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Reading

• APDVP, chapter 12.

• Andersen, Bollerslev, Diebold, Labys (ABDL): “The Distribution of Real-
ized Exchange Rate Volatility” JASA, 2001

• Andersen, Bollerslev, Diebold, Labys: “Modeling and Forecasting Realized
Volatility” ECTA, 2003

• Barndorff-Nielsen and Shephard (BNS): “Estimating Quadratic Variation
Using Realized Variance” JAE 2002

• Barndorff-Nielsen and Shephard: “Econometric Analysis of Realized Volatil-
ity and Its Use in Estimating Stochastic Volatility Models” JRSSB, 2002.



Introduction

• Key problem in financial econometrics: modeling, estimation and forecast-
ing of conditional return volatility and correlation.

— Derivatives pricing, risk management, asset allocation

• Conditional volatility is highly persistent

• Inherent problem: conditional volatility is unobservable

• Traditional latent variable models: ARCH-GARCH, Stochastic volatility
(SV) based on squared returns

— difficult estimation

— high frequency data not utilized

— standardized returns not Gaussian

— Imprecise forecasts

— multivariate extensions are difficult



• New approach uses estimates of latent volatility based on high frequency
data (realized variance measures)

— Volatility is observable

— Traditional time series models are applicable

— High dimensional multivariate modeling is feasible

Construction of Realized Variance Measures

• pi,t = log-price of asset i at time t (aligned to common clock)

— pt = (p1,t, . . . , pn,t)
0 = n× 1 vector of log prices

• ∆ = fraction of a trading session associated with the implied sampling

frequency,

• m = 1/∆ = number of sampled observations per trading session

• T = number of days in the sample ⇒ mT total observations



Example (FX market): Prices are sampled every 30 minutes and trading takes

place 24 hours per day

• m = 48 30-minute intervals per trading day

• ∆ = 1/48 ≈ 0.0208.

Example (Equity market): Prices are sampled every 5 minutes and trading

takes place 6.5 hours per day

• m = 78 5-minutes intervals per trading day

• ∆ = 1/78 ≈ 0.0128.

• Intra-day continuously compounded (cc) returns from time t−1+(j−1)∆
to t− 1 + j∆

ri,t−1+j∆ = pi,t−1+j∆ − pi,t−1+(j−1)∆, j = 1, . . . ,m
rt−1+j∆ = pt−1+j∆ − pt−1+(j−1)∆, j = 1, . . . ,m

• Returns for day t
ri,t = ri,t−1+∆ + ri,t−1+2∆ + · · ·+ ri,t−1+m∆

rt = rt−1+∆ + rt−1+2∆ + · · ·+ rt−1+m∆

• Realized variance (RV) for asset i on day t

RV
(m)
i,t =

mX
j=1

r2i,t−1+j∆, t = 1, . . . , T



• Realized volatility (RVOL) for asset i on day t:

RV OL
(m)
i,t =

r
RV

(m)
i,t

• Realized log-volatility (RLVOL) :

RLV OL
(m)
i,t = ln(RV OL

(m)
i,t )

• The n× n realized covariance (RCOV) matrix on day t

RCOV
(m)
t =

mX
j=1

rt−1+j∆r0t−1+j∆, t = 1, . . . , T

— The n×n matrix RCOV
(m)
t will be positive definite provided n < m

• The realized correlation between asset i and asset j

RCOR
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∙
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t
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• RV measures over h days:

RV
(m)
i,t (h) =

hX
j=1

RV
(m)
i,t+j

RCOV
(m)
i,j,t (h) =

hX
k=1

RCOV
(m)
t+k

Quadratic Return Variation and Realized Variance

Two fundamental questions about RV are:

Q1 What does RV estimate?

Q2 Are RV estimates economically important?



Answers are provided in a number of important papers:

• Andersen, Bollerslev, Diebold, Labys (ABDL): “The Distribution of Real-
ized Exchange Rate Volatility” JASA, 2001

• Andersen, Bollerslev, Diebold, Labys: “Modeling and Forecasting Realized
Volatility” ECTA, 2003

• Barndorff-Nielsen and Shephard (BNS): “Estimating Quadratic Variation
Using Realized Variance” JAE 2002

• Barndorff-Nielsen and Shephard: “Econometric Analysis of Realized Volatil-
ity and Its Use in Estimating Stochastic Volatility Models” JRSSB, 2002.

Continuous time arbitrage-free log-price process

• let p(t) denote the univariate log-price process for a representative asset
defined on a complete probability space (Ω,F , P ), evolving in continuous
time over the interval [0, T ].

• Let Ft be the σ−field reflecting information at time t such that Fs ⊆ Ft
for 0 ≤ s ≤ t ≤ T.

Result: If p(t) is in the class of special semi-martingales then it has the repre-

sentation

p(t) = p(0) +A(t) +M(t), A(0) =M(0) = 0

where A(t) is a predictable drift component of finite variation, and M(t) is a

local martingale. Note: jumps are allowed in both A(t) and M(t).



