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Risk Management and VaR

Until quite recently, the variance was a widely accepted measure of risk. It is
very easy to understand and to compute. A shortcoming of this measure is
that it is a symmetric one, in the sense that large gains and losses are equally
penalized. Financial institutions however are much more concerned by large
losses than by large gains.

Financial and regulatory institutions realized that there are many different
sources of risk. These sources of risk have been progressively more precisely de-
scribed and understood. For instance, three major types of risk are nowadays
acknowledged; market risk, credit risk, and operational risk. Step by step, the
Basel Committee on Banking Supervision (BCBS), at the Bank of Interna-
tional Settlements, imposes new capital requirements to financial institutions
to cover these different sources of risk. The first step was the implementation of
new standards for computing the exposition to risk and for measuring margin
requirements. While the initial 1988 Basel Accord only covered credit risk, in
the 1996 Amendment to the Capital Accord to Incorporate Market Risks, the
BCBS incorporates market risk and explicitly introduces the Value-at-Risk as
the main quantitative tool for financial institutions to calculate their capital
requirement. VaR then became one of the widely used measures of market
risk in the risk-management and fund-management industries.

Let 6 denote a small percentage. Then the VaR of a portfolio can be de-
fined as the minimum potential loss that the portfolio can suffer in the 6%
worst cases, over a given time horizon. Therefore, from a statistical point of
view, the VaR is a quantile on the lower tail of the distribution of portfolio re-
turns. Since its naming by the BCBS, the VaR is an actively researched topic,
because it raises several interesting theoretical issues and has important im-
plications for financial institutions. Early work on VaR has been done by J.P.
Morgan (1996), Jorion (1997), Duffie and Pan (1997). J.P. Morgan, through
its RiskMetrics methodology, has played an important role in the increasing
popularity of VaR as a risk measure. Then, a huge literature emerged on
the practical estimation of the VaR. Several approaches have been proposed
to provide a precise evaluation of this measure. These approaches have been
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based, for instance, on the use of univariate or multivariate GARCH models,
on the modeling of the tails of the distribution, and on the modeling of non-
normality. Interestingly, most of the elements needed for such computation
have been analyzed in the previous chapters.

More recently, the VaR has been shown to be a potentially misleading
measure of risk. A first criticism is that VaR is not a coherent measure because
it does not satisfy the sub-additivity property, so that diversification does
not necessarily result in a reduction of risk, as measured by VaR (see below
for more formal definitions). Perhaps more importantly, it has been argued
(BIS Committee on the Global Financial System, 2000) that VaR (as well as
variance) misregards the risk of extreme loss. As has been highlighted by Basak
and Shapiro (2001), because VaR disregards risk of extreme losses behind the
confidence level, it may induce large losses. Consequently, this measure of risk
may induce a larger risk exposure than the variance in case of falling markets.
To cope with these shortcomings, some authors (Artzner et al., 1999, Basak
and Shapiro, 2001) have proposed the use of the so-called Expected Shortfall
(ES) as an alternative measure of risk. ES is the expected value of the loss of
the portfolio in the 8% worst cases over a given time horizon.

This chapter is organized as follows. Section 8.1 defines the two main no-
tions we are going to analyze in this chapter, namely the VaR and the ES
of a portfolio. The following sections are devoted to the practical evaluation
of VaR as well as ES. There are actually four broad categories of VaR mod-
els: historical simulation (Section 8.2); semi-parametric models (Section 8.3),
parametric models (Section 8.4); and finally non-linear techniques, which are
designed to compute the VaR in presence of derivatives (Section 8.5). In the
last section, we provide some tools to compare the performances of the various
techniques developed in the previous sections.

