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Risk Management

19.1 The Need for Risk Management

The financial world has always been risky, and financial innovations such as
the development of derivatives markets and the packaging of mortgages have
now made risk management more important than ever but also more difficult.

There are many different types of risk. Market risk is due to changes in
prices. Credit risk is the danger that a counterparty does not meet contractual
obligations, for example, that interest or principal on a bond is not paid.
Liquidity risk is the potential extra cost of liquidating a position because
buyers are difficult to locate. Operational risk is due to fraud, mismanagement,
human errors, and similar problems.

Early attempts to measure risk such as duration analysis, discussed in
Section 3.8.1 and used to estimate the market risk of fixed income securities,
were somewhat primitive and of only limited applicability. In contrast, value-
at-risk (VaR) and expected shortfall (ES) are widely used because they can
be applied to all types of risks and securities, including complex portfolios.

VaR uses two parameters, the time horizon and the confidence level, which
are denoted by T and 1 − α, respectively. Given these, the VaR is a bound
such that the loss over the horizon is less than this bound with probability
equal to the confidence coefficient. For example, if the horizon is one week,
the confidence coefficient is 99% (so α = 0.01), and the VaR is $5 million,
then there is only a 1% chance of a loss exceeding $5 million over the next
week. We sometimes use the notation VaR(α) or Var(α, T ) to indicate the
dependence of VaR on α or on both α and the horizon T . Usually, VaR(α) is
used with T being understood.

If L is the loss over the holding period T , then VaR(α) is the αth upper
quantile of L. Equivalently, if R = −L is the revenue, then VaR(α) is minus
the αth quantile of R. For continuous loss distributions, VaR(α) solves

P{L > VaR(α)} = P{L ≥ VaR(α)} = α, (19.1)

and for any loss distribution, continuous or not,
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VaR(α) = inf{x : P (L > x) ≤ α}. (19.2)

As will be discussed later, VaR has a serious deficiency—it discourages
diversification—and for this reason it is being replaced by newer risk measures.
One of these newer risk measures is the expected loss given that the loss
exceeds VaR, which is called by a variety of names: expected shortfall, the
expected loss given a tail event, tail loss, and shortfall. The name expected
shortfall and the abbreviation ES will be used here.

For any loss distribution, continuous or not,

ES(α) =

∫ α

0
VaR(u) du

α
, (19.3)

which is the average of VaR(u) over all u that are less than or equal to α. If
L has a continuous distribution,

ES(α) = E
{
L

∣∣∣L > VaR(α)
}

= E
{
L

∣∣∣L ≥ VaR(α)
}

. (19.4)

Example 19.1. VaR with a normally distributed loss

Suppose that the yearly return on a stock is normally distributed with
mean 0.04 and standard deviation 0.18. If one purchases $100,000 worth of
this stock, what is the VaR with T equal to one year?

To answer this question, we use the fact that the loss distribution is normal
with mean −4000 and standard deviation 18,000, with all units in dollars.
Therefore, VaR is

−4000 + 18,000zα,

where zα is the α-upper quantile of the standard normal distribution. VaR(α)
is plotted as a function of α in Figure 19.1. VaR depends heavily on α and in
this figure ranges from 46,527 when α is 0.025 to 8,226 when α is 0.25.

¤

In applications, risk measures will rarely, if ever, be known exactly as in
these simple examples. Instead, risk measures are estimated, and estimation
error is another source of uncertainty. This uncertainty can be quantified using
a confidence interval for the risk measure. We turn next to these topics.

19.2 Estimating VaR and ES with One Asset

To illustrate the techniques for estimating VaR and ES, we begin with the
simple case of a single asset. In this section, these risk measures are estimated
using historic data to estimate the distribution of returns. We make the as-
sumption that returns are stationary, at least over the historic period we use.
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Fig. 19.1. VaR(α) for 0.025 < α < 0.25 when the loss distribution is normally
distributed with mean −4000 and standard deviation 18,000.

This is usually a reasonable assumption. We will also assume that the returns
are independent. Independence is a much less reasonable assumption because
of volatility clustering, and later we will remove this assumption by using
GARCH models.

Two cases are considered, first without and then with the assumption of
a parametric model for the return distribution.

19.2.1 Nonparametric Estimation of VaR and ES

We start with nonparametric estimates of VaR and ES, meaning that the loss
distribution is not assumed to be in a parametric family such as the normal
or t-distributions.

Suppose that we want a confidence coefficient of 1−α for the risk measures.
Therefore, we estimate the α-quantile of the return distribution, which is the
α-upper quantile of the loss distribution. In the nonparametric method, this
quantile is estimated as the α-quantile of a sample of historic returns, which
we will call q̂(α). If S is the size of the current position, then the nonparametric
estimate of VaR is

V̂aR
np

(α) = −S × q̂(α),

with the minus sign converting revenue (return times initial investment) to
a loss. In this chapter, superscripts and subscripts will sometimes be placed
on VaR and ES to provide information. Here, the superscript “np” means
“nonparametrically estimated.”
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To estimate ES, let R1, . . . , Rn be the historic returns and define Li =
−S ×Ri. Then

ÊS
np

(α) =
∑n

i=1 Li I{Li > V̂aR(α)}∑n
i=1 I{Li > V̂aR(α)}

= −S×
∑n

i=1 Ri I{Ri < q̂(α)}∑n
i=1 I{Ri < q̂(α)} , (19.5)

which is the average of all Li exceeding V̂aR
np

(α). Here I{Li > V̂aR
np

(α)} is
the indicator that Li exceeds V̂aR

np
(α) and similarly for I{Ri < q̂(α)}.

Example 19.2. Nonparametric VaR and ES for a position in an S&P 500 index
fund

As a simple example, suppose that you hold a $20,000 position in an S&P
500 index fund, so your returns are those of this index, and that you want
a 24-hour VaR. We estimate this VaR using the 1000 daily returns on the
S&P 500 for the period ending in April 1991. These log returns are a subset
of the data set SP500 in R’s Ecdat package. The full time series is plotted
in Figure 4.1. Black Monday, with a log return of −0.23, occurs near the
beginning of the shortened time series used in this example.