Example: Arithematic Brownian Motion

dp(t) = μdt+ σdW (t)

W (t) = Standard Brownian Motion

p(t) = p(0) + μ

Z t

0
dt+ σ

Z t

0
dW (t)

= p(0) + μ · t+ σ ·W (t)

Hence

A(t) = μ

Z t

0
dt = μ · t

M(t) = σ

Z t

0
dW (t) = σ ·W (t)

• Let mT be a positive integer indicating the number of return observation

obtained by sampling m = 1/∆ times per day for T days

• The cc return on asset i over the period [t−∆, t] is

r(t, t−∆) = p(t)− p(t−∆)

• The daily cc and cumulative returns are

r(t, t− 1) = p(t)− p(t− 1)
r(t) = p(t)− p(0)



Let ΠM = {0 = t0 < t1 < · · · < tM = t} be any partition of the interval
[0, t] into M intervals and define

kΠMk = max
j=0,...,M−1

(tj+1 − tj)

Definition: The quadratic variation (QV) of the return process from time 0 to

t is

[r](t) = p− lim
kΠMk→0

M−1X
j=0

{p(tj+1)− p(tj)}2 as M →∞

• The QV process measures the realized sample path variation of the squared
return process.

• QV is a unique and invariant ex-post realized volatility measure that is
essentially model free.

Result: QV for an Ito Diffusion Process

Let p(t) be described by the stochastic differential equation

dp(t) = μ(t)dt+ σ(t)dW (t),W (t) = Wiener process,

where μ(t) and σ (t) may be random functions, with daily return process

r(t) =

Z t

0
μ(s)ds+

Z t

0
σ(s)dW (s)

r(t, t− 1) =

Z t

t−1
μ(s)ds+

Z t

t−1
σ(s)dW (s)

Then

[r](t) =

Z t

0
σ(s)ds

QVt ≡ [r](t)− [r](t− 1) =
Z t

t−1
σ(s)ds = IVt

where IVt denotes integrated variance for day t.



Example: QV for Wiener process

p(t) = W (t)

dp(t) = dW (t), σ(t) = 1

Then

[r](t) =

Z t

0
σ(s)ds =

Z t

0
ds = t

QVt =

Z t

t−1
σ(s)ds =

Z t

t−1
ds = 1

The definition of QV implies the following convergence result for semi-martingales:

RV
(m)
t

p→ [r](t)− [r](t− 1) ≡ QVt, as m→∞
That is, daily RV converges in probability to the daily increment in QV. This

answers the first question Q1.

Remark:

• As noted by ABDL, QVt is related to, but distinct from, the daily condi-
tional return variance. That is, in general

QVt 6= var(r(t, t− 1)|Ft−1)



Result (ABDL 2001): If

(i) the price process p(t) is square integrable;

(ii) the mean process A(t) is continuous;

(iii) the daily mean process, {A(s)−A(t−1)}s∈[t−1,t], conditional on informa-
tion at time t is independent of the return innovation process, {M(u)}u∈[t−1,t],

(iv) the daily mean process, {A(s) − A(t − 1)}s∈[t−1,t], is a predetermined
function over [t− 1, t],

then for 0 ≤ t− 1 ≤ t ≤ T

var(r(t, t− 1)|Ft−1) = E[QVt|Ft−1]
That is, the conditional return variance equals the conditional expectation of

the daily QV process.

Note: the ex post value of RV
(m)
t is an unbiased estimator for the conditional

return variance var(r(t, t− 1)|Ft−1) :

E[RV
(m)
t |Ft−1] = E[QVt|Ft−1] = var(r(t, t− 1)|Ft−1)

Therefore, RV
(m)
t is economically important which answers the second ques-

tion Q2.



Remark: The restrictions on the conditional mean process allow for realistic

price processes.

• price process is allowed to exhibit deterministic intra-day seasonal variation.

• mean process can be stochastic as long as it remains a function, over the
interval [t− 1, t], of variables in Ft−1.

• jumps are allowed in the return innovation process M(t)

• leverage effects caused by contemporaneous correlation between return
innovations and innovations to the volatility process are allowed.

Results for Itô processes

Let p(t) be described by the stochastic differential equation

dp(t) = μ(t)dt+ σ(t)dW (t),W (t) = Wiener process

with daily return process

r(t, t− 1) =
Z t

t−1
μ(s)ds+

Z t

t−1
σ(s)dW (s)

Note: There may be leverage effects. That is, σ(t) may be correlated with

W (t). For example,

dσ(t) = μ̃(t)dt+ σ̃(t)dW̃ (t)

cov(dW (t), dW̃ (t)) 6= 0



Recall, the daily increment to QV is given by

QVt =

Z t

t−1
σ2(s)ds = IVt

where IVt denotes daily integrated variance (IV).

Result: Since RV
(m)
t

p→ QVt, it follows that

RV
(m)
t

p→ IVt

Remark: IVt plays a central in option pricing with stochastic volatility (e.g.

