr) = =L

By definition, the MLE satisfies
SR(émlelr) =0

The p X p matrix of second derivatives of the log-likelihood is called the Hessian

PInLpOr)  HInLp(6]r)
2
H(6]r) = 2 LR(EIr) 003 5100
R r)= = : :
0606’ PInLe@r)  8InLp(6]r)
00,001 agp?

The information matrix is defined as minus the expectation of the Hessian

Ir(0|r) = —E[HR(8]r)]




Computing the MLE

A

e With certain simple pdfs fr(r;; ) (e.g., normal pdf) 8,,,;. can be obtained
in closed form.

e In general, numerical maximization of In Lp(0|r) is based on Newton-
Raphson iteration

o A - L
emle,n—l—l = emle,n - H(emle,nlr) S(emle,n|r)

010 = 6o = starting values

and iteration stops when S(@mle,n|r) ~ 0.

Asymptotic Properties of Maximum Likelihood Estimators

Under general regularity conditions, émle has the following asymptotic proper-
ties as T' — o0

émle e 0

. 1 .

Omie ~ N <9a ?H(Omleh))

A 1 A
SE(0; mie) = ith diagonal element of ?H(Gmle|r)




Parametric Estimates of VaR, and ES,

A A

0 = 0y
Fr(r,0) = parametric estimate of Fp
F}gl(r, 6) = parametric estimate of F}gl
fr(r,0) = parametric estimate of fp
Then
VaRg" = —Vox Fpl(1—ai0) = —Voai"o(9)
— VAN ) A
ESPT = 0 / ! zfr(z; 0)dx
l-—a/-

Here, the superscript "par" refers to "parametric distribution".

Example: Normal Distribution

Ry ~ iid N(pp, o), 0 = (1g,0%)

r =(ry,...,rp) = observed sample
i) = = en (3 (1))
In L(0|r) = —g In(27) — % In(c2) — 2(1;% té(” — )2
PR mie = % ZT: rts 6 R mie = %él (Tt - ﬁbR,mle)2

t=1
A ~ ~2 /
O mie = (MR,ml@ UR,mle)




Example: Normal Distribution continued

FRll— i 0pe) = aft o(Bmie) = BiRmie + G Rmie X 6o
611Z—a — 1 — « quantile of Z ~ N(0,1)
E[RIR < ¢f' 4(Omie)] = — (ﬂR,mze + 0 Rmie X (biqi—zoig)
VaR,”™" = —Vyx (ﬁR,mze + & Rmie X ‘ﬂZ—a)
E’T‘S’Zorm = —W (ﬂR,mle + &R,mle X %L?)

Accuracy of VaR and ES Estimates

Using the Central Limit Theorem Result (see homework)
A o2
(/fR,mle)NN (MR)) TR g
OR.mle OR 0 Zr
2T
it is straightforward to show that

) i 1/2
SE (C_I{%—a(amle)) = \/_1% (1 + % <qlz_a>2>

For a given values of o and T, SE (qﬁ_a(émle)) increases nonlinearly with
a. Very small quantiles (i.e., 1 — a & 0) are estimated very imprecisely.




Example: Student’s t Distribution (see QRM pgs 40 and 46)

Ry ~ did t(:U’R7 U%%a 'UR) 0 = (:uRa U2R7 UR)/

ohup
E[R] = pg, var(R) = —L2== #0%

(vr —2)
r = (ry,...,rp) = observed sample
MN(vp+1)/2

fr(r;0)

2\ —(vp+1)/2
1+i T—MR>
(0%moR)Y/ 2T (vR/2) ( vR( OR

n
InL(0r) = ) In fr(ri; @) = complicated nonlinear equation in 6
=1

Here, there are no closed form solutions for iR ;e &% mie @nd DR mie. We
have to obtain these values by numerical maximization of the log-likelihood.

Example: Student’s t Distribution continued

—1 . _ R 2 _a A
F (1 - Omle) = ql—a(emle) = KR mle + O R,mle X q1 mclye
mle _

71" = 1 — a quantile of standard Student’s t with O /. df
E[R|R < ql—a( mle)] = _(:UJR mle T JR,mle)

ts 2
~ l
f’Umle(ql Omle Umle T (ql mae>
11—« @mle -1

— t ~ ~
VaR, = —Vp X <NR,mle + OR,mle X 41 méf)

——t
ESa =—Vp X E[R|R < Q{z—a(gmle)]




Remark

e Suppose you don't know how to calculate F[R|R < Q{%—a(émle)] when
R~ (g, oR, VR)

e You could easily approximate E[R|R < qﬁ_a(@mle)] by Monte Carlo
simulation

— Simulate N values Ry, ..., Ry from f(r,0,,.)