Suppose you want 95% confidence. The 0.05 quantile of the returns com-
puted by R’s quantile function is −0.0169. In other words, a daily return
of −0.0169 or less occurred only 5% of the time in the historic data, so we
estimate that there is a 5% chance of a return of that size occurring during the
next 24 hours. A return of −0.0169 on a $20,000 investment yields a revenue
of −$337.43, and therefore the estimated V̂aR(0.05, 24 hours) is $337.43.

ES(0.05) is obtained by averaging all returns below −0.0169 and multiply-
ing this average by −20,000. The result is ÊS

np
(0.05) = $619.3.

¤

19.2.2 Parametric Estimation of VaR and ES

Parametric estimation of VaR and ES has a number of advantages. For ex-
ample, parametric estimation allows the use of GARCH models to adapt the
risk measures to the current estimate of volatility. Also, risk measures can be
easily computed for a portfolio of stocks if we assume that their returns have
a joint parametric distribution such as a multivariate t-distribution. Nonpara-
metric estimation using sample quantiles works best when the sample size and
α are reasonably large. With smaller sample sizes or smaller values of α, it is
preferable to use parametric estimation. In this section, we look at parametric
estimation of VaR and ES when there is a single asset.
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Let F (y|θ) be a parametric family of distributions used to model the return
distribution and suppose that θ̂ is an estimate of θ, such as, the MLE com-
puted from historic returns. Then F−1(α|θ̂) is an estimate of the α-quantile
of the return distribution and

V̂aR
par

(α) = −S × F−1(α|θ̂) (19.6)

is a parametric estimate of VaR(α). As before, S is the size of the current
position.

Let f(y|θ) be the density of F (y|θ). Then the estimate of expected shortfall
is

ÊS
par

(α) = −S

α
×

∫ F−1(α|θθθ)

−∞
xf(x|θ̂) dx. (19.7)

The superscript “par” denotes “parametrically estimated.” Computing this
integral is not always easy, but in the important cases of normal and t-
distributions there are convenient formulas.

Suppose the return has a t-distribution with mean equal to µ, scale param-
eter equal to λ, and ν degrees of freedom. Let fν and Fν be, respectively, the
t-density and t-distribution function with ν degrees of freedom. The expected
shortfall is

ÊS
t
(α) = S ×

{
−µ + λ

(
fν{F−1

ν (α)}
α

[
ν + {F−1

ν (α)}2
ν − 1

])}
. (19.8)

The formula for normal loss distributions is obtained by a direct calculation
or letting ν →∞ in (19.8). The result is

ESnorm(α) = S ×
{
−µ + σ

(
φ{Φ−1(α)}

α

)}
, (19.9)

where µ and σ are the mean and standard deviation of the returns and φ
and Φ are the standard normal density and CDF. The superscripts “t” and
“norm” denote estimates assuming a normal return and t-distributed return,
respectively.

Parametric estimation with one asset is illustrated in the next example.

Example 19.3. Parametric VaR and ES for a position in an S&P 500 index
fund

This example uses the same data set as in Example 19.2 so that paramet-
ric and nonparametric estimates can be compared. We will assume that the
returns are i.i.d. with a t-distribution. Under this assumption, VaR is

V̂aR
t
(α) = −S × {µ̂ + qα,t(ν̂)λ̂}, (19.10)
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where µ̂, λ̂, and ν̂ are the estimated mean, scale parameter, and degrees
of freedom of a sample of returns. Also, qα,t(ν̂) is the α-quantile of the t-
distribution with ν̂ degrees of freedom, so that {µ̂ + qα,t(ν̂)λ̂} is the αth
quantile of the fitted distribution.

The t-distribution was fit using R’s fitdistr function and the estimates
were µ̂ = 0.000689, λ̂ = 0.007164, and ν̂ = 2.984. For later reference, the
estimated standard deviation is σ̂ = λ̂

√
ν̂/(ν̂ − 2) = 0.01248.

The 0.05-quantile of the t-distribution with 2.984 degrees of freedom is
−2.3586. Therefore, by (19.6),

V̂aR
t
(0.05) = −20000× {0.000689− (2.3586)(0.007164)} = $323.42.

Notice that the nonparametric estimate, V̂aR
np

(0.05) = $337.55, is similar to
but somewhat larger than the parametric estimate, $323.42.
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Fig. 19.2. t-plot of the S&P 500 returns used in Examples 19.2 and 19.3. The
deviations from linearity in the tails, especially the left tail, indicate that the t-
distribution does not fit the data in the extreme tails. The reference line goes through
the first and third quartiles. The t-quantiles use 2.9837 degrees of freedom, the MLE.
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The parametric estimate of ESt(0.05) is $543.81 and is found by substi-
tuting S = 20,000, α = 0.05, µ̂ = 0.000689, λ̂ = 0.007164, and ν̂ = 2.984 into
(19.8). The parametric estimate of ESt(0.05) is noticeably shorter than the
nonparametric. The reason the two estimates differ is that the extreme left
tail of the returns, roughly the smallest 10 of 1000 returns, is heavier than
the tail of a t-distribution with 2.984 degrees of freedom; see the t-plot in
Figure 19.2.

¤

19.3 Confidence Intervals for VaR and ES Using the
Bootstrap

The estimates of VaR and ES are precisely that, just estimates. If we had
used a different sample of historic data, then we would have gotten different
estimates of these risk measures. We just calculated VaR and ES values to
five significant digits, but do we really have that much precision? The reader
has probably guessed (correctly) that we do not, but how much precision do
we have? How can we learn the true precision of the estimates? Fortunately, a
confidence interval for VaR or ES is rather easily obtained by bootstrapping.
Any of the confidence interval procedures in Section 6.3 can be used. We will
see that even with 1000 returns to estimate VaR and ES, these risk measures
are estimated with considerable uncertainty.

