Financial Econometrics

Eric Zivot

April 10, 2002

1 Lecture Outline

- Market Efficiency
- The Forms of the Random Walk Hypothesis
- Testing the Random Walk Hypothesis
- Long Horizon Returns
- Long Memory in Asset Returns

2 Martingales and Martingale Difference Sequences (MDS)

Let $\{Y_t\}$ be a sequence of random variables and let $\{I_t\}$ denote a sequence of information sets with $I_t \subset I$ for all t where I= universal info set. (Y_t,I_t) is a martingale if

- $I_t \subset I_{t+1}$ (filtration)
- $Y_t \subset I_t$ (Y_t is adapted to I_t)
- $E[|Y_t|] < \infty$
- $E[Y_t|I_{t-1}] = Y_{t-1}$ (martingale property)

Example: Random Walk

$$Y_{t} = Y_{t-1} + \varepsilon_{t}, \ \varepsilon_{t} \ \tilde{i}id(0, \sigma^{2})$$

$$I_{t} = \{\varepsilon_{t}, \varepsilon_{t-1}, \ldots\}$$

$$E[Y_{t}|I_{t-1}] = Y_{t-1}$$

Example: Independent heteroskedastic I(1) process

$$Y_{t} = Y_{t-1} + \frac{\varepsilon_{t}}{t} = Y_{t-1} + u_{t},$$

$$u_{t} inid(0, \sigma_{t}^{2})$$

$$I_{t} = \{u_{t}, u_{t-1}, ...\}$$

$$E[Y_{t}|I_{t-1}] = Y_{t-1}$$

Law of Iterated Expectations. Let $\{Y_t, I_t\}$ be a martingale. Then

$$E[Y_t|I_{t-2}] = E[E[Y_t|I_{t-1}]|I_{t-2}]$$

= $E[Y_{t-1}|I_{t-2}] = Y_{t-2}$

It follows that

$$E[Y_t|I_{t-k}] = Y_{t-k}$$

In general, for information sets I_t and J_t such that $I_t \subset J_t$ (J_t is the bigger info set). The Law of Iterated Expectations says

$$E[Y|I_t] = E[E[X|J_t]|I_t]$$

Martingale Difference Sequence (MDS). (X_t, I_t) is a MDS if (X_t, I_t) is an adapted sequence and

$$E[X_t|I_{t-1}] = 0$$

Remark 1: If Y_t is a martingale and $X_t = Y_t - E[Y_t|I_{t-1}]$ then X_t is a MDS by construction.

Remark 2: Let Z_t be any nonlinear function of the past history of Y_t so that $Z_t \subset I_t$. Then by the Law of Iterated Expectations

$$E[X_t Z_{t-1}] = E[E[X_t Z_{t-1} | I_{t-1}]]$$

= $E[Z_{t-1} E[X_t | I_{t-1}]]$
= 0

so that X_t is uncorrelated with any nonlinear function of the history of Y_t

Example: ARCH Process

3 Market Efficiency

Unpredictable asset returns is the result of the Law of Iterated Expectations. Samuelson's fameous result: Let $V^* =$ fundamental value of asset and assume P_t is a rational forecast. Then

$$P_{t} = E[V^{*}|I_{t}]$$

$$P_{t+1} = E[V^{*}|I_{t+1}]$$

$$E[P_{t+1} - P_{t}|I_{t}] = E[E[V^{*}|I_{t+1}] - E[V|I_{t}]|I_{t}]$$

$$= E[V^{*}|I_{t}] - E[V^{*}|I_{t}] = 0$$

3.1 Types of Market Efficiency

- Weak Form: Information set includes only the history of prices or returns
- Semistrong Form: The information set includes all publicly available information
- Strong Form: The information set contains all public and private information

3.2 Testing Market Efficiency

- Any test of market efficiency must assume an equilibrium model that defines normal security returns (e.g. CAPM)
- Perfect efficiency is unrealistic. Grossman and Stiglitz (1980) argue that you need some inefficiency to promote information gathering activity.

