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1 Reading

• MFTS, chapter 3

• AFTS, chapter 2

• APDVP, chapter 3 and 4 (sections 9 - 14)



2 Univariate Time Series

First, we present concepts useful for the analysis of univariate time series

2.1 Stationary and Ergodic Time Series

Let {yt} = {. . . yt−1, yt, yt+1, . . .} denote a sequence of random variables
indexed by some time subscript t. Call such a sequence of random variables a
time series.



The time series {yt} is covariance stationary if

E[yt] = μ for all t

cov(yt, yt−j) = E[(yt − μ)(yt−j − μ)] = γj for all t and any j

The parameter γj is called the j
th order or lag j autocovariance of {yt} and a

plot of γj against j is called the autocovariance function.

The autocorrelations of {yt} are defined by

ρj =
cov(yt, yt−j)q

var(yt)var(yt−j)
=

γj

γ0

and a plot of ρj against j is called the autocorrelation function (ACF)



The lag j sample autocovariance and lag j sample autocorrelation are defined
as

γ̂j =
1

T

TX
t=j+1

(yt − ȳ)(yt−j − ȳ)

ρ̂j =
γ̂j

γ̂0

where ȳ = 1
T

PT
t=1 yt is the sample mean.

The sample ACF (SACF) is a plot of ρ̂j against j.

A stationary time series {yt} is ergodic if sample moments converge in proba-
bility to population moments; i.e. if ȳ

p→ μ, γ̂j
p→ γj and ρ̂j

p→ ρj.



Example: White noise (GWN) processes

Perhaps the most simple stationary time series is the independent Gaussian
white noise process yt ∼ iid N(0, σ2) ≡ GWN(0, σ2). This process has
μ = γj = ρj = 0 (j 6= 0).

Two slightly more general processes are the independent white noise (IWN)
process, yt ∼ IWN(0, σ2), and the white noise (WN) process, yt ∼WN(0, σ2).

Both processes have mean zero and variance σ2, but the IWN process has
independent increments, whereas the WN process has uncorrelated increments.



The SACF is typically shown with 95% confidence limits about zero. These
limits are based on the result that if {yt} ∼ iid (0, σ2) then

ρ̂j
A∼ N

µ
0,
1

T

¶
, j > 0.

The notation ρ̂j
A∼ N

³
0, 1T

´
means that the distribution of ρ̂j is approximated

by normal distribution with mean 0 and variance 1T and is based on the central

limit theorem result
√
T ρ̂j

d→ N (0, 1). The 95% limits about zero are then
±1.96√

T
.



2.1.1 Testing for White Noise

Consider testing the null hypothesis

H0 : yt ∼WN(0, σ2)

Under the null, all of the autocorrelations ρj for j > 0 are zero. To test this
null, Box and Pierce (1970) suggested the Q-statistic

Q(k) = T
kX

j=1

ρ̂2j

Under the null, Q(k) is asymptotically distributed χ2(k). In a finite sample,
the Q-statistic may not be well approximated by the χ2(k). Ljung and Box
(1978) suggested the modified Q-statistic

MQ(k) = T (T + 2)
kX

j=1

ρ̂2j

T − j



2.2 Linear Processes and ARMA Models

Wold’s decomposition theorem (c.f. Fuller (1996) pg. 96) states that any
covariance stationary time series {yt} has a linear process or infinite order
moving average representation of the form

yt = μ+
∞X
k=0

ψkεt−k, ψ0 = 1,
∞X
k=0

ψ2k <∞

εt ∼ WN(0, σ2)



In the Wold form, it can be shown that

E[yt] = μ, γ0 = var(yt) = σ2
∞X
k=0

ψ2k

γj = cov(yt, yt−j) = σ2
∞X
k=0

ψkψk+j

ρj =

P∞
k=0ψkψk+jP∞

k=0ψ
2
k



The moving average weights in the Wold form are also called impulse responses
since

∂yt+s

∂εt
= ψs, s = 1, 2, . . .

For a stationary and ergodic time series lims→∞ψs = 0 and the long-run
cumulative impulse response

P∞
s=0ψs <∞.

A plot of ψs against s is called the impulse response function (IRF)



The general Wold form of a stationary and ergodic time series is handy for
theoretical analysis but is not practically useful for estimation purposes. A
very rich and practically useful class of stationary and ergodic processes is the
autoregressive-moving average (ARMA) class of models made popular by Box
and Jenkins (1976).