8.1 Definitions and measures

8.1.1 Definitions

Let us now formally define the notions of VaR and ES. The VaR at proba-
bility 6 € (0,1) of a portfolio is defined as the minimum potential loss that
the portfolio may suffer in the 6% worst cases, over a given time horizon. We
define P;; the price at date t of asset ¢, so that the return of asset ¢ between
date ¢t — 1 and date ¢ is r;y = (Piy — Pi4—1) /Pit—1. Then the value of the
portfolio at date t, for a vector Ny that contains the number of shares in asset
1, is simply given by W; = Zé_l N, +P;; = N{P,. If we assume that portfolio
composition is held constant from ¢ to ¢ + 1, the change in the market value
of the portfolio is given by Wiy1 — Wy = N/ (Piy1 — P;). We deduce that

(Wt+1 - Wt) /Wt = 04;7’:5+1 = Tp,t+1, where ;¢ = Ni,tPi,t/ (Zizl Ni,tPi,t)-

We denote the wealth of the investor for a portfolio weight vector «; as
Wt (at) .
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Value at Risk

If we denote AWiyq () = Wipr (o) — Wi () the VaR of a portfolio is
defined by the relation

0 =Pr [AW,y1 (ar) < —VaRg,| 7],
where F; denotes the information set at date ¢. Alternatively, we have'

AWt+1 (Olt) < VaRH,t

0 - Pr Wt (Oét) - _Wt (Oét)

|Fi| =Prrpe1 < —VaRg | F],

where VaRg , (rp1+1) = VaRg /W, (o) denotes the VaR for probability 6 for
$1 invested. In the following, it will be our definition of VaR. If we also define
the conditional cdf F,; (z) = Prlrp, < x|F;_1], with F,} the inverse of the
conditional cdf, we observe that

VaRg; = —F, ' (0).

pit

This expression indicates that the VaR of the portfolio at time ¢ for the next
period is (minus) the #-quantile of the conditional cdf of the portfolio return.
Evidently, if we assume that returns are iid, the VaR is constant over time and
is simply given by the inverse of the unconditional cdf: VaRy = prfl R
where F), (z) = Pr[r,; < z] is the (assumed to be continuous) cdf of the port-
folio return. Computing the VaR therefore “reduces” to estimating a quantile
of the conditional distribution of the portfolio return. Notice that this cdf is
very likely to be time varying. One reason is that the volatility of returns
varies over time, see also Chapter 2.

The distribution of the portfolio return can also be described as depending
on the joint distribution of asset returns. This brings about two fashions to
consider the VaR and ES. A first one, that we will call portfolio approach will
consider the distribution of an aggregate return. The second one will consider
the induividual assets in an approach that we call the asset approach. In
fact, the use of the asset-level approach is worthy to be considered, because
it may be used for more in-depth analysis. This point has been outlined by
Gouriéroux, Laurent, and Scaillet (2000). For instance, it allows computing
the sensitivity of the portfolio VaR to changes in the weights of the portfolio.
Ultimately, it can be used to directly optimize the weights of the portfolio
under VaR constraints (see for instance, Huisman, Koedijk, and Pownall, 1999,
or Krokhmal, Palmquist, and Uryasev, 2002). This issue is also addressed in
Section 9.2. Notice that a reduction of the dimensionality can be attained by

my, the VaR is defined as
VaRg: = —sup{z|Pr[rp+1 < x] < 6},

because the cdf may be constant over some interval. We use simpler notations
for ease of exposition.
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defining some factors supposed to capture the main sources of risk affecting
the portfolio return.

To estimate the VaR of a large portfolio over time, we can adopt several
approaches. The first approach is based on the computation of the VaR of the
portfolio. An obvious advantage of such an approach is that it avoids model-
ing the joint dynamics of asset returns. A drawback is that it will probably
miss some important links between asset returns such as the time-varying cor-
relation. The second set of approaches is based on the modeling of the joint
distribution of asset returns.

In general, the VaR is computed over a time horizon k (10 day, for in-
stance). In such a case, we have, assuming the position is held constant over
the horizon, the following definition for the multi-period VaR

AWt+k (at) < _ VaR97t:t+k

9 - Pr Wt (Oét) - Wt (Oét)

=Pr [Tp,t (k] < _VaRe,t:tJrk] )

where 7[k] is the cumulative return between ¢ and ¢ + k and we defined the
VaR for 18 invested as VaRg .ok = VaRg 1441/ Ws (o). To obtain the multi-
period VaR, we therefore need an estimate of the conditional distribution of
the multi-period portfolio return r, ; [k].