For now, we will assume an i.i.d. sample of historic returns and use model-
free resampling. In Section 19.4 we will allow for dependencies, for instance,
GARCH effects, in the data and we will use model-based resampling.

Suppose we have a large number, B, of resamples of the returns data.
Then a VaR(α) or ES(α) estimate is computed from each resample and for the
original sample. The confidence interval can be based upon either a parametric
or nonparametric estimator of VaR(α) or ES(α). Suppose that we want the
confidence coefficient of the interval to be 1 − γ. The interval’s confidence
coefficient should not be confused with the confidence coefficient of VaR, which
we denote by 1 − α. The γ/2-lower and -upper quantiles of the bootstrap
estimates of VaR(α) and ES(α) are the limits of the basic percentile method
confidence intervals.

It is worthwhile to restate the meanings of α and γ, since it is easy to
confuse these two confidence coefficients, but they need to be distinguished
since they have rather different interpretations. VaR(α) is defined so that the
probability of a loss being greater than VaR(α) is α. On the other hand, γ is
the confidence coefficient for the confidence interval for VaR(α) and ES(α). If
many confidence intervals are constructed, then approximately γ of them do
not contain the true risk measure. Thus, α is about the loss from the invest-
ment while γ is about the confidence interval being correct. An alternative way
to view the difference between α and γ is that VaR(α) and ES(α) are measur-
ing risk due to uncertainty about future losses, assuming perfect knowledge
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of the loss distribution, while the confidence intervals tell us the uncertainty
of these risk measures due to imperfect knowledge of the loss distribution.

Example 19.4. Bootstrap confidence intervals for VaR and ES for a position
in an S&P 500 index fund

In this example, we continue Examples 19.2 and 19.3 and find a confidence
interval for VaR(α) and ES(α). We use α = 0.05 as before and γ = 0.1. B =
5,000 resamples were taken.

The basic percentile confidence intervals for VaR(0.05) were (297, 352)
and (301, 346) using nonparametric and parametric estimators of VaR(0.05),
respectively. For ES(0.05), the corresponding basic percentile confidence in-
tervals were (487, 803) and (433, 605). We see that there is considerable un-
certainty in the risk measures, especially for ES(0.05) and especially using
nonparametric estimation.

The bootstrap computation took 33.3 minutes using an R program and a
2.13 GHz PentiumTM processor running under WindowsTM. The computa-
tions took this long because the optimization step to find the MLE for para-
metric estimation is moderately expensive in computational time, at least if
it is repeated 5000 times.

Waiting over a half an hour for the confidence interval may not be an
attractive proposition. However, a reasonable measure of precision can be ob-
tained with far fewer bootstrap repetitions. One might use only 50 repetitions,
which would take less than a minute. This is not enough resamples to use basic
percentile bootstrap confidence intervals, but instead one can use the normal
approximation bootstrap confidence interval, (6.4). As an example, the normal
approximation interval for the nonparametric estimate of VaR(0.05) is (301,
361) using only the first 50 bootstrap resamples. This interval gives the same
general impression of accuracy as the above basic percentile method interval,
(297, 352), that uses all 5000 resamples.

The normal approximation interval assumes that V̂aR(0.05) is approxi-
mately normally distributed. This assumption is justified by the central limit
theorem for sample quantiles (Section 4.3.1) and the fact that V̂aR(0.05) is
a multiple of a sample quantile. The normal approximation does not require
that the returns are normally distributed. In fact, we are modeling them as
t-distributed when computing the parametric estimates.

¤

19.4 Estimating VaR and ES Using ARMA/GARCH
Models

As we have seen in Chapters 9 and 18, daily equity returns typically have a
small amount of autocorrelation and a greater amount of volatility clustering.
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When calculating risk measures, the autocorrelation can be ignored if it is
small enough, but the volatility clustering is less ignorable. In this section, we
use ARMA/GARCH models so that VaR(α) and ES(α) can adjust to periods
of high or low volatility.

Assume that we have n returns, R1, . . . , Rn and we need to estimate VaR
and ES for the next return Rn+1. Let µ̂n+1|n and σ̂n+1|n be the estimated
conditional mean and variance of tomorrow’s return Rn+1 conditional on the
current information set, which in this context is simply {R1, . . . , Rn}. We
will also assume that Rn+1 has a conditional t-distribution with ν degrees
of freedom. After fitting an ARMA/GARCH model, we have estimates of ν̂,
µ̂n+1|n, and σ̂n+1|n. The estimated conditional scale parameter is

λ̂n+1|n =
√

(ν̂ − 2)/ν̂ σ̂n+1|n. (19.11)

VaR and ES are estimated as in Section 19.2.2 but with µ̂ and λ̂ replaced by
µ̂n+1|n and λ̂n+1|n.

Example 19.5. VaR and ES for a position in an S&P 500 index fund using a
GARCH(1,1) model

An AR(1)/GARCH(1,1) model was fit to the log returns on the S&P 500.
The AR(1) coefficient was small and not significantly different from 0, so a
GARCH(1,1) was used for estimation of VaR and ES. The GARCH(1,1) fit is

Call: garchFit(formula = ~garch(1, 1), data = SPreturn,

cond.dist = "std")

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 7.147e-04 2.643e-04 2.704 0.00685 **

omega 2.833e-06 9.820e-07 2.885 0.00392 **

alpha1 3.287e-02 1.164e-02 2.824 0.00474 **

beta1 9.384e-01 1.628e-02 57.633 < 2e-16 ***

shape 4.406e+00 6.072e-01 7.256 4e-13 ***

The conditional mean and standard deviation of the next return were es-
timated to be 0.00071 and 0.00950. For the estimation of VaR and ES, the
next return was assumed to have a t-distribution with these values for the
mean and standard deviation and 4.406 degrees of freedom. The estimate of
VaR was $277.21 and the estimate of ES was $414.61. The VaR and ES esti-
mates using the GARCH model are considerably smaller than the parametric
estimates in Example 19.2 ($323.42 and $543.81), because the conditional
standard deviation used here (0.00950) is smaller than the marginal standard
deviation (0.01248) used in Example 19.2; see Figure 19.3, where the dashed
horizontal line’s height is the marginal standard deviation and the conditional
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Fig. 19.3. Conditional standard deviation of the S&P 500 returns based on a
GARCH(1, 1) model. The asterisk is at the conditional standard deviation of the
next day’s return after the end of the series, and the height of the horizontal line is
the marginal standard deviation.

standard deviation of the next day’s return is indicated by a large asterisk.
The marginal standard deviation is inflated by periods of higher volatility such
as in October 1987 (near Black Monday) on the left-hand side of Figure 19.3.

