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Introduction

e Capturing co-movement between financial asset returns with linear corre-
lation has been the staple approach in modern finance since the birth of
Harry Markowitz's portfolio theory.

e Linear correlation is the appropriate measure of dependence if asset returns
follow a multivariate normal (or elliptical) distribution.

e However, the statistical analysis of the distribution of individual asset re-
turns frequently finds fat-tails, skewness and other non-normal features.
If the normal distribution is not adequate, then it is not clear how to
appropriately measure the dependence between multiple asset returns.

e The theory of copulas provides a flexible methodology for the general mod-
eling of multivariate dependence. The copula function methodology has
become the most significant new technique to handle the co-movement
between markets and risk factors in a flexible way.




Definitions and Basic Properties of Copulas

Let X be a random variable with distribution function (df) F'x(x) = Pr(X <
x). The density function fx(x) is defined by

Fx(@) = [ fx(x)dz

fx = Fx

Let F)?l denote the quantile function
Fx(a) = inf{z | Fx(z) > a}
for a € (0, 1).

The following are useful results from probability theory:

e Fx(x) ~U(0,1), where U(0,1) denotes a uniformly distributed random
variable on (0, 1)

o If U~ U(0,1) then F}(U) ~ Fx

The latter result gives a simple way to simulate observations from F'x provided

Fil is easy to calculate.




Let X and Y be random variables with marginal dfs (margins) F'x and Fy,
respectively, and joint df

Fyy(z,y) =Pr(X <z,Y <)
In general, the marginal dfs may be recovered from the joint df via
Fx(z) = Fxy(»,00), Fy(y) = Fxy(co,y)

The joint density fxy is defined by
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The random variables X and Y are independent if

Fxy(z,y) = Fx(z)Fy(y)

fxy(z,y) = Fxy(z,y)

for all values of x and y.

Copulas and Sklar’'s Theorem

A bivariate copula is a bivariate df C' defined on I? = [0,1] x [0, 1] with
uniformly distributed margins. That is,

C(u,v) =Pr(U <u,V <)
where U,V ~ U(0, 1). As a result, it satisfies the following properties

e C(u,0)=C(0,v) =1, C(1,v) = v, C(u,1) = u for every u,v € [0, 1]
e 0<C(u,v) <1

e For every uy < up, and v1 < vy and uq, up, v1,va € [0, 1], the following
inequality holds: C'(u1,v1) — C(up,v1) — C(u1,v3) + C(ug,v3) >0




The idea of a copula is to separate a joint df F'xy into a part that describes
the dependence between X and Y, and parts that only describe the marginal
behavior. To see this, X and Y may be transformed into uniform random
variables U and V via U = Fx(X) and V = Fy(Y). Let the joint df of
(U, V') be the copula C. Then, it follows that

Fxy(z,y) = Pr(X <z,Y <vy)
= Pr(Fx(X) < Fx(z), Fy(Y) < Fy(v))
= C(Fx(z), Fy(z)) = C(u,v)

and so the joint df F'xy can be described by the margins F'x and Fy- and the
copula C. The copula C' captures the dependence structure between X and Y.

Sklar’'s Theorem

Let F'xy be a joint df with margins F'xr and Fy . Then there exists a copula
C such that for all z,y € [—o0, o]

Fxy(z,y) = C(Fx(z), Fy (y)) (1)
If F'x and Fy are continuous then C' is unique. Otherwise, C is uniquely
defined on Range F'x X Range Fy . Conversely, if C' is a copula and F'x and

Fy- are univariate dfs, then F'xy defined in (1) is a joint df with margins F'x
and Fy.




Remarks

e Sklar's theorem (Sklar (1959)) above shows that the copula associated with
a continuous df F'xy couples the margins F'y and Fy- with a dependence
structure to uniquely create F'xy. As such, it is often stated that the
copula of X and Y is the df C of Fx(z) and Fy (y).

e The copula C of X and Y has the property that it is invariant to strictly
increasing transformations of the margins F'x and Fy-. That is if T'x and
Ty are strictly increasing functions then T'x(X) and Ty (Y)) have the
same copula as X and Y. This property of copulas is useful for defining
measures of dependence.

Examples of Simple Copulas

If X and Y are independent then their copula satisfies
C(u,v) =u-v

This copula is called the independent copula or product copula. Its form follows
from the definition of independence.

