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Reading

• APDVP, chapters 13 and 14

• MFTS, chapter 20

• FMUND, chapters 13-17



Continuous Time Stochastic Processes

• A continuous-time continuous stochastic process is defined on a probability
space (ΩF P) where Ω is a nonempty sample space, F is a −field
consisting of subsets of Ω, and P is a probability measure. Such a process
can be written as {( )} where  denotes time and is continuous in
[0∞]

• For a given  ∈ [0∞], ( ) is a real-valued continuous random vari-
able. For a given  ∈ Ω {( )} is a time series with values depending
on the time index 

• For simplicity, ( ) is denoted () instead of  to emphasize that 
is continuous



The Wiener Process

A Wiener process  () (aka a standard Brownian motion process) is a
continuous-time stochastic process with sample paths defined for 0 ≤  ≤ 

that satisfies the following properties:

•  (0) = 0

•  ()− () ∼ (0 − ) whenever   

•  ()− () is independent of  ()− () whenever    ≥   

•  () is a continuous process - there are no jumps in its sample paths



Remarks

1. The independence of the increments ()− () and ()− () is
a random walk property

2. A sample path of  () is continuous in , but not differentiable in !

3. A discretized version of  () can be generated from

 =−1 +
√
∆ 0 = 0  ∼ (0 1)

Divide the interval [0 ] into  increments of length ∆ such that  =
 ·∆ Then

 =
X
=1

√
∆ ∼ (0 )



Donsker’s Theorem for Partial Sums (Functional Central Limit Theorem)

Let {}=1 be a sequence of iid (0 1) random variables. For any  ∈ [0 1]
let [] denote the integer part of  ·  and define the partial sum process

() =
1
√


[]X
=1



Note that () can be thought of as random function of  Then

(·) → (·) as →∞

where  (·) denotes a Wiener process defined on [0 1]



Ito Processes

A process () is called an Ito process if it satisfies

() = (() )+ (() ) ()

(() ) = drift function

(() ) = diffusion function

Such a process is also called a stochastic differential equation (SDE) or a
diffusion process and has solution

() = (0) +
Z 

0
(() )+

Z 

0
(() ) ()

The integral
R 
0 (() ) () is called a stochastic integral



Arithmetic Brownian Motion

This process was introduced by Bachelier (1900) and has the form

() = +  ()

() = (0) + 
Z 

0
+ 

Z 

0
 () = (0) + +  ()

Note: This is not a good process for prices because it can become negative



Geometric Brownian Motion

To ensure positive values of (), consider the following process for ln()

 ln() = (− 1
2
2)+  ()

ln() = ln(0) + (− 1
2
2)+  ()

Here, () given ()    is log-normally distributed. This process is used
in the derivation of the Black-Scholes option pricing model.



Ornstein-Uhlenbeck (OU) Process

Arithmetic and geometric Brownian motion are non-stationary processes for
() This is appropriate if () represents a price process. If () is to
represent an interest rate process then () should be stationary. The simplest
mean-reverting stationary process is the OU process

() = (−())+  ()

(() ) = (−()) (() ) = 

 = mean reversion parameter

 = long-run mean

The OU process is a continuous-time version of an AR(1) process



Cox-Ingersoll-Ross (CIR) Square Root Process

A drawback of the OU process is that it can attain negative values. The CIR
process avoids negative values by modifying the diffusion function of the OU
process

() = (−())+ 
q
() ()

(() ) = (−()) (() ) = 
q
()

 = mean reversion parameter

 = long-run mean

2 ≥ 2 is required to avoid ()→ 0



Review of Non-Stochastic Differentiation

Let () be a differentiable function of the non-stochastic variables  and 
Using Taylor expansion about (+∆  +∆), we have

∆ = (+∆  +∆)−( )

=



∆+




∆ +

1

2

2

2
(∆)2

+
1

2

2


∆∆ +

1

2

2

2
(∆)2 + · · ·

Taking the limit as∆→ 0 and∆ → 0 gives to total derivative (differential)

 =



+








Stochastic Differentiation: Ito’s Lemma

Let () be an Ito process such that

() = (() )+ (() ) ()

and let (() ) be a differentiable function of () and  The Taylor
approximation to the differential is

∆ =



∆ +




∆+

1

2

2

2
(∆)2

+
1

2

2


∆∆+

1

2

2

2
(∆)2 + · · ·

Consider the discretized version of ()

∆ = ∆+ 
√
∆  ∼ (0 1)

Then

(∆)2 = 2(∆)2 + 2∆2 + 2(∆)32 = 2∆2 +((∆)32)



Now,

[2∆2] = 2∆

(2∆2) = [4 (∆)2 4]−[2∆2]2 = 24(∆)2

so that

(∆)2→ 2 as ∆→ 0

Hence, keeping only terms involving∆ and ∆ and taking the limit as ∆→
0 gives

 =



 +




+

1

2

2

2
2



Substituting in  = +  gives Ito’s Lemma:

 =



(+  ) +




+

1

2

2

2
2

=

Ã



+




+
1

2

2

2
2
!
+






=

Ã



(() ) +




+
1

2

2

2
2(() )

!


+



(() ) ()



Example: Let () = () and let ( ()) = ()2 Then




= 2




= 0

2

 2
= 2

and from Ito’s Lemma we have

 =  ()2 =
µ
2 × 0 + 0 + 1

2
× 2× 1

¶
+ 2 × 1× 

= + 2 () ()



Example: Geometric Brownian Motion Again

Let  () be the price of a stock at time , and assume that it follows the
process

 () = ( () )+ ( () ) ()

=  ()+  () ()

where

( () ) =  () ( () ) =  ()

Note that this process for prices is an arithmetic Brownian motion for instan-
taneous returns

 ()

 ()
= +  ()



Suppose we are interested in ( () ) = ln () By Ito’s Lemma




=
1






= 0

2

 2
= − 1

 2

Then

 ln () =

Ã
1

 ()
 ()− 1

2

1

 ()2
2 ()2

!
+

1

 ()
 () ()

=
µ
− 1

2
2
¶
+  ()

Note that

ln () = ln (0) +
Z 

0

µ
− 1

2
2
¶
+ 

Z 

0
 ()

= ln (0) +
µ
− 1

2
2
¶
+  ()



Therefore, the change in log price (continuously compounded return) from time
 to  is normally distributed

ln ( )− ln () ∼ 
µµ

− 1
2
2
¶
( − ) 2( − )

¶
Conditional on ln () ln ( ) is normally distributed

ln ( ) ∼ 
µ
ln () +

µ
− 1

2
2
¶
( − ) 2( − )

¶
so that

[ ( )|] =  exp (( − ))

( ( )|) =  2 exp (2( − ))
h
exp(2( − ))− 1

i



Stochastic Integration

Like usual integration of a deterministic function, integration of a stochastic
function is the opposite of differentiation. For example, let  () be a Wiener
process with increment  () ThenZ 

0
 () = ()− (0) = ()

Next, consider the stochastic integralZ 

0
 () ()

Because  () is not differentiableZ 

0
 () () 6= 1

2
 ()2



Recall, for  ()2 by Ito’s Lemma we have

 ()2 = + 2 () ()⇒

 () () =
1

2

³
 ()2 − 

´
Therefore, Z 

0
 () () =

1

2

Z 

0
 ()2 − 1

2

Z 

0


=
1

2

³
 ()2 − 

´