Hull and White, 1987)

Result (ABDL (2003)): If the mean process, μ(s), and volatility process, σ(s),

are independent of the Wiener process W (s) over [t− 1, t] then

r(t, t− 1)|σ{μ(s), σ(s)}s∈[t−1,t] ∼ N

µZ t

t−1
μ(s)ds, IVt

¶
where σ{μ(s), σ(s)}s∈[t−1,t] denotes the σ−field generated by (μ(s), σ(s))s∈[t−1,t].

• Since R tt−1 μ(s)ds is generally very small for daily returns and RV (m)t is

a consistent estimator of IVt, for Itô processes daily returns should follow

a normal mixture distribution with RV
(m)
t as the mixing variable. As a

result, returns standardized by realized volatility should be standard normal

rt/RV OL
(m)
t ≈ N(0, 1)

• If there are jumps in dp (t), then RV (m)t
p→ IVt but returns are no longer

conditionally normally distributed.



Asymptotic Distribution Theory for Realized Variance

• For a diffusion process, the consistency of RV (m)t for IVt relies on the

sampling frequency per day, ∆, going to zero.

• Convergence result is not attainable in practice as it is not possible to sam-
ple continuously (∆ is bounded from below by highest observable sampling

frequency)

— Theory suggests sampling as often as possible to get the most accurate

estimate of IVt.

— Market microstructure frictions eventually dominate the behavior of RV

as ∆ → 0, which implies a practical lower bound on ∆ for observed

data. For ∆ > 0, RV
(m)
t will be a noisy estimate of IVt.

Define the error in RV
(m)
t for a given ∆ as

ut(∆) = RV
(m)
t − IVt or RV

(m)
t = IVt + ut(∆)

Result (BNS (2001)): For the Ito diffusion model under the assumption that

mean and volatility processes are jointly independent of W (t),

√
m

ut(∆)√
2 · IQt

=
√
m
(RV

(m)
t − IVt)√
2 · IQt

d→ N(0, 1) as m→∞

where

IQt =

Z t

t−1
σ4(s)ds

is the integrated quarticity (IQ). Hence,

RV
(m)
t

A∼ N

µ
IVt,

2 · IQt

m

¶



Remarks:

• RV
(m)
t converges to IVt at rate

√
m,

• The asymptotic distribution ofRV (m)t is mixed-normal since IQt is random.

• IQt may be consistently estimated using the following scaled version of

realized quarticity (RQ)

RQ
(m)
t =

mX
j=1

r4t−1+j∆

m

3
RQ

(m)
t

p→ IQt as m→∞

• The feasible asymptotic distribution for RV (m)t is

RV
(m)
t

A∼ N

µ
IVt,

2

3
·RQ(m)t

¶
which implies

dSE(RV (m)t ) =

s
2

3
RQ

(m)
t =

vuuut2
3

mX
j=1

r4t−1+j∆



Q: What is asymptotic distribution of RV OL
(m)
t =

r
RV

(m)
t ?

A: Use delta-method

Recall, if θ
A∼ N(θ, V ) and if g(θ) is continuous and differentiable, then g(θ)

A∼
N(g(θ), g0(θ)2 · V )

Let θ = RV
(m)
t and V = 2

3
RQ

(m)
t , and g

µ
RV

(m)
t

¶
=

r
RV

(m)
t =

RV OL
(m)
t .

Then by delta-method

RV OL
(m)
t

A∼ N

⎛⎝pIVt, 2
12

RQ
(m)
t

RV
(m)
t

⎞⎠
which suggests

dSE(RV OL(m)t ) =

vuuut 2

12
· RQ

(m)
t

RV
(m)
t



• BNS find that the finite sample distribution of RV (m)t and RV OL
(m)
t can

be quite far from their respective asymptotic distributions for moderately

sized m.

• Using the delta method BNS show that the asymptotic distribution ofµ
RLV OL

(m)
t

¶2
,

µ
RLV OL

(m)
t

¶2
− ln(IVt)vuut2

3
· RQ

(m)
t

RV
(m)
t

A∼ N (0, 1)

is closer to its finite sample asymptotic distribution than the asymptotic

distributions of RV
(m)
t and RV OL

(m)
t .

• BNS (2004) extend the above asymptotic results to cover the multivariate
case, providing asymptotic distributions for RCOV

(m)
t and RCOR

(m)
i,j,t,

as well as realized regression estimates.

• These limiting distributions are much more complicated than the ones
presented above, and the reader is referred to BNS (2004) for full details

and examples.



Practical Problems in the Construction of RV

• Intra-day prices/quotes are not discrete observations from idealized continuous-
time process

— p̃(t) = p(t) + error(t) = observed price process

— p(t) = true price process

— error(t) represents market microstructure noise (bid/ask bounce, round-

ing, price alignment, inventory effects)

— Existence of error(t) causes serious problems - bias, inconsistency of

RV
(m)
t as m→∞

Empirical Analysis of RV

• See Powerpoint Summary of Some Famous Published Papers by ABDL
and BNS