Suppose that X and Y are perfectly positively dependent or co-monotonic.
This occurs if

Y = T(X)

and T is a strictly increasing transformation. Then the copula for X and Y
satisfies

C(u,v) = min(u,v)

Notice that this is df for the pair (U, U) where U ~ U(0,1).




Finally, suppose that X and Y are perfectly negatively dependent or counter-
monotonic. This occurs if

Y = T(X)

and T is a strictly decreasing transformation. Then the copula for X and Y
satisfies

C(u,v) = max(u + v — 1,0)
The above is the df for the pair (U,1 — U).

The copulas for co-monotonic and counter-monotonic random variables form
the so-called Fréchet bounds for any copula C(u,v) :

max(u + v —1,0) < C(u,v) < min(u,v)

Copula Density

The copula density is defined by
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15)
c(u,v) = wc(u, v)

Let F'xy be a joint df with margins F'x and Fy-. Then, using the chain-rule,
the joint density of X and Y may be recovered using

82
= F
Ixy(z,y) 920y xv(z,v)
92 OFx OFy
= C(F F: —2

= c(Fx(z), Fy(y)) - fx(x)fy(y)

The above result shows that it is always possible to specify a bivariate density
by specifying the marginal densities and a copula density.




Dependence Measures and Copulas

For two random variables X and Y, four desirable properties of a general, single
number measure of dependence §(X,Y") are:

1. §(X,Y) = 6(Y, X)

2. —1<§(X,Y)<1

3. (X,Y)=1if X and Y are co-monotonic; §(X,Y) = —1if X and Y
are counter-monotonic

4. If T is strictly monotonic, then

B (X,Y) T increasing
5(T(X), Y) - { _5(X, Y) T decreasing

Remark

The usual (Pearson) linear correlation only satisfies the first two properties. The
rank correlations Spearman’s rho and Kendall's tau satisfy all four properties.




Pearson’s Linear Correlation

The Pearson correlation coefficient
cov(X,Y)
\/var(X)var(Y)

gives a scalar summary of the linear dependence between X and Y.

If Y = a+bX then p= +1.

If X and Y are independent then p = 0.

The following are shortcomings of Pearson’s linear correlation:

e p requires that both var(X) and var(Y’) exist.

p = 0 does not imply independence. Only if X and Y are bivariate normal
does p = 0 imply independence.

p is not invariant under nonlinear strictly increasing transformations

marginal distributions and correlation do not determine the joint distribu-
tion. This is only true for the bivariate normal distribution.

For given marginal distributions F'x and Fy, p € [Pmin, Pmax] and it may
be the case that ppj, > —1 and ppa < 1.




Concordance Measures

Suppose the random variables X and Y represent financial returns or payoffs.
It is often the case that both X and Y take either large or small values together,
while it is seldom the case that X takes a large value and, at the same time,
Y takes a small value (or vice-versa). The concept of concordance is used to
measure this type of association.

e Concordance measures have the useful property of being invariant to in-
creasing transformations of X and Y.

e Concordance measures may be expressed as a function of the copula be-
tween X and Y.

e Since the linear correlation p is not invariant to increasing transformations
of X and Y, it is does not measure concordance.

e Two common measures of concordance are Kendall's tau statistic and
Spearman’s rho statistic.




Kendall’s tau statistic

Let I be a continuous bivariate cdf, and let (X1, Y1) and (X5, Y5) be two inde-
pendent pairs of random variables from this distribution. The vectors (X1, Y1)
and (X>, Y?) are said to be concordant if X1 > X5 whenever Y7 > Y5, and
X1 < X2 whenever Y7 < Y5; and they are said to be discordant in the opposite

case.

Kendall's tau statistic for the distribution F' is a measure of concordance and
is defined as
T = Pr{(X1— X2)(Y1 —Y2) > 0} — Pr{(X1 — Xp)(Y1 — Y2) < 0}
E [sign {(X1 — X2)(Y1 — Y2)}]

Relationship between Copula and Kendall’'s tau

If C' is the copula associated with F, then it can be shown that

T =4E[C(U,V)] = 4//12 cdC —-1= 4//12 C(u,v)c(u,v)dudv — 1

where c(u, v) is the copula density.

The empirical estimate of 7 for a sample of size n is the number of the sample’s

concordant pairs minus the number of discordant pairs divided by the total

number of pairs (%) :

1

%:@ S sign ((z;— ;) (vi — v)))

3) 1<i<j<n




Spearman’s rho statistic

For a pair of random variables (X,Y’) with joint df F' and marginal distrib-
utions F'x and Fy, Spearman’s rho statistic, pg, is defined as the (Pearson)
correlation between F'x(X) and Fy(Y'). It is a measure of rank correlation in
terms of the integral transforms of X and Y.

