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1 Lecture Outline

• Market Efficiency

• The Forms of the Random Walk Hypothesis

• Testing the Random Walk Hypothesis

• Long Horizon Returns

• Long Memory in Asset Returns



2 Martingales and Martingale Dif-

ference Sequences (MDS)

Let {Yt} be a sequence of random variables and let

{It} denote a sequence of information sets with It ⊂ I
for all t where I = universal info set. (Yt, It) is a

martingale if

• It ⊂ It+1 (filtration)

• Yt ⊂ It (Yt is adapted to It)

• E[|Yt|] <∞

• E[Yt|It−1] = Yt−1 (martingale property)



Example: Random Walk

Yt = Yt−1 + εt, εt ˜ iid(0,σ
2)

It = {εt, εt−1, . . .}
E[Yt|It−1] = Yt−1

Example: Independent heteroskedastic I(1) process

Yt = Yt−1 +
εt

t
= Yt−1 + ut,

ut˜ inid(0,σ
2
t )

It = {ut, ut−1, . . .}
E[Yt|It−1] = Yt−1

Law of Iterated Expectations. Let {Yt, It} be a mar-
tingale. Then

E[Yt|It−2] = E[E[Yt|It−1]|It−2]
= E[Yt−1|It−2] = Yt−2

It follows that

E[Yt|It−k] = Yt−k



In general, for information sets It and Jt such that

It ⊂ Jt (Jt is the bigger info set). The Law of Iterated
Expectations says

E[Y |It] = E[E[X|Jt]|It]

Martingale Difference Sequence (MDS). (Xt, It) is a

MDS if (Xt, It) is an adapted sequence and

E[Xt|It−1] = 0
Remark 1 : If Yt is a martingale and Xt = Yt −
E[Yt|It−1] then Xt is a MDS by construction.

Remark 2 : Let Zt be any nonlinear function of the

past history of Yt so that Zt ⊂ It. Then by the Law

of Iterated Expectations

E[XtZt−1] = E[E[XtZt−1|It−1]
= E[Zt−1E[Xt|It−1]
= 0

so that Xt is uncorrelated with any nonlinear function

of the history of Yt



Example: ARCH Process

Xt = εtσt, εt ˜ iid (0, 1)

σ2t = α+ βσ2t−1, α > 0 and |β| < 1
E[Xt|It−1] = E[εtσt|It−1]

= σtE[εt|It−1]
= 0

3 Market Efficiency

Unpredictable asset returns is the result of the Law of

Iterated Expectations. Samuelson’s fameous result:

Let V ∗ = fundamental value of asset and assume Pt
is a rational forecast. Then

Pt = E[V ∗|It]
Pt+1 = E[V ∗|It+1]

E[Pt+1 − Pt|It] = E[E[V ∗|It+1]−E[V |It]|It]
= E[V ∗|It]−E[V ∗|It] = 0



3.1 Types of Market Efficiency

• Weak Form: Information set includes only the
history of prices or returns

• Semistrong Form: The information set includes
all publicly available information

• Strong Form: The information set contains all
public and private information

3.2 Testing Market Efficiency

• Any test of market efficiency must assume an
equilibrium model that defines normal security re-
turns (e.g. CAPM)

• Perfect efficiency is unrealistic. Grossman and
Stiglitz (1980) argue that you need some ineffi-
ciency to promote information gathering activity.



4 The Random Walk Hypotheses

pt = µ+ pt−1 + εt, pt = ln(Pt)

=⇒ rt = µ+ εt, rt = ∆pt

• RW1: εt is independent and identically distributed
(iid) (0,σ2). Not realistic

• RW2: εt is independent (allows for heteroskedas-
ticity). Test using filter rules, technical analysis

• RW3: εt is uncorrelated (allows for dependence

in higher moments). Test using autocorrelations,

variance ratios, long horizon regressions



4.1 Autocorrelation Tests

Assume that rt is covariance stationary and ergodic.
Then

γk = cov(rt, rt−k)
ρk = γk/γ0

and sample estimates are

γ̂k =
1

T

T−kX
t=1

(rt − r̄)(rt+k − r̄), ρ̂k =
γ̂k
γ̂0

r̄ =
1

T

TX
t=1

rt

Result: Under RW1

E[ρ̂k] = − T − k
T (T − 1) +O(T

2)