Coherent measure of risk

Artzner et al. (1997, 1999) proposed a set of conditions that a coherent mea-
sure of risk should satisfy:

Definition 8.1. Let V' be a set of real-valued random variables (typically, the
net final wealth). The function p : V. — R is a coherent risk measure if it
safisties:

1. Translation invariance: X € V, a € R, then p (X +

2. Sub-additivity: X, Y € V, then p(X +Y) <p(X)+p(Y).
3. Positive homogeneity: X € V, X >0, then p(AX) = Ap(X).
>

Translation invariance means that if we add a sure amount « to the po-
sition, it will decrease the risk measure by a. Sub-additivity implies that the
risk of a portfolio constituted of two sub-portfolios is smaller than the sum
of the risk of the two sub-portfolios. Positive homogeneity means that if we
increase the size of the portfolio by a factor A with the same weights, we in-
crease the risk measure by the same factor A. Monotonicity means that the
risk is greater for more negative random outcomes.

They then show that the VaR fails to be a coherent measure because it
does not satisfy the sub-additivity property, so that diversification does not
necessarily result in a reduction of risk as measured by VaR. Perhaps more
importantly, it has been argued (BIS Committee on the Global Financial
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System, 2000) that VaR (as well as variance) misregards the risk of extreme
loss. As has been highlighted by Basak and Shapiro (2001), because VaR
disregards risk of extreme losses behind the confidence level, it may induce
large losses. Consequently, this measure may induce a larger risk exposure
than the variance in case of down markets.

Expected Shortfall

To cope with these shortcomings, Artzner et al. (1999) and Basak and Shapiro
(2001) propose the use of the so-called Expected Shortfall (ES) as an alterna-
tive measure of risk. Notice that the terminology is still not clearly established,
because Conditional Expected Loss, Conditional VaR, or Tail Conditional Ex-
pectations are very closely related notions. ES is the expected value of the loss
of the portfolio in the 8% worst cases over a given time horizon

ﬁg’t = —E [AWt+1 (Oét) |AWt+1 (O[t) S —VaRg’t] .

Alternatively, we have?

ESp: =

Ei;S'g,t - _E |:AWH_1 (Oét) ‘AWt-&-l (Oét) < —VaRgt

Wi (o) Wi () Wi (o)
=—F [rp,t|rp,t < —VaRg’t],

where E'Sg; denotes the ES for probability 8 for 18§ invested.

The main advantages of the ES for asset allocation are the following: (i) ES
is a coherent measure of risk, because it satisfies the sub-additivity property
and consequently can be reduced by diversification; (ii) ES directly controls
the risk in the left tail of the distribution, so that extreme losses are explicitly
taken into account in the allocation process.

An additional advantage of ES over VaR from an asset allocation point of
view is that portfolio optimization is easier to implement with ES objectives
than with VaR objectives. The reason is that ES is convex, so that the problem
can be solved by linear programming techniques, once the cdf has been ap-
proximated by its empirical counterpart (see Rockafellar and Uryasev, 2000,
Krokhmal, Palmquist, and Uryasev, 2002, Rockafellar and Uryasev, 2002).
Fermanian and Scaillet (2005) discuss how the VaR and the ES of a portfolio
vary when the weights of the portfolio are slightly altered. See Section 9.2 for
additional details on the asset allocation under expected shortfall constraints.

2 Rigorously, the ES is defined as (see Acerbi and Tasche, 2001)

1
ESe,t = —5 (E [Tp7t|’l“p,t S —VCLRo?t] - VaRg,t Pr [Tp’t § —VaRQ,t] — 9) .
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8.1.2 Models for portfolio returns

To summarize, computing the VaR or ES of a portfolio requires the following
elements:

the probability 6,

the horizon of the investment k,

the value Wy () of the portfolio at date ¢,
the cdf of the portfolio return.