For a copula associated with X and Y, it can be shown that

pg = cor(Fx(X), Fy(Y)) = 12 / /12 C(u, v)dudv — 3

For a sample of size n, pg may be estimated using

1—21) z”: <rank(xz-) — n—2i— 1) (rank(yi) — n—2|— 1>

1=1

ﬁS:n(nz—

Tail dependence measures

Tail dependence measures are used to capture dependence in the joint tail of
bivariate distributions.

The coefficient of upper tail dependence is defined as
(X, Y) = Iim1 Pr(Y > VaR¢(Y)|X > VaRy(X)
q—)

where VaRy(X) and VaRy(Y') denote the 100 - gth percent quantiles of X
and Y, respectively. Loosely speaking, Ay (X, Y") measures the probability that
Y is above a high quantile given that X is above a high quantile.
Similarly, the coefficient of lower tail dependence is
M(X,Y) = IimO Pr(Y < VaRe(Y)|X < VaRy(X)
q—)

and measures the probability that Y is below a low quantile given that X is
below a low quantile.




It can be shown that the coefficients of tail dependence are functions of the

copula C given by
1—29+C(q,9)

Ay = lim
v qg—1 1—g¢q
C
N = lim 229
—0 q

If Ay, € (0, 1], then there is upper tail dependence; if Ay, = O then there is
independence in the upper tail. Similarly, if A\; € (0, 1], then there is lower tail
dependence; if A\; = 0 then there is independence in the lower tail.

Elliptical Copulas

Let X be an n-dimensional random vector, u € R™ and ¥ a n X n covariance
matrix. If X has an elliptical distribution then its density is of the form

f(z) =122 (& — )= Yo — )
for some scalar non-negative function g(-).Note: the contours of equal density

form ellipsoids in R™.

The two most common elliptical copulas are the normal (Gaussian) and the
Student t.




Normal (Gaussian) Copula

One of the most frequently used copulas for financial modeling is the copula of
a bivariate normal distribution with correlation parameter p defined by

C(u,v;p) = /q)_l(U) dx /q)_l(v)d ;exp _x2 — 2pry +y°
P —o0 o op /i 2 2(1-p?)

= (o), o 1(v)) (2)

where ®~1(.) is the quantile function of the standard normal distribution, and
®, is the joint cumulative distribution function of a standard bivariate normal
distribution with correlation coefficient p.

The density of the normal copula is given by

1 1
c(u,v;p) = |R|—1/26XP <—§¢/(R_1 — I2)¢>

Y = (¢7H(u), @ H(v))

and R is the correlation matrix between w and v with correlation coefficient p.




Remarks

e Bivariate distributions whose dependence is captured by the Gaussian cop-
ula are called meta-Gaussian distributions.

e From Sklar’s theorem, the normal copula generates the bivariate standard
normal distribution if and only if the margins are standard normal. For any
other margins, the normal copula does not generate a bivariate standard
normal distribution.

e For the normal copula, Kendall's tau and Spearman’s rho are given by

2 :
T = —arcsinp

71'

6 . p
pg = —arcsin—

0

e Except for the case p = 1, the normal copula does not display either lower
or upper tail dependence:

B ] 0 forp<1
)\L_AU_{l forp=1




Student t Copula

The Student t copula with correlation parameter p and degrees of freedom
parameter ¢ is defined by

Clu,vip,8) = t,5(t5 (u),t5 H(v))
B /tél(u)/té (v) r 6%) (1+¢/R—1¢>5—2F2

1 1
Y o= (t5(u),ty (v))
where t5_1 denotes the quantile function of the Student t with § degrees of
freedom.

The density of the Student t copula is
_ _ 042

_o42
R| r(‘”) ﬂ%:1(1+%¢%) 7

and Kentall's tau is given by

c(u,v; p,d) =

2
T = —arcsin(p)
™

Note: The Student t copula exhibits both upper and lower tail dependence.




Archimedean Copulas

Archimedean copulas are copulas that may be written in the form

C(u,v) = ¢ [p(u) + ¢(v)]
for a function ¢ : I — R that is continuous, strictly decreasing, convex and
satisfies ¢(0) = oo and ¢(1) = 0.

The function ¢ is called the Archimedean generator, and ¢_1 is its inverse
function.