√
T ρ̂k

A
˜ N(0, 1)

Box-Pierce Q-statistic: Consider testing H0 : ρ1 =
· · · = ρm = 0. Under RW1

MQ = T (T + 2)
mX
k=1

ρ̂2k
T − k ˜ χ2(m)



4.2 Variance Ratios

Intuition. Under RW1

V R(2) =
var(rt(2))

2 · var(rt)
=
var(rt + rt−1)
2 · var(rt)

=
2σ2

2σ2
= 1

If rt is a covariance stationary process then

V R(2) =
var(rt) + var(rt−1) + 2cov(rt, rt−1)

2 · var(rt)
=

2σ2 + 2γ1
2σ2

= 1 + ρ1

Three cases:

• ρ1 = 0 =⇒ V R(2) = 1

• ρ1 > 0 =⇒ V R(2) > 1 (mean aversion)

• ρ1 < 0 =⇒ V R(2) < 1 (mean reversion)



General q − period variance ratio under stationarity

V R(q) =
var(rt(q))

q · var(rt)
= 1 + 2

q−1X
k=1

Ã
1− k

q

!
ρk

rt(q) = rt + rt−1 + · · ·+ rt−q+1

Remark 1 : Under RW1, V R(q) = 1.

Remark 2 : For stationary and ergodic returns with a

1-summable Wold representation

rt = µ+
∞X
j=0

ψjεt−j, εt ˜ iid(0,σ2)

ψ0 = 1,
X
j|ψj| <∞

it can be shown that

lim
q→∞V R(q) =

σ2ψ(1)2

γ0

=
lrv(rt)

var(rt)
=
long-run variance

short-run variance



Remark 3 : Under RW2 and RW3, V R(q) = 1 pro-

vided

1

T

TX
t=1

var(rt)→ σ̄2 > 0

4.2.1 Lo and MacKinlay’s Test Statistics

Under RW1, the standardized variance ratio

ψ(q) = (V R(q)− 1) ·
Ã
2(2q − 1)(q − 1)

3Tq

!−1/2
A
˜ N(0, 1)



Under RW2 and RW3 the heteroskedasticty-robust

standardized variance ratio

ψ∗(q) = (V R(q)− 1) · Ω(q)−1/2

Ω(q) =
q−1X
j=1

Ã
2(q − j)

j

!2
δj

δj =

PT
t=j+1α0tαjt³PT
t=1α0t

´2
αjt =

µ
rt−j − rt−j−1 −

1

T
(rT − r0)

¶2
is asymptotically standard normal.



4.3 Empirical Results

CML chapter 2, section 8. CRSP value-weighted and
equal weighted indices, individual securities from 1962
- 1994

• Daily, weekly and monthly cc returns from VW
and EW indices show significant 1st order auto-
correlation

• V R(q) > 1 and ψ∗(q) statistics reject RW3 for
EW index but not VW index.

— Market capitalization or size may be playing a
role. In fact, V R(q) > 1 and ψ∗(q) are largest
for portfolios of small firms.

• For individual securities, typically V R(q) < 1
(negative autocorrelation) and ψ∗(q) is not sig-
nificant!!! How can portfolio V R(q) > 1 when
individual security V R(q) < 1?



4.3.1 Cross lag autocorrelations and lead-lag rela-

tions

Result: Portfolio returns can be positively correlated

and securities returns can be negatively correlated if

there are positive cross lag autocorrelations between

the securities in the portfolio.

Let Rt denote an N × 1 vector of security returns.
Define

γkij = cov(rit, rjt−k) = cross lag autocorrelation

Γk = cov(Rt,Rt−k) =


γk11 γk12 · · · γk1N
γk21 γk22 · · · γk2N... ... . . . ...

γkN1 γkN2 · · · γkNN


Let Rmt = 10Rt/N = equally weighted portfolio.