¤

19.5 Estimating VaR and ES for a Portfolio of Assets

When VaR is estimated for a portfolio of assets rather than a single asset,
parametric estimation based on the assumption of multivariate normal or t-
distributed returns is very convenient, because the portfolio’s return will have
a univariate normal or t-distributed return. The portfolio theory and factor
models developed in Chapters 11 and 17 can be used to estimate the mean
and variance of the portfolio’s return.

Estimating VaR becomes complex when the portfolio contains stocks,
bonds, options, foreign exchange positions, and other assets. However, when
a portfolio contains only stocks, then VaR is relatively straightforward to
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estimate, and we will restrict attention to this case—see Section 19.10 for
discussion of the literature covering more complex cases.

With a portfolio of stocks, means, variances, and covariances of returns
could be estimated directly from a sample of returns as discussed in Chapter
11 or using a factor model as discussed in Section 17.4.2. Once these estimates
are available, they can be plugged into equations (11.6) and (11.7) to obtain
estimates of the expected value and variance of the return on the portfolio,
which are denoted by µ̂P and σ̂2

P . Then, analogous to (19.10), VaR can be
estimated, assuming normally distributed returns on the portfolio (denoted
with a subscript “P”), by

V̂aR
norm

P (α) = −S × {µ̂P + Φ−1(α)σ̂P }, (19.12)

where S is the initial value of the portfolio. Moreover, using (19.9), the esti-
mated expected shortfall is

ÊS
norm

P (α) = S ×
{
−µ̂P + σ̂P

(
φ{Φ−1(α)}

α

)}
. (19.13)

If the stock returns have a joint t-distribution, then the returns on the
portfolio have a univariate t-distribution with the same degrees of freedom,
and VaR and ES for the portfolio can be calculated using formulas in Section
19.2.2. If the returns on the portfolio have a t-distribution with mean µP ,
scale parameter λP , and degrees of freedom ν, then the estimated VaR is

V̂aR
t

P (α) = −S{µ̂P + F−1
ν (α)λ̂P }, (19.14)

and the estimated expected shortfall is

ÊS
t

P (α) = S ×
{
−µ̂P + λ̂P

(
fbν{F−1bν (α)}

α

[
ν̂ + {F−1bν (α)}2

ν̂ − 1

])}
. (19.15)

Example 19.6. VaR and ES for portfolios of the three stocks in the CRSPday
data set

This example uses the data set CRSPday used earlier in Examples 7.1 and
7.4. There are four variables—returns on GE, IBM, Mobil, and the CRSP
index and we found in Example 7.4 that their returns can be modeled as having
a multivariate t-distribution with 5.94 degrees of freedom. In this example, we
will only the returns on the three stocks. The t-distribution parameters were
reestimated without the CRSP index and ν̂ changed slightly to 5.81.

The estimated mean was

µ̂ = ( 0.0008584 0.0003249 0.0006162 )T
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and the estimated covariance matrix was

Σ̂ =




1.273e− 04 5.039e− 05 3.565e− 05
5.039e− 05 1.812e− 04 2.400e− 05
3.565e− 05 2.400e− 05 1.149e− 04


 .

For an equally weighted portfolio with w = ( 1/3 1/3 1/3 )T, the mean
return for the portfolio is estimated to be

µ̂P = µ̂Tw = 0.0005998

and the standard deviation of the portfolio’s return is estimated as

σ̂P =
√

wTΣ̂w = 0.008455.

The return on the portfolio has a t-distribution with this mean and standard
deviation and the same degrees of freedom as the multivariate t-distribution
of the three stock returns. The scale parameter, using ν̂ = 5.81, is

λ̂P =
√

(ν̂ − 2)/ν̂ × 0.008455 = 0.006847.

Therefore,

V̂aR
t
(0.05) = −S {µ̂P + λ̂P q̂0.05,t(ν̂)} = S × 0.01278,

so, for example, with S = $20,000, V̂aR
t
(0.05) = $256.

The estimated ES using (19.8) and S = $20,000 is

ÊS
t
(0.05) = S ×

{
−µ̂P + λ̂P

(
fbν{q̂0.05,t(ν̂)}

α

[
ν̂ + {q̂0.05,t(ν̂)}2

ν̂ − 1

])}
= $363.

¤

19.6 Estimation of VaR Assuming Polynomial Tails

There is an interesting compromise between using a totally nonparametric es-
timator of VaR as in Section 19.2.1 and a parametric estimator as in Section
19.2.2. The nonparametric estimator is feasible for large α, but not for small
α. For example, if the sample had 1000 returns, then reasonably accurate
estimation of the 0.05-quantile is feasible, but not estimation of the 0.0005-
quantile. Parametric estimation can estimate VaR for any value of α but is
sensitive to misspecification of the tail when α is small. Therefore, a method-
ology intermediary between totally nonparametric and parametric estimation
is attractive.

The approach used in this section assumes that the return density has a
polynomial left tail, or equivalently that the loss density has a polynomial right
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tail. Under this assumption, it is possible to use a nonparametric estimate of
VaR(α0) for a large value of α0 to obtain estimates of VaR(α1) for small
values of α1. It is assumed here that VaR(α1) and VaR(α0) have the same
horizon T .

