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1. Derivative Pricing with Continuous-Time Models

2. Derivation of Black-Scholes (BS) SDE

3. BS Implied Volatility

Reading

• APDVP, chapters 13 and 14

• FMUNGD, chapters 10-12



Review

Continuous-time Ito process (stochastic differential equation, SDE)

dX(t) = μ(X(t), t)dt+ σ(X(t), t)dW (t), W (t) = Wiener process

= μdt+ σdW (t)

Ito’s Lemma: For a continuous functional G(X(t), t)
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Application of Ito’s Lemma to Derivative Pricing

Let P (t) denote the continuous-time price process for an asset (e.g. stock)
and assume that it follows a geometric Brownian motion

dP (t) = μP (t)dt+ σP (t)dW (t)⇒

r(t) =
dP (t)

P (t)
= μdt+ σdW (t)

Let G(P (t), t) denote the price of a derivative security contingent on P (t)

(e.g. a call option on a stock).

Q: How to determine the no-arbitrage price of the derivative security?

A: Create a perfect hedge between derivative and underlying asset and use
arbitrage arguments to value hedge portfolio



Creating Hedge Portfolio

Start by using Ito’s Lemma
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and consider discrete approximations to continuous-time results

∆Pt = μPt∆t+ σPt
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∆tεt, εt ∼ N(0, 1)
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Note: both ∆Pt and ∆Gt depend on the same random component t! Hence,
we can create a portfolio of Pt and Gt that eliminates the random component

t.



Hedge Portfolio

Short derivative and long ∂Gt
∂Pt

shares of stock (∂Gt
∂Pt

= hedge “delta”). The
current value of the hedge portfolio is
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Substituting in the previous values for ∆Gt and ∆Pt gives
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Note: ∆Vt does not depend on εt.



Result: Because ∆Vt = −
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∆t is deterministic (no ran-

dom component), under no arbitrage conditions the hedge portfolio Vt must
earn the risk-free rate of return over the time period ∆t

∆Vt
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= rf∆t⇒ ∆Vt = (rf∆t)Vt

rf = risk free rate over ∆t
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Re-arranging gives the Black-Scholes partial differential equation (PDE) for
derivative pricing:
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The solution of the PDE depends on the boundary conditions of the derivative
security.

1. European Call option. Right to purchase stock for exercise price K at
maturity date T

GT = max(PT −K, 0)

2. European Put option. Right to sell stock for exercise price K at maturity
date T

GT = max(K − PT , 0)



Solving the Black-Scholes PDE

The Black-Scholes PDE can be solved in a number of ways

1. Explicitly solve the PDE subject to boundary conditions. Applied Math
types and Physicists are good at this (one type of Wall Street quant).

2. Numerically solve the PDE using approximation methods (e.g. finite dif-
ference methods)

3. Be tricky and use “Risk Neutral” pricing arguments (economists and fi-
nance people like this approach). This approach also lends itself to Monte
Carlo solutions.



Risk Neutral Pricing

Recall, Black and Scholes assume that P (t) follows a geometric Brownian
motion so that the continuous-time rate of return is

r(t) =
dP (t)

P (t)
= μdt+ σdW (t)⇒

E[r(t)] = μdt

For a risky stock, the risk premium per unit time is

E[r(t)]− rfdt = (μ− rf)dt

and, in general, depends on the risk preferences of market participants.



Black and Scholes made the following key observation: The Black-Scholes PDE
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does not depend on the drift parameter μ from the geometric Brownian motion
describing the evolution of P (t). As a result, the solution to the PDE

• DOES NOT DEPEND ON THE RISK PREFERENCES OF MARKET
PARTICIPANTS!!!!!!

This means that the derivative can be priced assuming market participants are
risk neutral. This is the idea behind risk neutral pricing.



Implications of Risk Neutral Pricing

In a risk neutral world

1. The expected rate of return on all assets is the risk-free interest rate rf

2. The present value of any future cash flow is obtained by discounting its
expected value at the risk-free rate

3. Expected future cash flows are computed using risk-neutral probabilities
(more generally, using the risk-neutral probability distribution associated
with the cash flows)



Risk Neutral Pricing of European Call Option

Let G(P (t), t) denote the price at t of a European call option, with exercise
price K and maturity date T, on a stock with price P (t) whose dynamic
behavior is described by geometric Brownian motion. The expected value of
the call option at maturity in a risk neutral world is

E∗[G(P (T ), T )] = E∗ [max(P (T )−K, 0)]

E∗[·] = expectation under risk neutral probabilities

E∗[G(P (T ), T ] =
Z ∞
−∞

G(P (T ), T )f∗(P (T ))dP (T )

Hence, the current value is present value of the expected payoff discounted at
the risk-free rate

G(P (t), t) = e−rf(T−t)E∗ [max(P (T )−K, 0)]



Q: What is the risk neutral probability measure used to compute E∗[·]?

A: Geometric Brownian motion of underlying stock with μ = rf

r(t) =
dP (t)

P (t)
= rfdt+ σdW (t)

Recall, if P (t) follows a geometric Brownian motion with drift rf then by Ito’s
Lemma lnP (t) follows the process

d lnP (t) =

Ã
rf −

σ2

2

!
dt+ σdW (t)

and

lnP (T ) ∼ N

Ã
lnP (t) +

Ã
rf −

σ2

2

!
(T − t), σ2(T − t)

!



As a result, P (T ) given P (t) is log-normally distributed

P (T )|P (t) ∼ LN(lnP (t) +
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E∗[P (T )|P (t)] = P (t)erf(T−t)

var∗(P (T )|P (t)) = P (t)2e2rf(T−t)
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After a bunch of tedious calculus, it can be shown that

G(P (t), t) = P (t)Φ(h+)−Kerf(T−t)Φ(h−)

h+ =
ln(P (t)/K) + (rf + σ2/2)(T − t)

σ
√
T − t

h− = h+ − σ
√
T − t

Φ(·) = std normal CDF

Remarks

• P (t)Φ(h+) = PV of receiving stock if P (T ) > K; Kerf(T−t)Φ(h−) =
PV of paying K for stock if P (T ) > K

• Call option = hedge portfolio that is long Φ(h+) units of stock and short
Kerf(T−t)Φ(h−) units of risk-free bond



Implied Volatility

The Black-Scholes call option formula depends on 5 arguments

P (t), K, rf , T − t, and σ

At time t, all of the arguments are observable EXCEPT σ. For given values of
P (t), K, rf , T − t, define

BSt(σ) = P (t)Φ(h+(σ))−Kerf(T−t)Φ(h−(σ))

This emphasizes that the call option price is fundamentally just a function of
volatility. Given the observed market price of the call option at time t, ct, we
can extract unobserved volatility by solving:

BSt(σBS)− ct = 0

The value σBS is called the Black-Scholes implied volatility.



Remarks

1. σBS can be interpreted as the market’s view on the underlying volatility
of the stock

2. σBS is a forward looking view of volatility because it is based on the
expected behavior of the stock from now until the option matures

3. σBS = f(ct, P (t), K, rf , T − t).

4. If the Black-Scholes model is correct, then σBS should be the same for
options with different strikes, K, and maturity dates, T − t