4 The Random Walk Hypotheses

$$p_t = \mu + p_{t-1} + \varepsilon_t, \ p_t = \ln(P_t)$$

 $\implies r_t = \mu + \varepsilon_t, \ r_t = \Delta p_t$

- RW1: ε_t is independent and identically distributed (iid) $(0, \sigma^2)$. Not realistic
- RW2: ε_t is independent (allows for heteroskedasticity). Test using filter rules, technical analysis
- RW3: ε_t is uncorrelated (allows for dependence in higher moments). Test using autocorrelations, variance ratios, long horizon regressions

4.1 Autocorrelation Tests

Assume that r_t is covariance stationary and ergodic. Then

$$\gamma_k = cov(r_t, r_{t-k})
\rho_k = \gamma_k/\gamma_0$$

and sample estimates are

$$\hat{\gamma}_{k} = rac{1}{T} \sum_{t=1}^{T-k} (r_{t} - \bar{r})(r_{t+k} - \bar{r}), \ \hat{
ho}_{k} = rac{\hat{\gamma}_{k}}{\hat{\gamma}_{0}}$$
 $\bar{r} = rac{1}{T} \sum_{t=1}^{T} r_{t}$

Result: Under RW1

$$E[\hat{\rho}_k] = -\frac{T-k}{T(T-1)} + O(T^2)$$

$$\sqrt{T}\hat{\rho}_k \stackrel{A}{\sim} N(0,1)$$

Box-Pierce Q-statistic: Consider testing H_0 : $\rho_1=\cdots=\rho_m=0$. Under RW1

$$MQ = T(T+2) \sum_{k=1}^{m} \frac{\hat{\rho}_k^2}{T-k} \tilde{\chi}^2(m)$$

4.2 Variance Ratios

Intuition. Under RW1

$$VR(2) = \frac{var(r_t(2))}{2 \cdot var(r_t)} = \frac{var(r_t + r_{t-1})}{2 \cdot var(r_t)} = \frac{2\sigma^2}{2\sigma^2} = 1$$

If r_t is a covariance stationary process then

$$VR(2) = \frac{var(r_t) + var(r_{t-1}) + 2cov(r_t, r_{t-1})}{2 \cdot var(r_t)}$$
$$= \frac{2\sigma^2 + 2\gamma_1}{2\sigma^2} = 1 + \rho_1$$

Three cases:

•
$$\rho_1 = 0 \Longrightarrow VR(2) = 1$$

•
$$\rho_1 > 0 \Longrightarrow VR(2) > 1$$
 (mean aversion)

•
$$\rho_1 < 0 \Longrightarrow VR(2) < 1$$
 (mean reversion)

General q - period variance ratio under stationarity

$$VR(q) = \frac{var(r_t(q))}{q \cdot var(r_t)} = 1 + 2 \sum_{k=1}^{q-1} \left(1 - \frac{k}{q}\right) \rho_k$$

 $r_t(q) = r_t + r_{t-1} + \dots + r_{t-q+1}$

Remark 1: Under RW1, VR(q) = 1.

Remark 2: For stationary and ergodic returns with a 1-summable Wold representation

$$r_t = \mu + \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}, \ \varepsilon_t \ \ iid(0, \sigma^2)$$
 $\psi_0 = 1, \sum_j j |\psi_j| < \infty$

it can be shown that

$$\lim_{q \to \infty} VR(q) = \frac{\sigma^2 \psi(1)^2}{\gamma_0}$$

$$= \frac{lrv(r_t)}{var(r_t)} = \frac{\text{long-run variance}}{\text{short-run variance}}$$