ARMA(p, q) models take the form of a pth order stochastic difference equation

yt − μ = φ1(yt−1 − μ) + · · ·+ φp(yt−p − μ)

+εt + θ1εt−1 + · · ·+ θqεt−q
εt ∼ WN(0, σ2)



2.2.1 Lag Operator Notation

The lag operator L is defined such that for any time series {yt}, Lyt = yt−1.
It has the following properties: L2yt = L ·Lyt = yt−2, L0 = 1 and L−1yt =
yt+1. The operator ∆ = 1 − L creates the first difference of a time series:
∆yt = (1 − L)yt = yt − yt−1. The ARMA(p, q) model may be compactly
expressed using lag polynomials. Define φ(L) = 1 − φ1L − · · · − φpL

p and
θ(L) = 1 + θ1L+ · · ·+ θqLq. Then the ARMA model may be expressed as

φ(L)(yt − μ) = θ(L)εt

Similarly, the Wold representation in lag operator notation is

yt = μ+ ψ(L)εt, ψ(L) =
∞X
k=0

ψkL
k, ψ0 = 1

ψ(1) =
∞X
k=0

ψk



2.3 Autoregressive Models

2.3.1 AR(1) Model

A commonly used stationary and ergodic time series in financial modeling is
the AR(1) process

yt − μ = φ(yt−1 − μ) + εt, t = 1, . . . , T

where εt ∼ WN(0, σ2) and |φ| < 1. The above representation is called the
mean-adjusted form. The characteristic equation for the AR(1) is

φ(z) = 1− φz = 0

so that the root is z = 1
φ.



Stationarity is satisfied provided the absolute value of the root of the character-
istic equation is greater than one: |1φ| > 1 or |φ| < 1. In this case, it is easy to

show that E[yt] = μ, γ0 =
σ2

1−φ2, ψj = ρj = φj and the Wold representation
is

yt = μ+
∞X
j=0

ρjεt−j.



In a stationary AR(1) model, {yt} exhibits mean-reverting behavior. That is,
{yt} fluctuates about the mean value μ = 1. The ACF and IRF decay at a
geometric rate.

The decay rate of the IRF is sometimes reported as a half-life — the lag jhalf

at which the IRF reaches 12. For the AR(1) with positive φ, it can be shown
that

jhalf = ln(0.5)/ ln(φ)



2.3.2 AR(p) Models

The AR(p) model in mean-adjusted form is

yt − μ = φ1(yt−1 − μ) + · · ·+ φp(yt−p − μ) + εt

or, in lag operator notation,

φ(L)(yt − μ) = εt

where φ(L) = 1− φ1L− · · ·− φpL
p. The autoregressive form is

φ(L)yt = c+ εt.

It can be shown that the AR(p) is stationary and ergodic provided the roots of
the characteristic equation

φ(z) = 1− φ1z − φ2z
2 − · · ·− φpz

p = 0



lie outside the complex unit circle (have modulus greater than one). A necessary
condition for stationarity that is useful in practice is that |φ1 + · · · + φp| <
1. If φ(z) = 0 has complex roots then yt will exhibit sinusoidal behavior.
In the stationary AR(p), the constant in the autoregressive form is equal to
μ(1− φ1 − · · ·− φp).



2.3.3 Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a useful tool to help identify
AR(p) models. The PACF is based on estimating the sequence of AR models

zt = φ11zt−1 + ε1t

zt = φ21zt−1 + φ22zt−2 + ε2t
...

zt = φp1zt−1 + φp2zt−2 + · · ·+ φppzt−p + εpt

where zt = yt − μ is the demeaned data. The coefficients φjj for j =
1, . . . , p (i.e., the last coefficients in each AR(p) model) are called the partial
autocorrelation coefficients.

Note: for an AR(p) model, all of the first p partial autocorrelation coefficients
are non-zero, and the rest are zero for j > p.



2.4 Moving Average Models

2.4.1 MA(1) Model

The MA(1) model has the form

yt = μ+ εt + θεt−1, εt ∼WN(0, σ2)

For any finite θ the MA(1) is stationary and ergodic. The moments are E[yt] =
μ, γ0 = σ2(1 + θ2), γ1 = σ2θ, γj = 0 for j > 1 and ρ1 = θ/(1 + θ2).
Hence, the ACF of an MA(1) process cuts off at lag one, and the maximum
value of this correlation is ±0.5.

There is an identification problem with the MA(1) model since θ = 1/θ produce
the same value of ρ1. The MA(1) is called invertible if |θ| < 1 and is called



non-invertible if |θ| ≥ 1. In the invertible MA(1), the error term εt has an
infinite order AR representation of the form

εt =
∞X
j=0

θ∗j(yt−j − μ)

where θ∗ = −θ so that εt may be thought of as a prediction error based on
past values of yt.



