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Reading

• MFTS, chapter 19

• FMUND, chapters 6 and 7



Introduction

• Capturing co-movement between financial asset returns with linear corre-
lation has been the staple approach in modern finance since the birth of
Harry Markowitz’s portfolio theory.

• Linear correlation is the appropriate measure of dependence if asset returns
follow a multivariate normal (or elliptical) distribution.

• However, the statistical analysis of the distribution of individual asset re-
turns frequently finds fat-tails, skewness and other non-normal features.
If the normal distribution is not adequate, then it is not clear how to
appropriately measure the dependence between multiple asset returns.



• The theory of copulas provides a flexible methodology for the general mod-
eling of multivariate dependence. The copula function methodology has
become the most significant new technique to handle the co-movement
between markets and risk factors in a flexible way.



Definitions and Basic Properties of Copulas

Let  be a random variable with distribution function (df) () = Pr( ≤
) The density function () is defined by

() =
Z 

−∞
()

 =  0

Let −1 denote the quantile function

() = inf{ | () ≥ }

for  ∈ (0 1)



The following are useful results from probability theory:

• () ∼ (0 1), where (0 1) denotes a uniformly distributed random
variable on (0 1)

• If  ∼ (0 1) then −1 () ∼ 

The latter result gives a simple way to simulate observations from  provided
−1 is easy to calculate.



Let  and  be random variables with marginal dfs (margins)  and  
respectively, and joint df

 ( ) = Pr( ≤   ≤ )

In general, the marginal dfs may be recovered from the joint df via

() =  (∞)  () =  (∞ )

The joint density  is defined by

 ( ) =
2


 ( )

The random variables  and  are independent if

 ( ) = () ()

for all values of  and 



Copulas and Sklar’s Theorem

A bivariate copula is a bivariate df  defined on 2 = [0 1] × [0 1] with
uniformly distributed margins. That is,

( ) = Pr( ≤   ≤ )

where   ∼ (0 1) As a result, it satisfies the following properties

• ( 0) = (0 ) = 1 (1 ) =  ( 1) =  for every   ∈ [0 1]

• 0 ≤ ( ) ≤ 1

• For every 1 ≤ 2 and 1 ≤ 2 and 1 2 1 2 ∈ [0 1] the following
inequality holds: (1 1)− (2 1)− (1 2) + (2 2) ≥ 0



The idea of a copula is to separate a joint df  into a part that describes
the dependence between  and  and parts that only describe the marginal
behavior. To see this,  and  may be transformed into uniform random
variables  and  via  = () and  =  ( ) Let the joint df of
(  ) be the copula  Then, it follows that

 ( ) = Pr( ≤   ≤ )

= Pr(() ≤ ()  ( ) ≤  ())

= (()  ()) = ( )

and so the joint df  can be described by the margins  and  and the
copula  The copula  captures the dependence structure between  and 



Sklar’s Theorem

Let  be a joint df with margins  and   Then there exists a copula
 such that for all   ∈ [−∞∞]

 ( ) = (()  ()) (1)

If  and  are continuous then  is unique. Otherwise,  is uniquely
defined on Range × Range   Conversely, if  is a copula and  and
 are univariate dfs, then  defined in (1) is a joint df with margins 
and  



Remarks

• Sklar’s theorem (Sklar (1959)) above shows that the copula associated with
a continuous df  couples the margins  and  with a dependence
structure to uniquely create   As such, it is often stated that the
copula of  and  is the df  of () and  ()

• The copula  of  and  has the property that it is invariant to strictly
increasing transformations of the margins  and   That is if  and
 are strictly increasing functions then () and  ( )) have the
same copula as  and  This property of copulas is useful for defining
measures of dependence.



Examples of Simple Copulas

If  and  are independent then their copula satisfies

( ) =  · 
This copula is called the independent copula or product copula. Its form follows
from the definition of independence.