— Approximate E[R|R < q{%_a(émle)] using nonparametric estimate

X X 1 T .z
BIRIR < aft o@puell = 5 > Re-1{ R <aft o}
l-a =1

Semi-Parametric Estimation

e Hybrid of nonparametric and parametric estimation

— Some parts of Fp are treated nonparametrically and some parts are
treated parametrically




Example: Cornish-Fisher (Modified) VaR

Idea: Approximate unknown CDF F; of Z = (R — pg)/oR using 2 term
Edgeworth expansion around normal CDF &(-) and invert expansion to get
quantile approximation:

_ 1 1
FZ,lcp(l —a)=2z1q+ g(zf_a — 1) X skew + ﬂ(zf_a —321_¢a) X ekurt

1
—£(2z%_a —521_4) X skew
21— = 711 — &) = N(0, 1) quantile,
skew = E[Z3], ekurt = E[Z% —3

This quantile approximation is called the Cornish-Fisher approximation. The
Cornish-Fisher return quantile and VaR are

CF -1
dQ1—aq = MR‘|“7R><FZ,CF(1—O‘)
VaRSE = —Vpx off,

Remarks:

e The values of skew = E[Z3] and ekurt = E[Z*] — 3 depend on the
unknown C CDF Fz and are estimated nonparametrically using sample esti-
mates skew and ekurt computed from returns. The estimated CF quantile
is

~CF ~ A
q1— a:NR"‘URXFZCF(l_a)

e Because q?Fa is an approximation based on sample estimates, it can pro-

duce strange results in some cases and should be used with care.

e For modified ES, See Boudt, Peterson and Croux (2008) “Estimation and

Decomposition of Downside Risk for Portfolios with Nonnormal Returns,”
Journal of Risk.




Estimating Portfolio Risk Measures and Risk Budgets

Let R = (Ry,..., Rpn)’ denote the vector of simple returns on n assets, and
let w = (w1, ..., wn) denote portfolio weights such that -7 ; w; = 1.

Assumptions
e R; = (Ry4,..., Ryt) is iid with joint CDF FR and pdf fr

e B[R =p=(py,.--,1,) forallt

U% 0122 "t Oln
o var(Ri) = E[(Rt — p)(Ry — )| =2 = 032 052 05271
Oln O2pn - 0_721

Portfolio Return Distribution

o Ry = wRy = sz\il w; Ry

— Ryt ~ 1id Fp, which depends on the joint distribution Fg
® Uy = W/H'a

e 03 =w3Xwand o) = (W’Z)W)l/2




Fixed and Active Portfolios

Fixed Portfolio

e w=(wy,...,wy) is fixed over time (e.g., 60% stocks and 40% bonds)

Active Portfolio

e wy = (wi, ..., wnt) depends on time (e.g., portfolio manager actively
rebalances portfolio every period)

Remark: Treatment of w influences how we compute portfolio risk measures.
It what follows, we will treat w as fixed.

Portfolio Risk Measures

Given a confidence level o and initial investment Vj the loss-based portfolio
risk measures are

1/2
or, = Vo (El(Rp—1p)?1) "~ = Voop
R —
VaRa = —Voa; %, = —VoFp (1 - a)

Rp

VO 91 o

I / zfRr,(z)dz
—a /-0

Note: Because R, = w'R the above risk measures are functions of w

R
ESa = —WE[Rp|Rp < qi”, ] =




Portfolio Risk Budgets

Let RM(w) denote the risk measures o, (W), VaRa(W) and ESqo(W) as
functions of the portfolio weights w. The portfolio risk budgets are the quan-
tities

; ORM
MC’R? = % = asset ¢ marginal contribution to risk
w;
; ORM
C’Rg = wiﬁ = asset ¢ contribution to risk
8wz~
ORM (w)
w,; 2 W)

J o Ouwy . . . . .
PCR; = ———"'— = asset i percent contribution to risk

RM (w)
j = O0J, Va,Ra and ESa

Recall,
Oop(w) _ Sw| = MCRY{
ow; op(W) ; ¢
OVaRq(wW
T() E[Ri| By = VaRa(w)] = MCRY %
OESa (W)

= E[R;|Rp < VaRa(w)] = MCRF?
ow;




We are interested in estimating the portfolio return risk measures

R R .
opy 41" ElRplRp < ¢;*,) and MCR!
3 = o, VaR and ES

from an observed sample of return vectors {R; =ry,...,Rp =rp}.