MA(1) models often arise through data transformations like aggregation and
differencing. For example, consider the signal plus noise model

yt = zt + εt, εt ∼WN(0, σ2ε)

zt = zt−1 + ηt, ηt ∼WN(0, σ2η)

where εt and ηt are independent. For example, zt could represent the funda-
mental value of an asset price and εt could represent an iid deviation about
the fundamental price. A stationary representation requires differencing yt:

∆yt = ηt + εt − εt−1

It can be shown that ∆yt is an MA(1) process with θ = −(q+2)+
√
q2+4q

2

where q =
σ2η
σ2ε
is the signal-to-noise ratio and ρ1 =

−1
q+2 < 0.



2.4.2 MA(q) Model

The MA(q) model has the form

yt = μ+ εt + θ1εt−1 + · · ·+ θqεt−q, where εt ∼WN(0, σ2)

The MA(q) model is stationary and ergodic provided θ1, . . . , θq are finite. It
is invertible if all of the roots of the MA characteristic polynomial

θ(z) = 1 + θ1z + · · · θqzq = 0
lie outside the complex unit circle. The moments of the MA(q) are

E[yt] = μ

γ0 = σ2(1 + θ21 + · · ·+ θ2q)

γj =

( ³
θj + θj+1θ1 + θj+2θ2 + · · ·+ θqθq−j

´
σ2 for j = 1, 2, . . . , q

0 for j > q

Hence, the ACF of an MA(q) is non-zero up to lag q and is zero afterwards.



Example: Overlapping returns and MA(q) models

MA(q) models often arise in finance through data aggregation transformations.
For example, let Rt = ln(Pt/Pt−1) denote the monthly continuously com-
pounded return on an asset with price Pt. Define the annual return at time
t using monthly returns as Rt(12) = ln(Pt/Pt−12) =

P11
j=0Rt−j. Sup-

pose Rt ∼ WN(μ, σ2) and consider a sample of monthly returns of size T ,
{R1, R2, . . . , RT}.

A sample of annual returns may be created using overlapping or non-overlapping
returns. Let {R12(12), R13(12), . . . , RT (12)} denote a sample of T ∗ = T −
11 monthly overlapping annual returns and {R12(12), R24(12), . . . , RT (12)}
denote a sample of T/12 non-overlapping annual returns.



Researchers often use overlapping returns in analysis due to the apparent larger
sample size. One must be careful using overlapping returns because the monthly
annual return sequence {Rt(12)} is not a white noise process even if the
monthly return sequence {Rt} is. To see this, straightforward calculations
give

E[Rt(12)] = 12μ

γ0 = var(Rt(12)) = 12σ
2

γj = cov(Rt(12), Rt−j(12)) = (12− j)σ2 for j < 12

γj = 0 for j ≥ 12

Since γj = 0 for j ≥ 12 notice that {Rt(12)} behaves like an MA(11) process

Rt(12) = 12μ+ εt + θ1εt−1 + · · ·+ θ11εt−11
εt ∼ WN(0, σ2)



2.5 ARMA(p,q) Models

The regression formulation of the ARMA(p,q) model is

yt = c+ φ1yt−1 + · · ·+ φpyt−p + εt + θεt−1 + · · ·+ θεt−q

It is stationary and ergodic if the roots of the characteristic equation φ(z) = 0
lie outside the complex unit circle, and it is invertible if the roots of the MA
characteristic polynomial θ(z) = 0 lie outside the unit circle.

It is assumed that the polynomials φ(z) = 0 and θ(z) = 0 do not have
canceling or common factors.



A stationary and ergodic ARMA(p, q) process has a mean equal to

μ =
c

1− φ1 − · · ·− φp

and its autocovariances, autocorrelations and impulse response weights satisfy
the recursive relationships

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p
ρj = φ1ρj−1 + φ2ρj−2 + · · ·+ φpρj−p
ψj = φ1ψj−1 + φ2ψj−2 + · · ·+ φpψj−p



ARMA(p, q) models often arise from certain aggregation transformations of
simple time series models. An important result due to Granger and Morris
(1976) is that if y1t is an ARMA(p1, q1) process and y2t is an ARMA(p2, q2)
process, which may be contemporaneously correlated with y1t, then y1t + y2t
is an ARMA(p, q) process with p = p1 + p2 and q = max(p1 + q2, q1 + p2).