Because the return density is assumed to have a polynomial left tail, the
return density f satisfies

f(y) ∼ Ay−(a+1), as y → −∞, (19.16)

where A > 0 is a constant and a > 0 is the tail index. Therefore,

P (R ≤ y) ∼
∫ y

−∞
f(u) du =

A

a
y−a, as y → −∞, (19.17)

and if y1 > 0 and y2 > 0, then

P (R < −y1)
P (R < −y2)

≈
(

y1

y2

)−a

. (19.18)

Now suppose that y1 = VaR(α1) and y2 = VaR(α0), where 0 < α1 < α0.
Then (19.18) becomes

α1

α0
=

P{R < −VaR(α1)}
P{R < −VaR(α0)} ≈

(
VaR(α1)
VaR(α0)

)−a

(19.19)

or
VaR(α1)
VaR(α0)

≈
(

α0

α1

)1/a

,

so, now dropping the subscript “1” of α1 and writing the approximate equality
as exact, we have

VaR(α) = VaR(α0)
(α0

α

)1/a

. (19.20)

Equation (19.20) becomes an estimate of VaR(α) when VaR(α0) is replaced
by a nonparametric estimate and the tail index a is replaced by one of the es-
timates discussed soon in Section 19.6.1. Notice another advantage of (19.20),
that it provides an estimate of VaR(α) not just for a single value of α but for
all values. This is useful if one wants to compute and compare VaR(α) for a
variety of values of α, as is illustrated in Example 19.7 ahead. The value of α0

must be large enough that VaR(α0) can be accurately estimated, but α can
be any value less than α0.

A model combining parametric and nonparametric components is called
semiparametric, so estimator (19.20) is semiparametric because the tail index
is specified by a parameter, but otherwise the distribution is unspecified.

To find a formula for ES, we will assume further that for some c < 0, the
returns density satisfies

f(y) = A|y|−(a+1), y ≤ c, (19.21)
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so that we have equality in (19.16) for y ≤ c. Then, for any d ≤ c,

P (R ≤ d) =
∫ d

−∞
A|y|−(a+1) dy =

A

a
|d|−a, (19.22)

and the conditional density of R given that R ≤ d is

f(y|R ≤ d) =
Ay−(a+1)

P (R ≤ d)
= a|d|a|y|−(a+1). (19.23)

It follows from (19.23) that for a > 1,

E
(
|R| ∣∣ R ≤ d

)
= a|d|a

∫ d

−∞
|y|−ady =

a

a− 1
|d|. (19.24)

(For a ≤ 1, this expectation is +∞.) If we let d = −VaR(α), then we see that

ES(α) =
a

a− 1
VaR(α) =

1
1− a−1

VaR(α), if a > 1. (19.25)

Formula (19.25) enables one to estimate ES(α) using an estimate of VaR(α)
and an estimate of a.

19.6.1 Estimating the Tail Index

In this section, we estimate the tail index assuming a polynomial left tail. Two
estimators will be introduced, the regression estimator and the Hill estimator.

Regression Estimator of the Tail Index

It follows from (19.17) that

log{P (R ≤ −y)} = log(L)− a log(y), (19.26)

where L = A/a.
If R(1), . . . , R(n) are the order statistics of the returns, then the number

of observed returns less than or equal to R(k) is k, so we estimate log{P (R ≤
R(k))} to be log(k/n). Then, from (19.26), we have

log(k/n) ≈ log(L)− a log(−R(k)) (19.27)

or, rearranging (19.27),

log(−R(k)) ≈ (1/a) log(L)− (1/a) log(k/n). (19.28)

The approximation (19.28) is expected to be accurate only if −R(k) is
large, which means k is small, perhaps only 5%, 10%, or 20% of the sample
size n. If we plot the points

[{log(k/n), log(−R(k))}
]m

k=1
for m equal to a small

percentage of n, say 10%, then we should see these points fall on roughly
a straight line. Moreover, if we fit the straight-line model (19.28) to these
points by least squares, then the estimated slope, call it β̂1, estimates −1/a.
Therefore, we will call −1/β̂1 the regression estimator of the tail index.
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Hill Estimator

The Hill estimator of the left tail index a of the return density f uses all data
less than a constant c, where c is sufficiently small that

f(y) = A|y|−(a+1) (19.29)

is assumed to be true for y < c. The choice of c is crucial and will be discussed
below. Let Y(1), . . . , Y(n) be order statistics of the returns and n(c) be the
number of Y1 less than or equal to c. By (19.23), the conditional density of Yi

given that Yi ≤ c is
a|c|a|y|−(a+1). (19.30)

Therefore, the likelihood for Y(1), . . . , Y(n(c)) is

L(a) =
(

a|c|a
|Y1|a+1

) (
a|c|a
|Y2|a+1

)
· · ·

(
a|c|a

|Yn(c)|a+1

)
,

and the log-likelihood is

log{L(a)} =
n(c)∑

i=1

{log(a) + a log(|c|)− (a + 1) log(|Y(i)|)}. (19.31)

Differentiating the right-hand side of (19.31) with respect to a and setting the
derivative equal to 0 gives the equation

n(c)
a

=
n(c)∑

i=1

log
(
Y(i)/c

)
.

Therefore, the MLE of a, which is called the Hill estimator, is

âHill(c) =
n(c)∑n(c)

i=1 log
(
Y(i)/c

) . (19.32)

Note that Y(i) ≤ c < 0, so that Y(i)/c is positive.
How should c be chosen? Usually c is equal to one of Y1, . . . , Yn so that

c = Y(n(c)), and therefore choosing c means choosing n(c). The choice involves
a bias–variance tradeoff. If n(c) is too large, then f(y) = A|y|−(a+1) will not
hold for all values of y ≤ c, causing bias. If n(c) is too small, then there will
be too few Yi below c and âHill(c) will be highly variable and unstable because
it uses too few data. However, we can hope that there is a range of values of
n(c) where âHill(c) is reasonably constant because it is neither too biased nor
too variable.

A Hill plot is a plot of âHill(c) versus n(c) and is used to find this range of
values of n(c). In a Hill plot, one looks for a range of n(c) where the estimator
is nearly constant and then chooses n(c) in this range.
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Fig. 19.4. Plots for estimating the left tail index of the S&P 500 returns by regres-
sion. “Slope” is the least-squares slope estimate and “a” is −1/slope.

