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Reading

e APDVP, chapters 13 and 14

e MFTS, chapter 20

e FMUND, chapters 13-17



Continuous Time Stochastic Processes

e A continuous-time continuous stochastic process is defined on a probability
space (€2, F,P), where Q is a nonempty sample space, F is a o—field
consisting of subsets of €2, and P is a probability measure. Such a process
can be written as {X(w,t)}, where t denotes time and is continuous in

[0, oo].

e For a given t € [0,00], X(w,1) is a real-valued continuous random vari-
able. For a given w € Q, { X (w,t)} is a time series with values depending
on the time index ¢

e For simplicity, X (w,t) is denoted X (t) instead of X} to emphasize that ¢
IS continuous



The Wiener Process

A Wiener process W (t) (aka a standard Brownian motion process) is a
continuous-time stochastic process with sample paths defined for 0 < ¢t < T’
that satisfies the following properties:

e W(0)=0

o W(t) —W(s) ~ N(0,t —s) whenever t > s

o W(v)— W(u) is independent of W(t) — W (s) whenever v > u >t > s

e W(t) is a continuous process - there are no jumps in its sample paths



Remarks

1. The independence of the increments W (v) — W (u) and W (t) — W (s) is
a random walk property

2. A sample path of W(t) is continuous in t, but not differentiable in ¢!

3. A discretized version of W (t) can be generated from

Wy =Wi_1+ VAtey, Wy =0, ¢4 ~ N(0,1)

Divide the interval [0, ¢] into T" increments of length At such that ¢t =
T - At. Then

T
Wi = > VAte; ~ N(0,t)
j=1



Donsker’s Theorem for Partial Sums (Functional Central Limit Theorem)

Let {&;}"_1 be a sequence of iid N(0, 1) random variables. For any r € [0, 1]
let [nr] denote the integer part of n - r and define the partial sum process

[ror]

1

Wn(’r') = % Z €4
1=1

Note that Wi, (r) can be thought of as random function of r. Then

Wh(-) <, W(-) asn — oo

where W (-) denotes a Wiener process defined on [0, 1].



Ito Processes

A process X (t) is called an [to process if it satisfies

dX(t) = p(X(t),t)dt + o(X(t),t)dW ()
w(X(t),t) = drift function
o(X(t),t) = diffusion function

Such a process is also called a stochastic differential equation (SDE) or a
diffusion process and has solution

(4 (4
X(t) = X(0) + /O u(X (1), £)dt + /O o(X (1), )dW (1)

The integral [§ (X (t),t)dW (t) is called a stochastic integral



Arithmetic Brownian Motion

This process was introduced by Bachelier (1900) and has the form
dX(t) = pdt+ odW(t)
t t
X(t) = X(0)+ u /O dt + o /O dW (1) = X (0) + pt + oW (2)

Note: This is not a good process for prices because it can become negative



Geometric Brownian Motion

To ensure positive values of X (t), consider the following process for In X (t)
1
dinX(t) = (u— 502)6115 + odW (¢)

In X(t) = InX(0)+ (u— %02)75 + oW (t)

Here, X (t) given X (s), s < t, is log-normally distributed. This process is used
in the derivation of the Black-Scholes option pricing model.



Ornstein-Uhlenbeck (OU) Process

Arithmetic and geometric Brownian motion are non-stationary processes for
X (t). This is appropriate if X(t) represents a price process. If X(t) is to
represent an interest rate process then X (¢) should be stationary. The simplest
mean-reverting stationary process is the OU process

dX(t) = r(a— X(t))dt+ ocdW(t)
w(X(t),t) = rla—X(1)), o(X(t),t) =0
K = mean reversion parameter

a = long-run mean

The OU process is a continuous-time version of an AR(1) process



Cox-Ingersoll-Ross (CIR) Square Root Process

A drawback of the OU process is that it can attain negative values. The CIR
process avoids negative values by modifying the diffusion function of the OU
process

dX(t) = r(a— X(t))dt + o/ X (t)dW ()

WX (),1) = Ka—X(1), o(X(8),t) = o\/X(t)
K = mean reversion parameter
a = long-run mean
2k > o is required to avoid X (t) — 0



Review of Non-Stochastic Differentiation

Let GG(x) be a differentiable function of the non-stochastic variables x and y.
Using Taylor expansion about (z + Ax,y + Ay), we have

AG = G(z+ Az,y+ Ay) — G(z,y)

oG OG 162G
— —Azx+—A

ox v oy y+28 2

1 6°G 182G 2,

- AxA

+28way rAy + ( y) +

Taking the limit as Az — 0 and Ay — 0 gives to total derivative (differential)

dG = 8—de + a—Gdy
ox oy

(Az)?