For example, if y1t is an AR(1) process and y2 is a AR(1) process, then y1+y2
is an ARMA(2,1) process.



High order ARMA(p, q) processes are difficult to identify and estimate in prac-
tice and are rarely used in the analysis of financial data. Low order ARMA(p, q)
models with p and q less than three are generally sufficient for the analysis of
financial data.



2.5.1 ARIMA(p, d, q) Models

The specification of the ARMA(p, q) model assumes that yt is stationary and
ergodic. If yt is a trending variable like an asset price or a macroeconomic
aggregate like real GDP, then yt must be transformed to stationary form by
eliminating the trend. Box and Jenkins (1976) advocate removal of trends by
differencing.

Let ∆ = 1 − L denote the difference operator. If there is a linear trend in
yt then the first difference ∆yt = yt − yt−1 will not have a trend. If there
is a quadratic trend in yt, then ∆yt will contain a linear trend but the second
difference ∆2yt = (1−2L+L2)yt = yt−2yt−1+yt−2 will not have a trend.

The class of ARMA(p, q) models where the trends have been transformed by
differencing d times is denoted ARIMA(p, d, q)



2.6 Estimation of ARMA Models and Forecasting

ARMA(p, q) models are generally estimated using the technique of maximum
likelihood, which is usually accomplished by putting the ARMA(p, q) in state-
space form from which the prediction error decomposition of the log-likelihood
function may be constructed.

The exact likelihood utilizes the stationary distribution of the initial values in
the construction of the likelihood. The conditional likelihood treats the p initial
values of yt as fixed and often sets the q initial values of εt to zero. The exact
maximum likelihood estimates (MLEs) maximize the exact log-likelihood, and
the conditional MLEs maximize the conditional log-likelihood.

The exact and conditional MLEs are asymptotically equivalent but can differ
substantially in small samples, especially for models that are close to being
nonstationary or noninvertible.



2.6.1 Model Selection Criteria

Before an ARMA(p, q) may be estimated for a time series yt, the AR and MA
orders p and q must be determined by visually inspecting the SACF and SPACF
for yt. Alternatively, statistical model selection criteria may be used. The idea
is to fit all ARMA(p, q) models with orders p ≤ pmax and q ≤ qmax and choose
the values of p and q which minimizes some model selection criteria. Model
selection criteria for ARMA(p, q) models have the form

MSC(p, q) = ln(σ̃2(p, q)) + cT · ϕ(p, q)

where σ̃2(p, q) is the MLE of var(εt) = σ2 without a degrees of freedom
correction from the ARMA(p, q) model, cT is a sequence indexed by the sample
size T , and ϕ(p, q) is a penalty function which penalizes large ARMA(p, q)
models.



The two most common information criteria are the Akaike (AIC) and Schwarz-
Bayesian (BIC):

AIC(p, q) = ln(σ̃2(p, q)) +
2

T
(p+ q)

BIC(p, q) = ln(σ̃2(p, q)) +
lnT

T
(p+ q)

The AIC criterion asymptotically overestimates the order with positive prob-
ability, whereas the BIC estimate the order consistently under fairly general
conditions if the true orders p and q are less than or equal to pmax and qmax.
However, in finite samples the BIC generally shares no particular advantage
over the AIC.



2.6.2 Forecasting Algorithm

Forecasts from an ARIMA(p, d, q) model are straightforward. The model is put
in state space form, and optimal h-step ahead forecasts along with forecast
standard errors (not adjusted for parameter uncertainty) are produced using
the Kalman filter algorithm. Details of the method are given in Harvey (1993).



2.7 Martingales and Martingale Difference Sequences

Let {yt} denote a sequence of random variables and let It = {yt,yt−1, . . .}
denote a set of conditioning information or information set based on the past
history of yt. The sequence {yt, It} is called a martingale if

• It−1 ⊂ It (It is a filtration)

• E[|yt|] <∞

• E[yt|It−1] = yt−1 (martingale property)



The most common example of a martingale is the random walk model

yt = yt−1 + εt, εt ∼WN(0, σ2)

where y0 is a fixed initial value. Letting It = {yt, . . . , y0} impliesE[yt|It−1] =
yt−1 since E[εt|It−1] = 0.