Example 19.7. Estimating the left tail index of the S&P 500 returns

This example uses the 1000 daily S&P 500 returns used in Examples 19.2
and 19.3. First, the regression estimator of the tail index was calculated. The
values

[{log(k/n), log(−R(k))}
]m

k=1
were plotted for m = 50, 100, 200, and

300 to find the largest value of m giving a roughly linear plot and m = 100
was selected. The plotted points and the least-squares lines can be seen in
Figure 19.4. The slope of the line with m = 100 was −0.506, so a was
estimated to be 1/0.506 = 1.975.

Suppose we have invested $20,000 in an S&P 500 index fund. We will
use α0 = 0.1. VaR(0.1, 24 hours) is estimated to be −$20,000 times the 0.1-
quantile of the 1000 returns. The sample quantile is −0.0117, so V̂aR

np
(0.1,

24 hours) = $234. Using (19.20) and a = 1.975 (1/a = 0.506), we have

V̂aR(α) = 234
(

0.1
α

)0.506

. (19.33)

The solid curve in Figure 19.5 is a plot of V̂aR(α) for 0.0025 ≤ α ≤ 0.25
using (19.33) and the regression estimator of a. The curve with short dashes
is the same plot but with the Hill estimator of a, which is 2.2—see below. The
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Fig. 19.5. Estimation of VaR(α) using formula (19.33) and the regression estimator
of the tail index (solid), using formula (19.33) and the Hill estimator of the tail index
(short dashes), assuming t-distributed returns (long dashes), and assuming normally
distributed returns (dotted). Note the log-scale on the x-axis.

curve with long dashes is VaR(α) estimated assuming t-distributed returns
as discussed in Section 19.2.2, and the dotted curve is estimated assuming
normally distributed returns. The return distribution has much heavier tails
than a normal distribution, and the latter curve is included only to show
the effect of model misspecification. The parametric estimates based on the
t-distribution are similar to the estimates assuming a polynomial tail except
when α is very small. The difference between the two estimates for small α
(α < 0.01) is to be expected because the polynomial tail with tail index 1.975
or 2.2 is heavier than the tail of the t-distribution with ν = a = 2.984. If α is
in the range 0.01 to 0.2, then V̂aR(α) is relatively insensitive to the choice of
model, except for the poorly fitting normal model. This is a good reason for
preferring α ≥ 0.01.

It follows from (19.25) using the regression estimate â = 1.975 that

ÊS(α) =
1.975
0.975

V̂aR(α) = 2.026 V̂aR(α). (19.34)

The Hill estimator of a was also implemented. Figure 19.6 contains Hill
plots, that is, plots of the Hill estimate âHill(c) versus n(c). In panel (a), n(c)
ranges from 25 to 250. There seems to be a region of stability when n(c) is
between 25 and 120, which is shown in panel (b). In panel (b), we see a region
of even greater stability when n(c) is between 60 and 100. Panel (c) zooms in



522 19 Risk Management

50 150 250

1.
2

1.
6

2.
0

(a)

nc

H
ill

 e
st

im
at

or

40 80 120

2.
0

2.
2

2.
4

(b)

nc
H

ill
 e

st
im

at
or

60 80 100

2.
0

2.
2

2.
4

(c)

nc

H
ill

 e
st

im
at

or

Fig. 19.6. Estimation of tail index by applying a Hill plot to the daily returns on the
S&P 500 for 1000 consecutive trading days ending on March 4, 2003. (a) Full range
of nc. (b) Zoom in to nc between 25 and 120. (c) Zoom in further to nc between 60
and 100.

on this region. We see in panel (c) that the Hill estimator is close to 2.2 when
n(c) is between 60 and 100, and we will take 2.2 as the Hill estimate. Thus,
the Hill estimate is similar to the regression estimate (1.975) of the tail index.

The advantage of the regression estimate is that one can use the linearity
of the plots of {(log(k/n),−R(k))}m

k=1 for different m to guide the choice of
m, which is analogous to n(c). A linear plot indicates a polynomial tail. In
contrast, the Hill plot checks for the stability of the estimator and does not
give a direct assessment whether or not the tail is polynomial.

¤

19.7 Pareto Distributions

The Pareto distribution with location parameter c > 0 and shape parameter
a > 0 has density

f(y; a, c) =
{

aca y−(a+1), y > c,
0, otherwise.

(19.35)

The expectation is ac/(a− 1) if a > 1 and +∞ otherwise. The Pareto distri-
bution has a polynomial tail and, in fact, a polynomial tail is often called a
Pareto tail.

Equation (19.30) states that the loss, conditional on being above |c|, has a
Pareto distribution. A property of the Pareto distribution that was exploited
before [see (19.23)] is that if Y has a Pareto distribution with parameters a
and c and if d > c, then the conditional distribution of Y , given that Y > d,
is Pareto with parameters a and d.
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19.8 Choosing the Horizon and Confidence Level

The choice of horizon and confidence coefficient are somewhat interdependent
and depend on the eventual use of the VaR estimate. For shorter horizons
such as one day, a large α (small confidence coefficient = 1− α) would result
in frequent losses exceeding VaR. For example, α = 0.05 would result in a loss
exceeding VaR approximately once per month since there are slightly more
than 20 trading days in a month. Therefore, we might wish to uses smaller
values of α with a shorter horizon.

One should be wary, however, of using extremely small values of α, such
as, values less than 0.01. When α is very small, then VaR and, especially, ES
are impossible to estimate accurately and are very sensitive to assumptions
about the left tail of the return distribution. As we have seen, it is useful to
create bootstrap confidence intervals to indicate the amount of precision in
the VaR and ES estimates. It is also important to compare estimates based
on different tail assumptions as in Figure 19.5, for example, where the three
estimates of VaR are increasingly dissimilar as α decreases below 0.01.