Remark 3: Under RW2 and RW3, VR(q)=1 provided

$$rac{1}{T}\sum_{t=1}^{T}var(r_t)
ightarrowar{\sigma}^2>0$$

4.2.1 Lo and MacKinlay's Test Statistics

Under RW1, the standardized variance ratio

$$\psi(q) = (VR(q) - 1) \cdot \left(\frac{2(2q - 1)(q - 1)}{3Tq}\right)^{-1/2}$$

Under RW2 and RW3 the heteroskedasticty-robust standardized variance ratio

$$\psi^{*}(q) = (VR(q) - 1) \cdot \Omega(q)^{-1/2}
\Omega(q) = \sum_{j=1}^{q-1} \left(\frac{2(q-j)}{j}\right)^{2} \delta_{j}
\delta_{j} = \frac{\sum_{t=j+1}^{T} \alpha_{0t} \alpha_{jt}}{\left(\sum_{t=1}^{T} \alpha_{0t}\right)^{2}}
\alpha_{jt} = \left(r_{t-j} - r_{t-j-1} - \frac{1}{T}(r_{T} - r_{0})\right)^{2}$$

is asymptotically standard normal.

4.3 Empirical Results

CML chapter 2, section 8. CRSP value-weighted and equal weighted indices, individual securities from 1962 - 1994

- Daily, weekly and monthly cc returns from VW and EW indices show significant 1st order autocorrelation
- VR(q) > 1 and $\psi^*(q)$ statistics reject RW3 for EW index but not VW index.
 - Market capitalization or size may be playing a role. In fact, VR(q) > 1 and $\psi^*(q)$ are largest for portfolios of small firms.
- ullet For individual securities, typically VR(q) < 1 (negative autocorrelation) and $\psi^*(q)$ is not significant!!! How can portfolio VR(q) > 1 when individual security VR(q) < 1?

4.3.1 Cross lag autocorrelations and lead-lag relations

Result: Portfolio returns can be positively correlated and securities returns can be negatively correlated if there are positive cross lag autocorrelations between the securities in the portfolio.

Let \mathbf{R}_t denote an $N imes \mathbf{1}$ vector of security returns. Define

$$\gamma_{ij}^k = cov(r_{it}, r_{jt-k}) = cross \log autocorrelation$$

$$egin{array}{lll} oldsymbol{\Gamma}_k &=& cov(\mathbf{R}_t,\mathbf{R}_{t-k}) = \left(egin{array}{cccc} \gamma_{11}^k & \gamma_{12}^k & \cdots & \gamma_{1N}^k \ \gamma_{21}^k & \gamma_{22}^k & \cdots & \gamma_{2N}^k \ dots & dots & \ddots & dots \ \gamma_{N1}^k & \gamma_{N2}^k & \cdots & \gamma_{NN}^k \end{array}
ight) \end{array}$$

Let $R_{mt} = \mathbf{1}'\mathbf{R}_t/N = \text{equally weighted portfolio}$. Then

$$cov(R_{m,t}, R_{m,t-1}) = \frac{1}{N^2} \mathbf{1}' \Gamma_1 \mathbf{1}$$

 $corr(R_{m,t}, R_{m,t-1}) = \frac{\mathbf{1}' \Gamma_1 \mathbf{1} - tr(\Gamma_1)}{\mathbf{1}' \Gamma_0 \mathbf{1}} + \frac{tr(\Gamma_1)}{\mathbf{1}' \Gamma_0 \mathbf{1}}$

5 Long Horizon Returns

Define

$$r_t=\ln(P_t/P_{t-1})=$$
 monthly cc return $r_t(12)=\ln(P_t/P_{t-12})=\sum_{j=0}^{11}R_{t-j}=$ annual cc return

Suppose $r_t \sim iid(\mu, \sigma^2)$ and consider a sample $\{r_1, r_2, \ldots, r_T\}$ of size T of monthly returns. A sample of annual returns may be created in two ways:

• Overlapping sample:

$$\{r_{12}(12), r_{13}(12), \ldots, r_T(12)\}$$

is a sample of T-11 monthly overlapping annual returns

• Non-overlapping sample:

$$\{r_{12}(12), r_{24}(12), \dots, r_T(12)\}$$

is a sample of T/2 non-overlapping annual returns

Result: If r_t " $iid(\mu, \sigma^2)$ then $r_t(12)$ in overlapping sample follows an MA(11) process since:

$$\gamma_j = cov(r_t(12), r_{t-j}(12)) = (12-j)\sigma^2 \text{ for } j < 12$$
 $\gamma_j = 0 \text{ for } j \geq 12$

Implication 1:

$$ar{r}(12) = rac{1}{T} \sum_{t=1}^{T-11} r_t(12)^{rac{A}{c}} N\left(\mu_{12}, rac{lrv}{T}
ight)$$
 $lrv = \gamma_0 + 2 \sum_{j=1}^{11} \gamma_j = ext{long-run variance}$

Implication 2: Newey-West HAC standard errors should always be computed in regressions where the dependent variable is multi-period returns from overlapping data! Note: Monte Carlo studies have shown that Newey-West HAC standard errors are not very good in small samples.