Suppose that  and  are perfectly positively dependent or co-monotonic.
This occurs if

 =  ()

and  is a strictly increasing transformation. Then the copula for  and 
satisfies

( ) = min( )

Notice that this is df for the pair () where  ∼ (0 1)



Finally, suppose that  and  are perfectly negatively dependent or counter-
monotonic. This occurs if

 =  ()

and  is a strictly decreasing transformation. Then the copula for  and 
satisfies

( ) = max(+  − 1 0)

The above is the df for the pair ( 1− )

The copulas for co-monotonic and counter-monotonic random variables form
the so-called Fréchet bounds for any copula ( ) :

max(+  − 1 0) ≤ ( ) ≤ min( )



Copula Density

The copula density is defined by

( ) =
2


( )

Let  be a joint df with margins  and  . Then, using the chain-rule,
the joint density of  and  may be recovered using

 ( ) =
2


 ( )

=
2


(()  ())







= (()  ()) · () ()

The above result shows that it is always possible to specify a bivariate density
by specifying the marginal densities and a copula density.



Dependence Measures and Copulas

For two random variables and  four desirable properties of a general, single
number measure of dependence ( ) are:

1. ( ) = ()

2. −1 ≤ ( ) ≤ 1

3. ( ) = 1 if  and  are co-monotonic; ( ) = −1 if  and 
are counter-monotonic



4. If  is strictly monotonic, then

( ()  ) =

(
( )
−( )

 increasing
 decreasing

Remark

The usual (Pearson) linear correlation only satisfies the first two properties.
They show that the rank correlation measures Spearman’s rho and Kendall’s
tau satisfy all four properties.



Pearson’s Linear Correlation

The Pearson correlation coefficient

 =
( )q

()( )

gives a scalar summary of the linear dependence between  and 

If  = +  then  = ±1

If  and  are independent then  = 0



The following are shortcomings of Pearson’s linear correlation:

•  requires that both () and ( ) exist.

•  = 0 does not imply independence. Only if  and  are bivariate normal
does  = 0 imply independence.

•  is not invariant under nonlinear strictly increasing transformations

• marginal distributions and correlation do not determine the joint distribu-
tion. This is only true for the bivariate normal distribution.

• For given marginal distributions  and  ,  ∈ [min max] and it may
be the case that min  −1 and max  1



Concordance Measures

Suppose the random variables  and  represent financial returns or payoffs.
It is often the case that both and  take either large or small values together,
while it is seldom the case that  takes a large value and, at the same time,
 takes a small value (or vice-versa). The concept of concordance is used to
measure this type of association.

• Concordance measures have the useful property of being invariant to in-
creasing transformations of  and 

• Concordance measures may be expressed as a function of the copula be-
tween  and 



• Since the linear correlation  is not invariant to increasing transformations
of  and  it is does not measure concordance.

• Two common measures of concordance are Kendall’s tau statistic and
Spearman’s rho statistic.



Kendall’s tau statistic

Let  be a continuous bivariate cdf, and let (1 1) and (2 2) be two inde-
pendent pairs of random variables from this distribution. The vectors (1 1)
and (2 2) are said to be concordant if 1  2 whenever 1  2 and
1  2 whenever 1  2; and they are said to be discordant in the opposite
case.

Kendall’s tau statistic for the distribution  is a measure of concordance and
is defined as

 = Pr{(1 −2)(1 − 2)  0}− Pr{(1 −2)(1 − 2)  0}



Relationship between Copula and Kendall’s tau

If  is the copula associated with  then it can be shown that

 = 4[(  )] = 4
Z Z

2
 − 1 = 4

Z Z
2
( )( ) − 1

where ( ) is the copula density.