The density of an Archimedean copula may be determined using

—¢" (C(u,v)) ¢/ (u)¢(v)
(¢/(C(u,)))>

c(u,v) =

where ¢’ and ¢ denote the first and second derivatives of ¢, respectively.

For an Archimedian copula, Kendall's tau may be computed using

¢(v)

T=4
1¢'(v)

dv+1




Gumbel copula

The Gumbel copula with parameter § is given by:
C(u,v) = exp {~[(=In(w)’ + (= In(v)’]/°}, 6 > 1
and has generator function ¢(t) = (— Int)?.
The parameter § controls the strength of dependence. When 6 = 1, there is
no dependence; when § = 400 there is perfect dependence.
It can be shown that Kendall's tau is given by
r=1-4"1
Further, the Gumbel copula exhibits upper tail dependency with

Ay =2 - 21/9

Kimeldorf-Sampson (Clayton) copula

The Kimeldorf and Sampson copula or Clayton copula has the following form:

C(u,v) = <u_6 +07 0 — 1>_1/(S

where 0 < § < oo, and the generator function is
p(t)=t""-1

The parameter § controls the strength of dependence. When § = 0, there is
no dependence; when § = 400 there is perfect dependence.

Kendall's tau is given by
)
T = ——
0+ 2
and it exhibits only lower tail dependency

AL =218




Nonparametric Copula

Deheuvels (1978) proposed the following non-parametric estimate of a copula
C. Let U(1) < U(2) <... < U(p) and v(1) < V(2) <... < U(n) be the order
statistics of the univariate samples from a copula C. The empirical copula C'
is defined at the points (Z 1) by

n’n

C <7’ J > 1 zn: 1 ,j=1,2
—H ) = , Ay )= 1,4,...,N.
nn n {ur<ug)op<vgyh ©J
Deheuvels proved that C converges uniformly to C' as the sample size tends to
infinity. The empirical copula frequency ¢ is given by
5 (l l) _ { % if (u(;), v(j)) is an element of the sample

n'n 0 otherwise

Estimates of Spearman’s rho and Kendall's tau for a sample of size n may be
computed from the empirical copula using

- LRG3




The tail index parameters may be inferred from the empirical copula by plotting
1—2q+C(q,9)
1—gq

Ar(g) = C(Z’ )

as functions of g and visually observing convergence as ¢ — 1 and ¢ — 0,

Au(g) =

respectively.

Maximum Likelihood Estimation

Let (x1,v1), (2,92),- .., (xn,yn) denote a random sample from a bivariate
distribution F' with marginal distributions F'x and Fy- (with density functions
fx and fy) and copula C with density c. The joint density of (x;, y;) may be
represented as

f(@isyinm) = co(Fx (24 o), Fy (yis ay); 0) fx (@i ax) fy (245 oy)
where ay are the parameters for the marginal distribution F'x, ay are the
parameters for the the marginal distribution Fy-, @ are the parameters for the
the copula density ¢, and n = (a;,a;,O’)’ are the parameters of the joint
density. The exact log-likelihood function is then

n

(mix,y) = ) (Inc(Fx(z o), Fy (yis ay); 0) + In fx (24 az) + In fy (25 ay))

=1




and the exact maximum likelihood estimator (MLE) is defined as

NN LE= arg max l(m;%x,y)

Inference Functions for Margins Estimation

Instead of maximizing the exact likelihood as a function of 1, the copula para-
meters @ may be estimated using a two-stage procedure.

e First, the marginal distributions F'x and Fy are estimated. This could be
done using parametric models (e.g. normal or Student-t distributions), the
empirical CDF, or a combination of an empirical CDF with an estimated
generalized Pareto distribution for the tail.

e Next, given estimates F’X and ﬁ’y, form a pseudo-sample of observations

from the copula

(45, 9;) = (Fix(z3), Fy (), i=1,...,n




e Then, for a specified parametric copula C(u,v; @) with density c(u, v; 8)
and unknown copula parameters 0, the log-likelihood

n
10 :0,¥) =" Inc(d; d;0)
=1

is maximized using standard numerical methods.

This two-step method, due to Joe and Xu (1996), is called the inference func-
tions for margins (IFM) method and the resulting estimator of 0 is called the
IFM estimator (IFME).

Under standard regularity conditions, the IFME is consistent and asymptotically
normally distributed. In particular Joe (1997) shows that the IFME often nearly
as efficient as the exact MLE.




