
Econ 589: Financial Econometrics

HW 3

Eric Zivot

Due: Tuesday 5/16/2011

1 Reading

1. Ding, Z., and Engle, R.F. (2001). "Large Scale Conditional Covariance Matrix

Modeling, Estimation and Testing," unpublished manuscript, Department of

Economics, UC San Diego (on class syllabus page)

2. Zivot, E., and Wang, J. (2006). Modeling Financial Time Series with S-PLUS,

Second Edition. Chapter 13.

3. Jondeau, E., Poon, S.-H., and Rockinger, M. (2006 ), Financial Modeling Under

Non-Gaussian Distributions, Chapters 4-6.

4. Taylor, S.J. (2005), Asset Price Dynamics, Volatility, and Prediction. Chapters

9 and 10.

2 Part I: Analytic Questions

2.1 Multivariate GARCH

Consider the following bivariate GARCH models for the time varying covariance

matrix

Σ =

µ
11 12
12 22

¶
 vech(Σ) =

⎛⎝ 11
12
22

⎞⎠
DVECH(1,1):

h
3×1

= a0
3×1
+ diag(a1)

3×3
v−1
3×1

+ diag(b1)
3×3

h−1
3×1

h = vech(Σ) v = vech(ε−1ε
0
−1)

a0 = vech(A0) a1 = vech(A1) b1 = vech(B1)

1



where A0 A1 and B1 are 2× 2 symmetric matrices. Here, for a1 = (1 2 3)0

diag(a1) =

⎛⎝ 1 0 0

0 2 0

0 0 3

⎞⎠
Scalar MD(1,1):

Σ
2×2

= A0A
0
0

2×2
+ (a1a

0
1)

2×2
¯ (²−1²0−1) + (b1b01)

2×2
¯Σ−

where A0 is a lower triangular matrix, a and b are are 2× 1 vectors.
BEKK(1,1)

Σ = A0A
0
0 +A1(²−1²

0
−1)A

0
1 +B1Σ−1B

0
1

where A0 is a 2 × 1 lower triangular matrix, but A1 and B1 are unrestricted 2 × 2
square matrices.

1. For each model, write out the equations for 11 12 and 22  Briefly compare

and contrast each model.

2. For each model, assuming stationarity derive the unconditional variance matrix

Σ̄ = [Σ] = [εε
0
]

3. For each model, derive the s-step ahead forecasting function for Σ+

2.2 Stochastic Volatility

Consider the log-normal AR(1) SV model

 =  = exp(2)  = 1     

 = ln
2
 =  + −1 + 

( )
0 ∼ iid (0 diag(1 2))

 =


1− 
 2 =

2
1− 2

For 0    1 and  ≥ 0 the series  is strictly stationary and ergodic, and

unconditional moments of all orders exist.

1. Using the properties of the SV model and the log-normal distribution, derive
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the following moment conditions typically used for GMM estimation:

[||] = (2)12[]

[2 ] = [2 ]

[|3 |] = 2
p
2[3 ]

[4 ] = 3[4 ]

[|−|] = (2)[−]

[2 
2
−] = [2

2
−]

where for any positive integer  and positive constants  and ,

[

 ] = exp

µ


2
+

22
8

¶
[





−] = [


 ][


 ] exp

µ
2
4

¶
2.3 Continuous time Models

For the Ito process

() = (() )+ (() ) ()  () = Wiener process

= +  ()

Ito’s Lemma is: For a continuous functional (() )

(() ) =

µ



+




+
1

2

2

2
2
¶
+




 ()

1. Assume that the log price () = ln () follows the SDE

() = +  ()

Using Ito’s Lemma, derive the SDE for the price process  () = exp(())

2. Consider a forward price  of a nondividend-paying stock, we have

 (  ) =  () (−)

where  = risk-free rate of interest, which is constant, and  () is the current

stock price. Suppose  () follows the geometric Brownian motion

 () =  ()+  () ()

Using Ito’s Lemma, derive the SDE for  (  )
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3 Part II: Empirical Problems

Consider the daily returns on Microsoft and the S&P 500 that we have been using in

the class examples. These are available in the S+FinMetrics module and are posted

in Excel files on the class webpage (for use in other software programs). You may use

any software you like (e.g. Eviews, Matlab, Ox, R, Stata, S-PLUS) but I recommend

using either Eviews, R or S-PLUS.

Consider the log-normal AR(1) SV model for demeaned returns  =  − :

 = exp(2)

 =  + −1 + 

Then

ln 2 =  + ln
2


[ln2 ] = −127 var(ln2 ) = 22

The linear (but non-Gaussian) state space model has measurement equation

ln 2 = −127 +  +   ∼  (0 22)

and transition equation

 =  + −1 +   ∼  (0 2)

The parameters to be estimated are  = (  2)
0 For numerical stability when

2 ≈ 0, it is recommended to use the transformation

2 = ln(2 + )− 

2 + 

 = cvar()× 002
1. For the MSFT and SP500 returns, estimate the SV model by QMLE. Be careful

about your choice of starting values. From the properties of the log-normal SV

model, you can use the method of moments to get starting values for  and

2  A reasonable starting value for  is 0.9.

2. Using your estimated results, use the Kalman filter prediction and updating

equations to generate forecasts of  = ln(). Convert these forecasts to

forecasts for 

Estimation Hints

• Estimation in Eviews. Eviews implements state space modeling. See the online
help for details.

4



• Estimation in S+FinMetrics. S+FinMetrics 3.0 implements the SsfPack state
space modeling and Kalman filtering tools developed by Siem Jan Koopman.

See Zivot and Wang (2006) Chapter 14.

• Estimation in R. The R package dlm has state space modeling and Kalman

filtering tools similar to the SsfPack tools in S+FinMetrics. See the online

vignette for examples of how to set up a state space model and estimate it by

QMLE.
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