Nonparametric Estimation of Portfolio Risk Measures
Portfolio Volatility op(w)
Note: There are two equivalent ways to estimate portfolio volatility op

Method 1:

o Create time series of portfolio returns Ry, = w/'Ry




e Compute sample standard deviation of portfolio returns
LT 1/2
~ A V2
Gp = | 2 (Rpt — )
T— t=1

1 T
A _ - R
,UJp T ; pt

Method 2:

e Utilize the formula op(w) = (W’ZW)_1/2

e Compute sample covariance matrix of return vector
1 L ,
5= > (R — )R- f1)
T — t=1
1 T
~ 1 R
24 T t:zl t

e Compute 6p(W) = (W’f]W) 1/2




Estimating MCR? = 9ap(w)

ow;

Recall
ow  op(w)

-1/2
/EW

Yw = (W/Zw)
Simply plug-in 3 for ¥ giving

995(%) _ (y/$i0) ™ S
ow

Portfolio VaR and ES

— HS R

VaR, = —Vyxd§?",, HS = "historical simulation"
c'j{{_a = empirical quantile of Ry, ;
—=HS ~ "
ES,” = —Vpx E[Rp|Rp < 4" ,]
R 1 Ry
E[Rp|Rp < q12,] = B > Rpi-1 {Rpt < ql_a}
I-a =1




RM(w) = VaRqy and ESy

Assume the n X 1 vector of returns Ry is iid but make no distributional as-
sumptions:

{Rq,...,Rp} = observed iid sample
Rp’t — WlRt
Estimate marginal contributions to risk using historical simulation
ERS[Ry|Ryt = VaRa] =
1 & — H — H
_ZRit-l{VaRaS—s < Rp; < VaRaS—i—s}
m =1

1

T
S Ry 1 {Rp,t < VaRfS}
l-a =1

EHSIRy| Ry < VaRa] =

—~ HS ~ . .. .
Here,VaRy = q{%_a and VaR, = q{%_a is the empirical 1 — o quantile of
returns.

Parametric Estimation of Portfolio Risk Measures: Multivariate Normal
Distribution

R~ N(u,X), 8 = (p, vech(X))'
= Rp ~ N(up, 01,2)), Pp = w' . and 012) =wXw

MLEs of u and &
fr) = (2m) /2 det() M2 exp (— (0 — ST — )
1 T
1l
Hmle thzl t

. 1 Z R X
2mle = T Z(Rt - “)(Rt - ll')/
T t=1




Note: wech(X) stacks the diagonal and unique off diagonal elements of the
n X n matrix X into a n(n + 1)/2 vector

Example:

0'% 0122 013
Y, = 012 05 09
(3%3) 2 7%

013 023 O3

vech(X) = 0123
(6x1) 92

Estimates of portfolio Risk Measures

N < 1/2
Op,mle — (lemlew) /
/\R A ~ fa Z A Z
Q1_pa(9mle) = Hpmle T Tpmle X d1—q = W/H’mle + 0pmle X d1—q
VA
Ry /5 N N ¢(q1_ )
E[Rp|Rp < qlfa(emle)] = - (Np,mle + Op.mle X To(j
Remark:

e Analytic formulas exist for risk budgets (see homework 3)




Parametric Estimation of Portfolio Risk Measures: Multivariate Stu-
dent’s t Distribution

A n X 1 multivariate Student's t random vector Y with mean vector i, scale
matrix 2 and degrees of freedom v can be defined from

Y = p+ ,/%Z
Z ~ N(0,X)
W ~ X12; independent of Z

Here,

ElY] = p ,
var(Y) = (U—Z)X#E

Result:

R ~ t(pu,E,v) and Rp = w'R
= Rp ~ t(p, 012), v),
Pp = w L, 0129 = wIw

v
var(Rp) = —

2
Op




Fitting the Multivariate t Distribution

SDAFE profile likelihood method (chapter 5)

e Make a grid of v values between upper and lower bounds (e.g. Vjpper =
2.1, Uupper == 6)

e Find mle for p and 3 for each fixed v on grid and compute In L(t,,,1¢,
Xinles V)

e Define Umle — MaXy In L(umlea Emlea 'U)

e Recompute mle for p and X using v,,,1,-

Estimating Risk Measures and Risk Budgets from Simulated Returns
e Generate B simulated values from ¢(ft, 10, Smje,Omit) denoted {Ri}P
e Estimate VaR and ES nonparametrically using {]%t}jlg

e Estimate risk budgets nonparametrically using {Rt}lB




General Multivariate Distributions (to be covered in more detail later)

e Elliptical Distributions

e Multivariate Skewed t

e Multivariate Generalized Hyperbolic

e Copula Generated Distributions

Asset $ w; | | o | Asset VaR | MCVaR | CVaR | PCVaR
Asset 1 |10 |.10|.01| .10 |-.03 .003 .01 10
Asset 2 |20 | .20 | .02 | .12 | -.04 .002 .02 11
Asset N | 5 .05|.01 .07 |-.07 .010 .04 13
Portfolio | 100 | 1 .03 ] .08 .08 1

Table 1: Portfolio VaR Report

Portfolio VaR and ES Reports

A common portfolio risk report summarizes asset and portfolio risk measures

as well as risk budgets