There is, of course, no need to restrict attention to only one horizon or
confidence coefficient. When VaR is estimated parametrically and i.i.d. nor-
mally distributed returns are assumed, then it is easy to reestimate VaR with
different horizons. Suppose that µ̂1day

P and σ̂1day
P are the estimated mean and

standard deviation of the return for one day. Assuming only that returns are
i.i.d., the mean and standard deviation for M days are

µ̂M days
P = Mµ̂1 day

P (19.36)

and
σ̂M days

P =
√

Mσ̂1 day
P . (19.37)

Therefore, if one assumes further that the returns are normally distributed,
then the VaR for M days is

VaRM days
P = −S ×

{
Mµ̂1 day

P +
√

MΦ−1(α)σ̂1 day
P

}
, (19.38)

where S is the size of the initial investment. The power of equation (19.38)
is, for example, that it allows one to change from a daily to a weekly horizon
without reestimating the mean and standard deviation with weekly instead
of daily returns. Instead, one simply uses (19.38) with M = 5. The danger in
using (19.38) is that it assumes normally distributed returns and no autocor-
relation or GARCH effects (volatility clustering) of the daily returns. If there
is positive autocorrelation, then (19.38) underestimates the M -day VaR. If
there are GARCH effects, then (19.38) gives VaR based on the marginal dis-
tribution, but one should be using VaR based on the conditional distribution
given the current information set.

If the returns are not normally distributed, then there is no simple analog
to (19.38). For example, if the daily returns are i.i.d., t-distributed then one
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cannot simply replace the normal quantile Φ−1(α) in (19.38) by a t-quantile.
The problem is that the sum of i.i.d. t-distributed random variables is not
itself t-distributed. Therefore, if the daily returns are t-distributed then the
sum M daily returns is not t-distributed. However, for large values of M and
i.i.d. returns, the sum of M independent returns will be close to normally
distributed by the central limit theorem, so (19.38) could be used for large M
even if the returns are not normally distributed.

19.9 VaR and Diversification

A serious problem with VaR is that it may discourage diversification. This
problem was studied by Artzner, Delbaen, Eber, and Heath (1997, 1999),
who ask the question, what properties can reasonably be required of a risk
measure? They list four properties that any risk measure should have, and
they call a risk measure coherent if it has all of them.

One property among the four that is very desirable is subadditivity. Let
R(P ) be a risk measure of a portfolio P , for example, VaR or ES. Then R
is said to be subadditive, if for any two portfolios P1 and P2, R(P1 + P2) ≤
R(P1) + R(P2). Subadditivity says that the risk for the combination of two
portfolios is at most the sum of their individual risks, which implies that
diversification reduces risk or at least does not increase risk. For example, if
a bank has two traders, then the risk of them combined is less than or equal
to the sum of their individual risks if a subadditive risk measure is used.
Subadditivity extends to more than two portfolios, so if R is subadditive,
then for m portfolios, P1, . . . , Pm,

R(P1 + · · ·+ Pm) ≤ R(P1) + · · ·+ R(Pm).

Suppose a firm has 100 traders and monitors the risk of each trader’s portfolio.
If the firm uses a subadditive risk measure, then it can be sure that the total
risk of the 100 traders is at most the sum of the 100 individual risks. Whenever
this sum is acceptable, there is no need to compute the risk measure for the
entire firm. If the risk measure used by the firm is not subadditive, then there
is no such guarantee.

Unfortunately, as the following example shows, VaR is not subadditive
and therefore is incoherent. ES is subadditive, which is a strong reason for
preferring ES to VaR.

Example 19.8. An example where VaR is not subadditive

This simple example has been designed to illustrate that VaR is not sub-
additive and can discourage diversification. A company is selling par $1000
bonds with a maturity of one year that pay a simple interest of 5% so that
the bond pays $50 at the end of one year if the company does not default. If
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the bank defaults, then the entire $1000 is lost. The probability of no default
is 0.96. To make the loss distribution continuous, we will assume that the loss
is N(−50, 1) with probability 0.96 and N(1000, 1) with probability 0.04. The
main purpose of making the loss distribution continuous is to simplify calcu-
lations. However, the loss would be continuous, for example, if the portfolio
contained both the bond and some stocks. Suppose that there is a second
company selling bonds with exactly the same loss distribution and that the
two companies are independent.

Consider two portfolios. Portfolio 1 buys two bonds from the first company
and portfolio 2 buys one bond from each of the two companies. Both portfolios
have the same expected loss, but the second is more diversified. Let Φ(x; µ, σ2)
be the normal CDF with mean µ and variance σ2. For portfolio 1, the loss
CDF is

0.96 Φ(x; 2000, 4) + 0.04 Φ(x;−100, 4),

while for portfolio 2, by independence of the two companies, the loss distri-
bution CDF is

0.962 Φ(x; 2000, 2) + 2(0.96)(0.04)Φ(x; 950, 2) + 0.042 Φ(x;−100, 2).
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Fig. 19.7. Example where VaR discourages diversification. Plots of the CDF of
the loss distribution. VaR(0.05) is the loss at which the CDF crosses the horizontal
dashed line at 0.95.

We should expect the second portfolio to seem less risky, but VaR(0.05)
indicates the opposite. Specifically, VaR(0.05) is −95.38 and 949.53 for port-
folios 1 and 2, respectively. Notice that a negative VaR means a negative loss
(positive revenue). Therefore, portfolio 1 is much less risky than portfolio 2,
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at least as measured by VaR(0.05). For each portfolio, VaR(0.05) is shown in
Figure 19.7 as the loss at which the CDF crosses the horizontal dashed line
at 0.95.

Notice as well that which portfolio has the highest value of VaR(α) depends
heavily on the values of α. When α is below the default probability, 0.04,
portfolio 1 is more risky than portfolio 2.

¤

Although VaR is often considered the industry standard for risk manage-
ment, Artzner, Delbaen, Eber, and Heath (1997) make an interesting observa-
tion. They note that when setting margin requirements, an exchange should
use a subadditive risk measure so that the aggregate risk due to all customers
is guaranteed to be smaller than the sum of the individual risks. Apparently,
no organized exchanges use quantiles of loss distributions to set margin re-
quirements. Thus, exchanges may be aware of the shortcomings of VaR, and
VaR is not the standard for measuring risk within exchanges.