Then

cov(Rm,t,Rm,t−1) =
1

N2
10Γ11

corr(Rm,t,Rm,t−1) =
10Γ11− tr(Γ1)

10Γ01
+
tr(Γ1)

10Γ01



5 Long Horizon Returns

Define

rt = ln(Pt/Pt−1) = monthly cc return

rt(12) = ln(Pt/Pt−12) =
11X
j=0

Rt−j = annual cc return

Suppose rt ˜iid(µ,σ
2) and consider a sample {r1, r2, . . . , rT}

of size T of monthly returns. A sample of annual re-
turns may be created in two ways:

• Overlapping sample:
{r12(12), r13(12), . . . , rT (12)}

is a sample of T −11 monthly overlapping annual
returns

• Non-overlapping sample:
{r12(12), r24(12), . . . , rT (12)}

is a sample of T/2 non-overlapping annual returns



Result: If rt ˜iid(µ,σ
2) then rt(12) in overlapping

sample follows an MA(11) process since:

γj = cov(rt(12), rt−j(12)) = (12− j)σ2 for j < 12
γj = 0 for j ≥ 12
Implication 1 :

r̄(12) =
1

T

T−11X
t=1

rt(12)
A
˜ N

µ
µ12,

lrv

T

¶

lrv = γ0 + 2
11X
j=1

γj = long-run variance

Implication 2 : Newey-West HAC standard errors should

always be computed in regressions where the depen-

dent variable is multi-period returns from overlapping

data! Note: Monte Carlo studies have shown that

Newey-West HAC standard errors are not very good

in small samples.



6 Long Memory

A fractionally integrated white noise process yt has

the form

(1− L)dpt = εt, εt ˜WN(0,σ2)

where (1−L)d has the binomial series expansion rep-
resentation (valid for any d > −1)

(1− L)d =
∞X
k=0

³d
k

´
(−L)k

= 1− dL+ d(d− 1)
2!

L2 − d(d− 1)(d− 2)
3!

L3+

Hence, pt has an AR(∞) representation
∞X
k=0

φkpt−k = εt

φk = (−1)k
³d
k

´
=

Γ(k − d)
Γ(−d)Γ(k + 1)



as well as a MA(∞) representation

pt = (1− L)−dεt =
∞X
k=0

ψkεt−k

ψk =
Γ(k + d)

Γ(d)Γ(k + 1)

Special cases:

• d = 1 then pt is a random walk

• d = 0 then pt is white noise.

• For 0 < d < 1 it can be shown that
ρk ∝ k2d−1

so that the ACF for pt declines hyperbolically to
zero at a speed that depends on d.

— pt is stationary and ergodic for 0 < d < 0.5

— The variance of pt is infinite for 0.5 ≤ d < 1.



7 Long Horizon Regressions of Re-

turns on Valuation Ratios

Cochrane (2001) gives the following summary

• Dividend/Price ratios forecast excess returns on
stocks. Regression coefficients and R2 rise with
the forecast horizon. This is a result of the fact
that the forecasting variable is persistent

Consider the stylized model relating returns to a per-
sistent valuation ratio like dividend/price

rt+1 = βxt + εt+1, β > 0

xt+1 = ρxt + ηt+1, 0 < ρ < 1

The relationship between rt+2(2) = rt+2 + rt+1 and
xt is

rt+1(2) = βxt+1 + βxt + εt+2 + εt+1
= β(ρxt + ηt+1) + βxt + εt+2 + εt+1
= β(1 + ρ)xt +w2t
= β2xt +wt, β2 > β.



In general,

rt+1(k) = β(1 + ρ+ · · ·+ ρk−1)xt +wkt
= βkxt +wkt, βk > βk−1

Note: The population value of the numerator in the

long-horizon regression is

E[(rt+k + rt+k−1 + · · ·+ rt+1)xt]
which, under stationarity is the same as

E[rt+1(xt + xt−1 + · · ·+ xt−k+1)]
so that the regression of rt+1(k) on xt behaves like

the regression of rt+1 on k lags of xt