Law of Iterated Expectations. Let {Yt, It} be a martingale. Then

E[Yt|It−2] = E[E[Yt|It−1]|It−2]
= E[Yt−1|It−2] = Yt−2

It follows that

E[Yt|It−k] = Yt−k

In general, for information sets It and Jt such that It ⊂ Jt (Jt is the bigger
info set). The Law of Iterated Expectations says

E[Y |It] = E[E[X|Jt]|It]



Let {εt} be a sequence of random variables with an associated information set
It. The sequence {εt, It} is called a martingale difference sequence (MDS) if

• It−1 ⊂ It

• E[εt|It−1] = 0 (MDS property)

If {yt, It} is a martingale, a MDS {εt, It} may be constructed by defining

εt = yt −E[yt|It−1]
By construction, a MDS is an uncorrelated process. This follows from the law
of iterated expectations. To see this, for any k > 0

E[εtεt−k] = E[E[εtεt−k|It−1]]
= E[εt−kE[εt|It−1]]
= 0



In fact, if zn is any function of the past history of εt so that zn ∈ It−1 then

E[εtzn] = 0



Example: ARCH process

A well known stylized fact about high frequency financial asset returns is that
volatility appears to be autocorrelated. A simple model to capture such volatility
autocorrelation is the ARCH process due to Engle (1982). To illustrate, let rt
denote the daily return on an asset and assume that E[rt] = 0. An ARCH(1)
model for rt is

rt = σtzt

zt ∼ iid N(0, 1)

σ2t = ω + αr2t−1

where ω > 0 and 0 < α < 1. Let It = {rt, . . .}.



To see that {rt, It} is a MDS, note that

E[rt|It−1] = E[ztσt|It−1]
= σtE[zt|It−1]
= 0



Since rt is a MDS, it is an uncorrelated process. Provided |α| < 1, rt is a
mean zero covariance stationary process. The unconditional variance of rt is
given by

var(rt) = E[r2t ] = E[E[z2t σ
2
t |It−1]]

= E[σ2tE[z
2
t |It−1] = E[σ2t ]

since E[z2t |It−1] = 1.

E[σ2t ] may be expressed as

E[σ2t ] =
ω

1− α

Furthermore, by adding r2t to both sides of σ
2
t = ω + αr2t−1 and rearranging

it follows that r2t has an AR(1) representation of the form

r2t = ω + αr2t−1 + vt

where vt = r2t − σ2t is a MDS.



2.8 Long-run Variance

Let yt be a stationary and ergodic time series. Anderson’s central limit theorem
for stationary and ergodic processes (c.f. Hamilton (1994) pg. 195) states

√
T (ȳ − μ)

d→ N(0,
∞X

j=−∞
γj)

or

ȳ
A∼ N

⎛⎝μ, 1
T

∞X
j=−∞

γj

⎞⎠
The sample size, T , times the asymptotic variance of the sample mean is often
called the long-run variance of yt :

lrv(yt) = T · avar(ȳ) =
∞X

j=−∞
γj = γ0 + 2

∞X
j=1

γj.



2.8.1 Estimating the Long-Run Variance

If yt is a linear process, it may be shown that

∞X
j=−∞

γj = σ2

⎛⎝ ∞X
j=0

ψj

⎞⎠2 = σ2ψ(1)2

and so

lrv(yt) = σ2ψ(1)2

Further, if yt ∼ ARMA(p, q) then

ψ(1) =
1 + θ1 + · · ·+ θq

1− φ1 − · · ·− φp
=

θ(1)

φ(1)

so that

lrv(yt) =
σ2θ(1)2

φ(1)2
.



Alternatively, the ARMA(p, q) process may be approximated by a high order
AR(p∗) process

yt = c+ φ1yt−1 + · · ·+ φp∗yt−p∗ + εt

where the lag length p∗ is chosen such that εt is uncorrelated. This gives rise
to the autoregressive long-run variance estimate

lrvAR(yt) =
σ2

φ∗(1)2
.

A consistent estimate of lrv(yt) may also be computed using some non-
parametric methods. An estimator made popular by Newey and West (1987)
is the weighted autocovariance estimator

dlrvNW (yt) = γ̂0 + 2
MTX
j=1

wj,T · γ̂j



where wj,T are weights which sum to unity and MT is a truncation lag para-
meter that satisfies MT = O(T 1/3).



3 Univariate Nonstationary Time Series

A univariate time series process {yt} is called nonstationary if it is not station-
ary. Since a stationary process has time invariant moments, a nonstationary
process must have some time dependent moments. The most common forms
of nonstationarity are caused by time dependence in the mean and variance.