6 Long Memory

A fractionally integrated white noise process y_t has the form

$$(1-L)^d p_t = \varepsilon_t, \ \varepsilon_t \ \widetilde{W}N(0,\sigma^2)$$

where $(1-L)^d$ has the binomial series expansion representation (valid for any d>-1)

$$(1-L)^{d} = \sum_{k=0}^{\infty} \left(\frac{d}{k}\right) (-L)^{k}$$

$$= 1 - dL + \frac{d(d-1)}{2!} L^{2} - \frac{d(d-1)(d-2)}{3!} L^{3} + \frac{d(d-1)(d-2)}{2!} L^{2} - \frac{d(d-1)(d-2)}{3!} L$$

Hence, p_t has an $\mathsf{AR}(\infty)$ representation

$$\sum_{k=0}^{\infty} \phi_k p_{t-k} = \varepsilon_t$$

$$\phi_k = (-1)^k \left(\frac{d}{k}\right) = \frac{\Gamma(k-d)}{\Gamma(-d)\Gamma(k+1)}$$

as well as a $MA(\infty)$ representation

$$p_t = (1 - L)^{-d} \varepsilon_t = \sum_{k=0}^{\infty} \psi_k \varepsilon_{t-k}$$

$$\psi_k = \frac{\Gamma(k+d)}{\Gamma(d)\Gamma(k+1)}$$

Special cases:

- ullet d=1 then p_t is a random walk
- d = 0 then p_t is white noise.
- ullet For 0 < d < 1 it can be shown that

$$\rho_k \propto k^{2d-1}$$

so that the ACF for p_t declines hyperbolically to zero at a speed that depends on d.

- p_t is stationary and ergodic for 0 < d < 0.5
- The variance of p_t is infinite for $0.5 \le d < 1$.

7 Long Horizon Regressions of Returns on Valuation Ratios

Cochrane (2001) gives the following summary

• Dividend/Price ratios forecast excess returns on stocks. Regression coefficients and \mathbb{R}^2 rise with the forecast horizon. This is a result of the fact that the forecasting variable is persistent

Consider the stylized model relating returns to a persistent valuation ratio like dividend/price

$$r_{t+1} = \beta x_t + \varepsilon_{t+1}, \ \beta > 0$$

 $x_{t+1} = \rho x_t + \eta_{t+1}, \ 0 < \rho < 1$

The relationship between $r_{t+2}(2) = r_{t+2} + r_{t+1}$ and x_t is

$$r_{t+1}(2) = \beta x_{t+1} + \beta x_t + \varepsilon_{t+2} + \varepsilon_{t+1} = \beta(\rho x_t + \eta_{t+1}) + \beta x_t + \varepsilon_{t+2} + \varepsilon_{t+1} = \beta(1 + \rho)x_t + w_{2t} = \beta_2 x_t + w_t, \ \beta_2 > \beta.$$

In general,

$$r_{t+1}(k) = \beta(1 + \rho + \dots + \rho^{k-1})x_t + w_{kt}$$

= $\beta_k x_t + w_{kt}, \ \beta_k > \beta_{k-1}$

Note: The population value of the numerator in the long-horizon regression is

$$E[(r_{t+k} + r_{t+k-1} + \cdots + r_{t+1})x_t]$$

which, under stationarity is the same as

$$E[r_{t+1}(x_t + x_{t-1} + \cdots + x_{t-k+1})]$$

so that the regression of $r_{t+1}(k)$ on x_t behaves like the regression of r_{t+1} on k lags of x_t