19.10 Bibliographic Notes

Risk management is an enormous subject and we have only touched upon
a few aspects, focusing on statistical methods for estimating risk. We have
not considered portfolios with bonds, foreign exchange positions, interest rate
derivatives, or credit derivatives. We also have not considered risks other than
market risk or how VaR and ES can be used for risk management. To cover
risk management thoroughly requires at least a book-length treatment of that
subject. Fortunately, excellent books exist, for example, Dowd (1998), Crouhy,
Galai, and Mark (2001), Jorion (2001), and McNeil, Frey, and Embrechts
(2005). The last has a strong emphasis on statistical techniques, and is rec-
ommended for further reading along the lines of this chapter. Generalized
Pareto distributions were not covered here but are discussed in McNeil, Frey,
and Embrechts.

Alexander (2001), Hull (2003), and Gourieroux and Jasiak (2001) have
chapters on VaR and risk management. The semiparametric method of esti-
mation based on the assumption of a polynomial tail and equation (19.20) are
from Gourieroux and Jasiak (2001). Drees, de Haan, and Resnick (2000) and
Resnick (2001) are good introductions to Hill plots.
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19.12 R Lab

19.12.1 VaR Using a Multivariate-t Model

Run the following code to create a data set of returns on two stocks, DATGEN
and DEC.

library("fEcofin")
library(mnormt)
Berndt = berndtInvest[,5:6]
names(Berndt)

Problem 1 Fit a multivariate-t model to Berndt; see Section 7.14.3 for an
example of fitting such a model. What are the estimates of the mean vector,
DF, and scale matrix? Include your R program with your work. Include your
R code and output with your work.

Problem 2

(a) What is the distribution of the return on a $100,000 portfolio that is 30%
invested in DATGEN and 70% invested in DEC? Include your R code and
output with your work.

(b) Find VaRt(0.05) and ESt(0.05) for this portfolio.

Problem 3 Use the model-free bootstrap to find a basic percentile bootstrap
confidence interval for VaR(0.05) for this portfolio. Use a 90% confidence co-
efficient for the confidence interval. Use 250 bootstrap resamples. This amount
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of resampling is not enough for a highly accurate confidence interval, but
will give a reasonably good indication of the uncertainty in the estimate of
VaR(0.05), which is all that is really needed.

Also, plot kernel density estimates of the bootstrap distribution of DF and
VaRt(0.05). Do the densities appear Gaussian or skewed? Use a normality
test to check if they are Gaussian.

Include your R code, plots, and output with your work.

Problem 4 This problem uses the variable DEC. Estimate the left tail index
using the Hill estimator. Use a Hill plot to select nc. What is your choice of
nc? Include your R code and plot with your work.

19.13 Exercies

1. This exercise uses daily BMW returns in the bmwRet data set in the
fEcofin package. Assume that the returns are i.i.d., even though there
may be some autocorrelation and volatility clustering is likely.
(a) Compute nonparametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours).
(b) Compute parametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours) assuming that the returns are normally distributed.
(c) Compute parametric estimates of VaR(0.01, 24 hours) and ES(0.01,

24 hours) assuming that the returns are t-distributed.
(d) Compare the estimates in (a), (b), and (c). Which do you feel are most

realistic?
2. Assume that the loss distribution has a polynomial tail and an estimate

of a is 3.1. If VaR(0.05) = $252, what is VaR(0.005)?
3. Find a source of stock price data on the Internet and obtain daily prices

for a stock of your choice over the last 1000 days.
(a) Assuming that the loss distribution is t, find the parametric estimate

of VaR(0.025, 24 hours).
(b) Find the nonparametric estimate of VaR(0.025, 24 hours).
(c) Use a t-plot to decide if the normality assumption is reasonable.
(d) Estimate the tail index assuming a polynomial tail and then use the es-

timate of VaR(0.025, 24 hours) from part (a) to estimate VaR(0.0025,
24 hours).

4. This exercise uses daily data in the msft.dat data set in the fEcofin
package. Use the closing prices to compute daily returns. Assume that
the returns are i.i.d., even though there may be some autocorrelation and
volatility clustering is likely. Use the model-free bootstrap to find 95%
confidence intervals for parametric estimates of VaR(0.005, 24 hours) and
ES(0.005, 24 hours) assuming that the returns are t-distributed.
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5. Suppose the risk measure R is VaR(α) for some α. Let P1 and P2 be
two portfolios whose returns have a joint normal distribution with means
µ1 and µ2, standard deviations σ1 and σ2, and correlation ρ. Suppose the
initial investments are S1 and S2. Show that R(P1+P2) ≤ R(P1)+R(P2).1

6. The problem uses daily stock price data in the file Stock_FX_Bond.csv
on the book’s website. In this exercise, use only the first 500 prices on
each stock. The following R code reads the data and extracts the first
500 prices for five stocks. “AC” in the variables’ names means “adjusted
closing” price.

dat = read.csv("Stock_FX_Bond.csv",header=T)

prices = as.matrix(dat[1:500,c(3,5,7,9,11)])

(a) What are the sample mean vector and sample covariance matrix of
the 499 returns on these stocks?

(b) How many shares of each stock should one buy to invest $50 million in
an equally weighted portfolio? Use the prices at the end of the series,
e.g., prices[,500].

(c) What is the one-day VaR(0.1) for this equally weighted portfolio? Use
a parametric VaR assuming normality.

(d) What is the five-day Var(0.1) for this portfolio? Use a parametric
VaR assuming normality. You can assume that the daily returns are
uncorrelated.

1 This result shows that VaR is subadditive on a set of portfolios whose returns have
a joint normal distribution, as might be true for portfolios containing only stocks.
However, portfolios containing derivatives or bonds with nonzero probabilities of
default generally do not have normally distributed returns.
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