3.0.2 Trend Stationary Process

{yt} is a trend stationary process if it has the form

yt = TDt + xt



where TDt are deterministic trend terms (constant, trend, seasonal dummies
etc) that depend on t and {xt} is stationary. The series yt is nonstationary
because E[TDt] = TDt which depends on t. Since xt is stationary, yt never
deviates too far away from the deterministic trend TDt. Hence, yt exhibits
trend reversion. If TDt were known, yt may be transformed to a stationary
process by subtracting off the deterministic trend terms:

xt = yt − TDt



Example: Trend stationary AR(1)

A trend stationary AR(1) process with TDt = μ + δt may be expressed in
three equivalent ways

yt = μ+ δt+ ut, ut = φut−1 + εt

yt − μ− δt = φ(yt−1 − μ− δ(t− 1)) + εt

yt = c+ βt+ φyt−1 + εt

where |φ| < 1, c = μ(1− φ) + δ, β = δ(1− φ)t and εt ∼WN(0, σ2).



3.0.3 Integrated Processes

{yt} is an integrated process of order 1, denoted yt ∼ I(1), if it has the form

yt = yt−1 + ut

where ut is a stationary time series. Clearly, the first difference of yt is stationary

∆yt = ut

Because of the above property, I(1) processes are sometimes called difference
stationary processes.

Starting at y0, by recursive substitution yt has the representation of an inte-
grated sum of stationary innovations

yt = y0 +
tX

j=1

uj.



The integrated sum
Pt
j=1 uj is called a stochastic trend and is denoted TSt.

Notice that

TSt = TSt−1 + ut, TS0 = 0



If ut ∼ IWN(0, σ2) in (??) then yt is called a random walk. In general, an
I(1) process can have serially correlated and heteroskedastic innovations ut.

If yt is a random walk and assuming y0 is fixed then it can be shown that

γ0 = σ2t

γj = (t− j)σ2

ρj =

s
t− j

t

which clearly shows that yt is nonstationary. Also, if t is large relative to j then
ρj ≈ 1. Hence, for an I(1) process, the ACF does not decay at a geometric
rate but at a linear rate as j increases.



An I(1) process with drift has the form

yt = μ+ yt−1 + ut, where ut ∼ I(0)

Starting at t = 0 an I(1) process with drift μ may be expressed as

yt = y0 + μt+
tX

j=1

ut

= TDt + TSt

so that it may be thought of as being composed of a deterministic linear trend
TDt = y0 + μt as well as a stochastic trend TSt =

Pt
j=1 uj.

An I(d) process {yt} is one in which ∆dyt ∼ I(0).

In finance and economics data series are rarely modeled as I(d) process with
d > 2.



Just as an I(1) process with drift contains a linear deterministic trend, an I(2)
process with drift will contain a quadratic trend.



4 Long Memory Time Series

If a time series yt is I(0) then its ACF declines at a geometric rate. As a
result, I(0) process have short memory since observations far apart in time are
essentially independent.

Conversely, if yt is I(1) then its ACF declines at a linear rate and observations
far apart in time are not independent.

In between I(0) and I(1) processes are so-called fractionally integrated I(d)

process where 0 < d < 1. The ACF for a fractionally integrated processes
declines at a polynomial (hyperbolic) rate, which implies that observations far
apart in time may exhibit weak but non-zero correlation. This weak correlation
between observations far apart is often referred to as long memory.



A fractionally integrated white noise process yt has the form

(1− L)dyt = εt, εt ∼WN(0, σ2)

where (1−L)d has the binomial series expansion representation (valid for any
d > −1)

(1− L)d =
∞X
k=0

Ã
d
k

!
(−L)k

= 1− dL+
d(d− 1)
2!

L2 − d(d− 1)(d− 2)
3!

L3 + · · ·

If d = 1 then yt is a random walk and if d = 0 then yt is white noise. For
0 < d < 1 it can be shown that

ρk ∝ k2d−1

as k → ∞ so that the ACF for yt declines hyperbolically to zero at a speed
that depends on d. Further, it can be shown yt is stationary and ergodic for
0 < d < 0.5 and that the variance of yt is infinite for 0.5 ≤ d < 1.



A fractionally integrated process with stationary and ergodic ARMA(p, q) errors

(1− L)dyt = ut, ut ∼ ARMA(p, q)

is called an autoregressive fractionally integrated moving average (ARFIMA)
process.



5 Statistical Tests for Long Memory

Given the scaling property of the autocorrelation function and the fractionally
integrated process representation of a long memory time series, various tests
have been proposed to determine the existence of long memory in a time series.

However, it is important to note that the definition of long memory does not
dictate the general behavior of the autocorrelation function.