The first three elements are given in practice, and the main task consists
in estimating the cdf of the portfolio return.

As argued before, there is a huge literature on how to compute the VaR
of a portfolio. One reason is probably that VaR involves several dimensions
that can be dealt with using completely different approaches.

A first issue is the aggregation level. For a mere measure of the VaR,
using a time series of portfolio returns is in general enough. In contrast, if
we are interested in active portfolio management, it is more appropriate to
evaluate the VaR for asset returns.? In such a case, however, we face a problem
of dimensionality, because actual portfolios may include several hundreds of
assets.

A second issue is the choice of the model to estimate the conditional dis-
tribution of portfolio returns. For instance, the VaR is a high quantile. So
it may be natural to estimate it using an approach that specifically focuses
on the tails of the distribution (such as the EVT). But at the same time, it
is known that the distribution of returns varies over time, in particular be-
cause of changes in volatility. Therefore, it is also of importance to correctly
describe how the return distribution evolves through time. There are four
broad categories of VaR models that we will discuss below: Historical simula-
tion, semi-parametric models (such as Extreme Value Theory and CAViaR),
parametric models (such as RiskMetrics and GARCH models), and finally
non-linear techniques that are designed to compute the VaR in presence of
derivatives.

Another issue is the fact that the portfolio value may be non-linearly
affected by changes in asset prices, for instance when derivative assets are
included in the portfolio. The difficulty is that in many cases, historical data
is not available. In such cases, non-linear methods, based on Taylor’s approx-
imation of the portfolio value or on Monte Carlo simulations, may be used.
See Section 8.5.

For large-scale portfolios, such as those managed in financial institutions,
simultaneously modeling the joint dynamic of all asset returns may simply be
impossible. In such cases, it is preferable to work with a reduced number of
base assets (or risk factors) that are thought to drive risks. Adding risk factors

3 The portfolio-level approach is not appropriate for measuring the effect on the
VaR of a change in the portfolio weights.
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is analytically more demanding, because it requires an additional layer in the
modeling step, but it is likely to reduce the eventual computational burden
very significantly. Obviously, in such an approach, the main tasks consist in
identifying the factors that may capture the various sources of risk and then
in modeling their joint dynamics.

8.2 Historical simulation

Historical simulation is probably the simplest and most widely used approach
for computing VaR and ES. It is fundamentally non-parametric, in the sense
that it does not require any assumption about the distribution of returns.
The method works as follows: Assume that a sample of T' past realizations
{ry,---,rr} is available. We define a window size, N, that is used to construct
subsamples of size N. Then, T — N + 1 overlapping subsamples {ry,--- ,rn},
oy {rr—N41, -+ ,r7} are available. Each of these subsamples is used to ap-
proximate the cdf of the series. To do this, take one of these subsamples, for in-
stance the tth one, {ry—ny1,- - ,7¢}, and sort this subsample in increasing or-
der. Define the sorted data as {7i_n11.¢,- -+ , T} Where Fy_ny1 e < -0 < Tpy.
Now, the VaR with probability 6% is defined as the #-quantile of the subsam-
ple. This is therefore the (§N)th order statistic g, if 0N is an integer. If N
is not an integer, the quantile is defined using a linear interpolation between
Tlon|,t and 7| g |41,+- To simplify, assume that N is an integer and that 7oy
is the f-quantile of the subsample. Then, the VaR at date ¢ for date ¢ + 1 is?

VCLRg,t = _7:0N,t-

Finally, the ES is defined as the average of the realizations that are below this

level
[ON]

1 ~
ES@,t = |_9NJ ; T',7t.

The method has two main advantages: First, it is very easy to implement.
Second, it allows for non-normal returns. Indeed, it does account for fat tails.
Since it uses the actual realizations of returns, it is able to capture most of
the empirical features of this series.