The empirical estimate of  for a sample of size  is the number of the sample’s
concordant pairs minus the number of discordant pairs divided by the total
number of pairs

³
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Spearman’s rho statistic

For a pair of random variables ( ) with joint df  and marginal distrib-
utions  and   Spearman’s rho statistic,  is defined as the (Pearson)
correlation between () and  ( ). It is a measure of rank correlation in
terms of the integral transforms of  and 

For a copula associated with  and  it can be shown that

 = (()  ( )) = 12
Z Z

2
( ) − 3

For a sample of size   may be estimated using

̂ =
12


³
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Tail dependence measures

Tail dependence measures are used to capture dependence in the joint tail of
bivariate distributions.

The coefficient of upper tail dependence is defined as

( ) = lim
→1

Pr(   ( )|   ()

where  () and  ( ) denote the 100 · th percent quantiles of 
and  respectively. Loosely speaking, ( ) measures the probability that
 is above a high quantile given that  is above a high quantile.

Similarly, the coefficient of lower tail dependence is

( ) = lim
→0

Pr( ≤  ( )| ≤  ()

and measures the probability that  is below a low quantile given that  is
below a low quantile.



It can be shown that the coefficients of tail dependence are functions of the
copula  given by

 = lim
→1

1− 2 + ( )

1− 

 = lim
→0

( )



If  ∈ (0 1] then there is upper tail dependence; if  = 0 then there is
independence in the upper tail. Similarly, if  ∈ (0 1] then there is lower tail
dependence; if  = 0 then there is independence in the lower tail.



Elliptical Copulas

Let  be an -dimensional random vector,  ∈ R and Σ a × covariance
matrix. If  has an elliptical distribution then its density is of the form

() = |Σ|−12
³
(− )0Σ−1(− )

´
for some scalar non-negative function (·)Note: the contours of equal density
form ellipsoids in R

The two most common elliptical copula are the normal (Gaussian) and the
Student t.



Normal (Gaussian) Copula

One of the most frequently used copulas for financial modeling is the copula of
a bivariate normal distribution with correlation parameter  defined by

( ) =
Z Φ−1()

−∞


Z Φ−1()

−∞


1

2
q
1− 2

exp

(
−

2 − 2 + 2

2(1− 2)

)

= Φ(Φ
−1()Φ−1()) (2)

where Φ−1(·) is the quantile function of the standard normal distribution, and
Φ is the joint cumulative distribution function of a standard bivariate normal
distribution with correlation coefficient .



The density of the normal copula is given by

( ) =
1

||12
exp

µ
−1
2
0(−1 − 2)

¶
 = (Φ−1()Φ−1())

and  is the correlation matrix between  and  with correlation coefficient 



Remarks

• From Sklar’s theorem, the normal copula generates the bivariate standard
normal distribution if and only if the margins are standard normal. For any
other margins, the normal copula does not generate a bivariate standard
normal distribution.

• For the normal copula, Kendall’s tau and Spearman’s rho are given by

 =
2


arcsin 

 =
6


arcsin



2



• Except for the case  = 1 the normal copula does not display either lower
or upper tail dependence:

 =  =

(
0
1

for   1
for  = 1



Student t Copula

The Student t copula is defined by

( ) = (
−1
 () −1 ())

=
Z −1 ()

−∞

Z −1 ()

−∞

Γ
³
+2
2

´
Γ
³

2

´

q
1− 2

Ã
1 +

0−1


!−+2
2

 = (−1 () −1 ())

where −1 denotes the quantile function of the Student t with  degrees of
freedom.



The density of the Student t copula is

( ) =
1q
||

Γ
³
+2
2

´
Γ
³

2

´
(1 + 1
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2

Γ
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2
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2

and Kentall’s tau is given by

 =
2


arcsin()

Note: The Student t copula exhibits both upper and lower tail dependence.



Archimedean Copulas

Archimedean copulas are copulas that may be written in the form

( ) = −1 [() + ()]

for a function  :  → R+ that is continuous, strictly decreasing, convex and
satisfies (1) = 0

The function  is called the Archimedean generator, and −1 is its inverse
function. The density of an Archimedean copula may be determined using

( ) =
−00 (( ))0()0()¡

0(( ))
¢3

where 0 and 00 denote the first and second derivatives of  respectively.