Instead, it only specifies the asymptotic behavior when k → ∞. What this
means is that for a long memory process, it is not necessary for the autocorre-
lation to remain significant at large lags as long as the autocorrelation function
decays slowly.



5.1 R/S Statistic

The best-known test for long memory or long range dependence is probably the
rescaled range, or range over standard deviation, or simply R/S statistic, which
was originally proposed by Hurst (1951), and later refined by Mandelbrot and
his coauthors.

The R/S statistic is the range of partial sums of deviations of a time series from
its mean, rescaled by its standard deviation. Specifically, consider a time series
yt, for t = 1, · · · , T . The R/S statistic is defined as:

QT =
1

sT

⎡⎣ max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

⎤⎦
where ȳ = 1/T

PT
i=1 yi and sT =

q
1/T

PT
i=1(yi − ȳ)2.



If yt’s are i.i.d. normal random variables, then

1√
T
QT ⇒ V

where ⇒ denotes weak convergence and V is the range of a Brownian bridge
on the unit interval. Lo (1991) gives selected quantiles of V .



Lo (1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if yt is autocorrelated (has short memory) then the
limiting distribution of QT/

√
T is V scaled by the square root of the long run

variance of yt. To allow for short range dependence in yt, Lo (1991) modified
the R/S statistic as follows:

Q̃T =
1

σ̂T (q)

⎡⎣ max
1≤k≤T

kX
j=1

(yj − ȳ)− min
1≤k≤T

kX
j=1

(yj − ȳ)

⎤⎦
where the sample standard deviation is replaced by the square root of the
Newey-West estimate of the long run variance with bandwidth q.

Lo (1991) showed that if there is short memory but no long memory in yt, Q̃T

also converges to V , the range of a Brownian bridge.



5.2 Estimation of d using R/S Statistic

When there is no long memory in a stationary time series, the R/S statistic
converges to a random variable at rate T 1/2.

However, when the stationary process yt has long memory, Mandelbrot (1975)
showed that the R/S statistic converges to a random variable at rate Td+1/2

for d > 0.

Based on this result, the log-log plot of the R/S statistic versus the sample size
used should scatter around a straight line with slope 1/2 for a short memory
time series.

In contrast, for a long memory time series, the log-log plot should scatter around
a straight line with slope equal to d + 1/2, provided the sample size is large
enough.



To use the R/S statistic to estimate the long memory parameter d, first compute
the R/S statistic using k1 consecutive observations in the sample, where k1
should be large enough.

Then increase the number of observations by a factor of f ; that is, compute
the R/S statistic using ki = fki−1 consecutive observations for i = 2, · · · , s.
Note that to obtain the R/S statistic with ki consecutive observations, one
can actually divide the sample into [T/ki] blocks and obtain [T/ki] different
values, where [·] denotes the integer part of a real number. Obviously, the
larger ki is, the smaller [T/ki] is.

A line fit of all those R/S statistics versus ki, i = 1, · · · , s, on the log-log scale
yields an estimate of d+ 1/2 .



6 Multivariate Time Series

Consider n time series variables {y1t}, . . . , {ynt}. A multivariate time series
is the (n × 1) vector time series {Yt} where the ith row of {Yt} is {yit}.
That is, for any time t, Yt = (y1t, . . . , ynt)

0.

Multivariate time series analysis is used when one wants to model and explain
the interactions and co-movements among a group of time series variables.

In finance, multivariate time series analysis is used to model systems of asset
returns, asset prices and exchange rates, the term structure of interest rates,
asset returns/prices, and economic variables etc.

Many of the time series concepts described previously for univariate time series
carry over to multivariate time series in a natural way. Additionally, there are



some important time series concepts that are particular to multivariate time
series



6.1 Stationary and Ergodic Multivariate Time Series

A multivariate time series Yt is covariance stationary and ergodic if all of its
component time series are stationary and ergodic. The mean of Yt is defined
as the (n× 1) vector

E[Yt] = μ = (μ1, . . . , μn)
0

where μi = E[yit] for i = 1, . . . , n. The variance/covariance matrix of Yt is
the (n× n) matrix

var(Yt) = Γ0 = E[(Yt−μ)(Yt−μ)0]

=

⎛⎜⎜⎜⎝
var(y1t) cov(y1t, y2t) · · · cov(y1t, ynt)

cov(y2t, y1t) var(y2t) · · · cov(y2t, ynt)
... ... . . . ...

cov(ynt, y1t) cov(ynt, y2t) · · · var(ynt)

⎞⎟⎟⎟⎠



The matrix Γ0 has elements γ0ij = cov(yit, yjt). The correlation matrix of Yt
is the (n× n) matrix

corr(Yt) = R0 = D
−1Γ0D

−1

where D is an (n× n) diagonal matrix with jth diagonal element (γ0jj)
1/2 =

SD(yjt).