However, this approach also raises several difficulties. First, although the
historical simulation approach is said to be non-parametric, it is based on
a strong underlying assumption: the return process is supposed to be 7id.
Empirical evidence clearly suggests that this is not the case. For this reason,
the choice of the window size IV is crucial in practice. Longer samples increase
the accuracy of VaR estimates, but at the same time increase the probability of
using irrelevant data, in particular if there are some changes in the underlying

4 Given that small quantiles of returns are negative, the VaR measure will be
positive.
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Table 8.1. Five smallest and largest daily returns

SP500 min —22.87 —-8.68 —7.15 —7.08 —7.04
max 8.67 554 523 5.09 495
DAX min -13.74 -9.90 —9.89 —891 —-8.41
max 7.52 726 714 7.05 6.95
FT-SE min —-11.95 —10.43 —7.46 —5.55 —5.39
max 5.66 5.63 5.06 4.68 4.61
Nikkei min —16.14 —7.24 —6.87 —6.83 —6.14
max  12.42 8.88 T7.65 754 7.27

process. On the other hand, it would be meaningless to use a small window
size if we are interested in a very small probability 6, because the historical
simulation approach cannot produce a quantile that would be smaller than the
minimum return observed within the given sample. If we want to compute the
1%-quantile, we need at least 100 observations in the subsample! Thus there
is a trade-off between longer and shorter sample sizes.

Another undesirable feature is that the VaR obtained with this method
does not vary often but when it does, it varies sharply. In fact, the only
source of variation in this approach is the shift of the window over time.
As a consequence, we observe jumps in the reported VaR, when an extreme
(negative) return is introduced or dropped from the subsample. This problem
is mainly due to the discreteness of the empirical distribution of returns. In
particular, in the tails, the interval between adjacent returns can be rather
large, as Table 8.1 illustrates. We display the 5 smallest and largest daily
returns on the four indices at hand over the period from 1980 to 2004.

The problem is also illustrated in Figures 8.1 and 8.2, where we display the
1% and 5% VaR and ES of a portfolio constituted of the SP500, the DAX, the
FT-SE, and the Nikkei (with equal weights). Since the window size is N = 500,
they correspond to the Hth and the 25th order statistics of each subsample.
One explanation for this pattern is that all realizations in the subsample have
the same weight. To partially cope with this problem, we may, for instance,
introduce declining weights to past observations to smooth computations.

8.3 Semi-parametric approaches

The problem with the historical simulation approach stems from the fact that
returns are not iid and from the discreteness of the tails of the empirical
distribution. The two semi-parametric approaches presented now put some
structure on the tails of the distribution by using parametric models but
without estimating the complete distribution of returns. To some extent, they
are also able to cope with the temporal dependence of returns. The first one is
based on the EVT presented in detail in Section 7.1.4. The second approach is
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Fig. 8.1. VaR of portfolio computed with the historical simulation approach.
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Fig. 8.2. ES of portfolio computed with the historical simulation approach.
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based on a regression quantile technique as developed by Engle and Manganelli
(2004) and Chernozhukov and Umantsev (2001).

8.3.1 Extreme Value Theory (EVT)

The EVT is designed to model the specific behavior of very large (positive or
negative) returns. It provides a parametric representation of the distribution
of the extremes (or of the tails). This representation is able to give smoothed
estimates of the VaR and is designed to produce very high quantiles, possibly
smaller than the minimum of the sample distribution. Such an approach has
been adopted for VaR evaluation by several authors: McNeil (1997) estimates
a gpd to evaluate the tail index; Danielsson and de Vries (1997) uses a semi-
parametric estimate of the tail index; McNeil and Frey (2000) introduce a
GARCH-EVT model that incorporates the temporal evolution of volatility;
Longin (2000) adopts a multivariate approach to capture the joint extreme
behavior of risk factors.

In Section 7.1.4, we described how the quantile of a univariate distribution
can be computed using the various approaches developed in the context of the
EVT: the distribution of extremes, the distribution of the tails or the semi-
parametric estimation of the tail index. We briefly recall the estimation of
high quantiles in the case of the tail approach.