Stochastic Differentiation: Ito’s Lemma

Let X (¢) be an Ito process such that
dX(t) = p(X(t),t)dt + o(X(t),t)dW(t)

and let G(X(t),t) be a differentiable function of X (¢) and t. The Taylor
approximation to the differential is

oG oG 10%G 5
AG = —AX 4+ —At AX
0X , i ot 3 2(’3 ax2 A%
1 0°G 10°G 2,
— AXAtL + —— (At
+2 0X ot bt 2 Ot? (A8)"+
Consider the discretized version of X (t)

AX = puAt + oV Ate, e ~ N(0,1)

Then
(AX)2 = p2(AL)2 + 2 Ate? + 2uc(At)3 2 = 2 Ate? + O((At)3/?)



Now,
E[c’Ate’] = o2At
var(c?Ate?) = E[o* (At)? e — E[c2Ate?]? = 20*(At)?

so that

(AX)? — o?dt as At — 0
Hence, keeping only terms involving AX and At and taking the limit as At —
0 gives

OG 0G . 10%°G

dG = —dX + —dt + ———52dt
ax T e ™ T oax2”



Substituting in dX = udt + odW gives Ito's Lemma:

oG oG 10%°G ,
dG = —— (pdt+ odW) + —dt + =——o*dt
o (Wt T odW)+ Zrdt + 5T

oG  9G 10%°G , oG
= |Z—p+—+ 0| dt+ —cdW
(aX“+ ot " 20x2° ) T ax?

0X
oG oG 10°G

— (8_XM(X(t), )+t Em02()((75), t)) dt

oG
+8—XJ(X(t)’ t)dW (t)



Example: Let X (t) = W (t) and let G(W (t)) = W (¢)?. Then

and from Ito’s Lemma we have

1
dG = dW(t)2:(2W><O+O+§><2><1)dt+2W><l><dW
= dt +2W(t)dW(t)



Example: Geometric Brownian Motion Again

Let P(t) be the price of a stock at time t, and assume that it follows the

process

dP(t) = u(P(#),t)dt + o(P(t),t)dW (2)
uP(t)dt + o P(t)dW (¢)

where
p(P(t),t) = pP(t), o(P(t),t) = oP(¢)

Note that this process for prices is an arithmetic Brownian motion for instan-
taneous returns
dP(t)

20 = udt + odW (1)



Suppose we are interested in G(P(t),t) = In P(t). By Ito’s Lemma
0G_1 06_ oG 1
oP P ot 9Pz P2

Then

B 1 1 1 5 5
dIn P(t) = (P(t) P(t = P P(t) )dt%—TaP(t)dW(t)

1
= (u - §a2> dt + odW (t)
Note that
¢ 1, ¢
nP(t) = InP(O)—|—/O (,u—aa )dt—l—a/o AW (t)

= InP(0) + (u - %&) t+ oW (t)



Therefore, the change in log price (continuously compounded return) from time
t to 1" is normally distributed

In P(T) — In P(t) ~ N ((u - %02) (T —t),0%(T — t))
Conditional on In P(t), In P(T') is normally distributed

InP(T) ~ N (In P(t) + (u - %02) (T —t),0%(T — t))
so that

E[P(T)|}]] = Prexp(u(T — 1))
var(P(T)|I;) = PZexp(2u(T —t)) exp(o*(T — ) — 1]



Stochastic Integration

Like usual integration of a deterministic function, integration of a stochastic
function is the opposite of differentiation. For example, let W (t) be a Wiener
process with increment dW (t). Then

/0 " AW (s)ds = W(t) — W(0) = W (t)

Next, consider the stochastic integral

/0 "W (1)

Because W (t) is not differentiable

t 1
/0 W)W (t) # SW ()3



Recall, for W (t)? by Ito’s Lemma we have
dW ()2 = dt+2W (¢)dW(t) =
W (t)dW (t) = %(dW(t)z — dt)
Therefore,
/O "Wyaw () — ; / dW ()2 — = / dt
= - (W (t)* —t)