For an Archimedian copula, Kendall’s tau may be computed using

 = 4
Z


()

0()
 + 1



Gumbel copula

The Gumbel copula with parameter  is given by:

( ) = exp
n
−[(− ln() + (− ln()]1

o
  ≥ 1

and has generator function () = (− ln )

The parameter  controls the strength of dependence. When  = 1 there is
no dependence; when  = +∞ there is perfect dependence.

It can be shown that Kendall’s tau is given by

 = 1− −1

Further, the Gumbel copula exhibits upper tail dependency with

 = 2− 21



Kimeldorf-Sampson (Clayton) copula

The Kimeldorf and Sampson copula or Clayton copula has the following form:

( ) =
³
− + − − 1

´−1
where 0   ∞ and the generator function is

() = − − 1
The parameter  controls the strength of dependence. When  = 0 there is
no dependence; when  = +∞ there is perfect dependence.

Kendall’s tau is given by

 =


 + 2

and it exhibits only lower tail dependency

 = 2
−1



Nonparametric Copula

Deheuvels (1978) proposed the following non-parametric estimate of a copula
 Let (1) ≤ (2) ≤ · · · ≤ () and (1) ≤ (2) ≤ · · · ≤ () be the order

statistics of the univariate samples from a copula . The empirical copula ̂
is defined at the points

³
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by

̂
µ








¶
=
1



X
=1

1{≤()≤()}   = 1 2     

Deheuvels proved that ̂ converges uniformly to  as the sample size tends to
infinity. The empirical copula frequency ̂ is given by

̂
µ








¶
=

(
1

0

if (() ()) is an element of the sample
otherwise



Estimates of Spearman’s rho and Kendall’s tau for a sample of size  may be
computed from the empirical copula using

̂ =
12

2 − 1
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The tail index parameters may be inferred from the empirical copula by plotting

̂() =
1− 2 + ̂( )

1− 

̂() =
̂( )



as functions of  and visually observing convergence as  → 1 and  → 0

respectively.



Maximum Likelihood Estimation

Let (1 1) (2 2)     ( ) denote a random sample from a bivariate
distribution  with marginal distributions  and  (with density functions
 and  ) and copula  with density  The joint density of ( ) may be
represented as

( ;η) = ((;α)  (;α);θ)(;α) (;α)

where α are the parameters for the marginal distribution  α are the
parameters for the the marginal distribution   θ are the parameters for the
the copula density , and η = (α0xα

0
θ

0)0 are the parameters of the joint
density. The exact log-likelihood function is then

(η;xy) =
X
=1

(ln ((;α)  (;α);θ) + ln (;α) + ln  (;α))



and the exact maximum likelihood estimator (MLE) is defined as

η̂= argmaxη
(η;xy)



Inference Functions for Margins Estimation

Instead of maximizing the exact likelihood as a function of η, the copula para-
meters θ may be estimated using a two-stage procedure.

• First, the marginal distributions  and  are estimated. This could be
done using parametric models (e.g. normal or Student-t distributions), the
empirical CDF, or a combination of an empirical CDF with an estimated
generalized Pareto distribution for the tail.

• Next, given estimates ̂ and ̂  form a pseudo-sample of observations
from the copula

(̂ ̂) = (̂() ̂ ())  = 1     



• Then, for a specified parametric copula ( ;θ) with density ( ;θ)
and unknown copula parameters θ the log-likelihood

(θ : û v̂) =
X
=1

ln (̂̂;θ)

is maximized using standard numerical methods.

This two-step method, due to Joe and Xu (1996), is called the inference func-
tions for margins (IFM) method and the resulting estimator of θ is called the
IFM estimator (IFME).

Under standard regularity conditions, the IFME is consistent and asymptotically
normally distributed. In particular Joe (1997) shows that the IFME often nearly
as efficient as the exact MLE.