Unconditional EVT

The main idea of the tail approach to EVT is that the distribution of the lower
tail (i.e., the returns that are below a given threshold ) can be approximated,
when u is sufficiently large (in absolute value), by the so-called generalized
Pareto distribution (gpd). The gpd is defined as

1—(1—1—%(7’—11))71/&, if €40,
1—e){p(—%)7 if&€=0,

where the tail index & characterizes the shape of the tails of the distribution
and ® is a scaling parameter.

Assume that the estimation of the gpd is performed on the absolute value
of the lower tail observations, as detailed in Section 7.1.2. Once the parame-
ters of this gpd are estimated, we can deduce the #-quantile of the actual
distribution as

Geup(r) =

Y u+§7’<(§;9)é—1>,if5¢0,
u—i—fﬁlog (%9), if £ =0,

where N, is the number of exceedances below the threshold. Evidently, since it
is computed using results that are valid for extreme returns only, the quantile
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qo is valid for very small probability 6. Then, the VaR at date ¢ for date ¢t 4+ 1

1S

VaRG,t = —qo,

so that the estimated VaR is actually constant over time.
As outlined by McNeil and Frey (2000), the ES is strongly related to the
notion of mean excess function, because we have the relation

ESp:=E[-r|—r>VaRg4]
=VaRps+ E[-r—VaRp:| —r >VaRy,].

Recall that, if 7 — u|r > u ~ G¢ 4, the mean excess function above level u is
defined as

¢+ &u

1-¢7
Therefore, the expected shortfall is equal to the sum of the VaR and the mean
excess funcion above the VaR. Now, since VaRy: > u, we may write

e(u)=E[-r—u|l—r>u]= P+ &u > 0.

E[-r—VaRg:| —r > VaRy,]
=E[(-r—u)—(VaRg; —u)|(—r —u) > (VaRy; — u)],

with —r — VaRp | —r > VaRg ~ Ge p1e(VaRy ,—u)- Finally, we deduce the
estimated ES
b+ & (VaRg, — VaR b — &
ESp, = VaRg, + VT8Vl —w) _ VaRe, | ¢ =8u
1-¢ 1-¢ 1-¢

This approach is called unconditional EVT, because it is based on the as-
sumption that returns are iid. It therefore produces an unconditional VaR,
i.e., pertaining to the unconditional distribution of returns. This implies that
the quantile gy will not vary over time, even if there is a sudden change in
market conditions. Recently, McNeil and Frey (2000) have proposed a model
that provides conditional measures of the VaR based on EVT. This approach
is described below.

Another drawback of the tail approach is that we have to select a threshold
u below which we consider that returns belong to the tail. Although some tools
have been proposed to select this threshold (such as bootstrap techniques),
it is still an open question how to define the optimal threshold. Figure 8.3
displays the 1%-quantile gg.o1 as a function of the threshold u for the SP500.
This plot suggests that the choice of the threshold does not necessary play
a crucial role for the value of the quantile, given that the VaR varies only
between 3.77 and 3.87 as u varies between 0 and 0.1.
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Fig. 8.3. 1%-quantile of the SP500 as a function of the threshold u.

The GARCH-EVT model

The GARCH-EVT model proposed by McNeil and Frey (2000) consists in
modeling the conditional volatility and the distribution of the tails separately.
In fact, only the left tail is needed, because the right tail is not relevant for
VaR computation.

For this purpose, McNeil and Frey (2000) proceed as follows: In the first
step, they filter the dependence in the return series by computing the residuals
of a GARCH model, which should be #id if the GARCH model correctly
fits the data. In the second step, they model the extreme behavior of the
residual using the tail approach developed in Section 7.1.2. Finally, in order
to produce a VaR estimate for the original return, they trace back the steps by
first producing the #-quantile estimate for the GARCH-filtered residuals and
convert the f-quantile estimate to the original return using the conditional
volatility forecast for the required horizon.