6.1.1 Cross Covariance and Correlation Matrices

The autocovariances and autocorrelations of yjt for j = 1, . . . , n are defined
as

γkjj = cov(yjt, yjt−k),

ρkjj = corr(yjt, yjt−k) =
γkjj

γ0jj

and these are symmetric in k: γkjj = γ−kjj , ρ
k
jj = ρ−kjj .

The cross lag covariances and cross lag correlations between yit and yjt are



defined as

γkij = cov(yit, yjt−k),

ρkij = corr(yjt, yjt−k) =
γkijq
γ0iiγ

0
jj

and they are not necessarily symmetric in k. In general,

γkij = cov(yit, yjt−k) 6= cov(yit, yjt+k) = cov(yjt, yit−k) = γ−kij



If γkij 6= 0 for some k > 0 then yjt is said to lead yit. Similarly, if γ
−k
ij 6= 0

for some k > 0 then yit is said to lead yjt. It is possible that yit leads yjt and
vice-versa. In this case, there is said to be feedback between the two series.

All of the lag k cross covariances and correlations are summarized in the (n×n)
lag k cross covariance and lag k cross correlation matrices

Γk = E[(Yt−μ)(Yt−k−μ)0]

=

⎛⎜⎜⎜⎝
cov(y1t, y1t−k) cov(y1t, y2t−k) · · · cov(y1t, ynt−k)
cov(y2t, y1t−k) cov(y2t, y2t−k) · · · cov(y2t, ynt−k)... ... . . . ...
cov(ynt, y1t−k) cov(ynt, y2t−k) · · · cov(ynt, ynt−k)

⎞⎟⎟⎟⎠
Rk = D−1ΓkD

−1

The matrices Γk and Rk are not symmetric in k but it is easy to show that
Γ−k= Γ0k and R−k= R

0
k.



6.2 Multivariate Wold Representation

Any (n × 1) covariance stationary multivariate time series Yt has a Wold or
linear process representation of the form

Yt = μ+ εt+Ψ1εt−1+Ψ2εt−2 + · · ·

= μ+
∞X
k=0

Ψkεt−k

whereΨ0 = In and εt is a multivariate white noise process with mean zero and
variance matrix E[εtε0t] = Σ. Ψk is an (n× n) matrix with (i, j)th element
ψkij.

In lag operator notation, the Wold form is

Yt = μ+Ψ(L)εt, Ψ(L) =
∞X
k=0

ΨkL
k



The moments of Yt are given by

E[Yt] = μ, var(Yt) =
∞X
k=0

ΨkΣΨ
0
k



6.2.1 VAR Models

The most popular multivariate time series model is the vector autoregressive
(VAR) model. The VAR model is a multivariate extension of the univariate
autoregressive model. For example, a bivariate VAR(1) model has the formÃ

y1t
y2t

!
=

Ã
c1
c2

!
+

Ã
π111 π112
π121 π122

!Ã
y1t−1
y2t−1

!
+

Ã
ε1t
ε2t

!
or

y1t = c1 + π111y1t−1 + π112y2t−1 + ε1t

y2t = c2 + π121y1t−1 + π122y2t−1 + ε2t

where Ã
ε1t
ε2t

!
∼ iid

ÃÃ
0
0

!
,

Ã
σ11 σ12
σ12 σ22

!!



In the equations for y1 and y2, the lagged values of both y1 and y2 are present.

The general VAR(p) model for Yt = (y1t, y2t, . . . , ynt)
0 has the form

Yt= c+Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p + εt, t = 1, . . . , T



6.3 Long Run Variance

Let Yt be an (n × 1) stationary and ergodic multivariate time series with
E[Yt] = μ. Anderson’s central limit theorem for stationary and ergodic
process states

√
T (Ȳ − μ)

d→ N

⎛⎝0, ∞X
j=−∞

Γj

⎞⎠ , Ȳ
A∼ N

⎛⎝μ, 1
T

∞X
j=−∞

Γj

⎞⎠
Hence, the long-run variance of Yt is T times the asymptotic variance of Ȳ:

lrv(Yt) = T · avar(Ȳ) =
∞X

j=−∞
Γj



Since Γ−j= Γ0j, lrv(Yt) may be alternatively expressed as

lrv(Yt) = Γ0 +
∞X
j=1

(Γj+Γ
0
j)