For a given return series {ry,- - ,rr}, the model adopted to filter out the
first- and second-order dynamics is of the form

Tt = Uy -+ Et,
&t = OtZt,
My = P+ Qre—1,

2 _ 2 2
o =w+agi_y + Boi_y,
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with w >0, « >0, 8 > 0, and aa + 8 < 1 to ensure a positive volatility and
a covariance stationary process. To avoid specifying an arbitrary distribution
for the innovation process z;, they resort to the Quasi Maximum Likelihood
(QML) estimation, which consists in maximizing the normal log-likelihood of
the model even though the true generating process of z; is not Gaussian. This
technique has been shown to provide consistent estimates of the model para-
meters, provided the conditional mean and variance equations are correctly
specified (Gouriéroux, Monfort, and Trognon, 1984). The standardized resid-
ual %, is then estimated by 2, = (r; — f1;) /&4, where ji, and &7 are the fitted
mean and variance, respectively. We also use this model to produce forecasts
of the expected return 4, (1) = ji + ¢ry and variance 02 (1) = & 4 @&2 + 362

The next step involves estimating the gpd to all exceedances, i.e., all re-
alizations 2, that are below a given high threshold u.> Adopting a similar
approach to the one in Section 7.1.2, we define N, = Zthl 1iz,<uy(2t) the
number of exceedances and {21 1, -+, 2rr} the vector of standardized resid-
uals sorted by increasing order, such that 2; 7 < --- < Zp p. Finally, we define
the (N, 1) vector of exceedances as {217, - ,2n, 7} Then, we estimate the
parameters (£,v)" of the gpd to the exceedances {ézT}ZI\Ll

Once the parameters £ and 1) are estimated, the 6-quantile is obtained by
inverting the cdf of exceedances

ut 2 ((]{ua)_é—o,if@éo,
qu”LleOg(Nl), if £ =0.

u

Qo =

We are now ready to evaluate the aggregate VaR and ES from ¢ to ¢ + 1

VaRg: = — (uy (1) + go0¢ (1)),
ES&t = VaReﬂt + v- gAu
1-¢ 1-¢

It is worth emphasizing that the GARCH-EVT approach incorporates the
two ingredients required for an accurate evaluation of the conditional VaR,
i.e., a model for the dynamics of the first and second moments, and an appro-
priate model for the conditional distribution. An obvious improvement of this
approach as compared to the unconditional EVT is that it incorporates in the
VaR changes in expected return and in volatility. For instance, if we assume a
change in volatility over the recent period, the GARCH-EVT is able to incor-
porate this new feature in its VaR evaluation, whereas the unconditional EVT
remains stuck at the average level of volatility over the estimation sample.

McNeil and Frey (2000) also provide a back-testing experiment, in which
they compare the performances of various methods to correctly reproduce

5 Notice that we focus in this section on the lower tail, whereas all developments
in Chapter 7 were based on the upper tail.
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the quantiles of several asset returns. They show that the GARCH-EVT per-
forms much better than the unconditional EVT, suggesting that the ability
to capture changes in volatility is crucial for VaR computation.

Multivariate EVT

The VaR computation described above is useful for a single asset or for cases
where there is only one risk factor. The cases for multi-asset and multi-risk-
factor are a lot more complex, because they resort to multivariate EVT. We
have shown in Section 7.2 how to characterize and measure extremal depen-
dence. The measures introduced are based on the evaluation of the properties
of the joint distribution at equal probability marginal quantiles. To use these
measures to characterize extremes of a portfolio, i.e., of a linear combination
of assets, the full joint distribution needs to be estimated in the tail region. For
the case where returns are asymptotically dependent or exactly independent,
such methods exist, see Coles and Tawn (1994), and de Haan and de Ronde
(1998). Poon, Rockinger, and Tawn (2004) follow the approach of Ledford
and Tawn (1997) for handling asymptotic independence via non-parametric
and parametric approaches. VaR and ES computations rely on Monte Carlo
simulations.

8.3.2 Quantile regression technique

In the quantile regression approach, another route is taken. Instead of focus-
ing on the modeling of the tail distribution as in the EVT, this approach
focuses on its dynamic component. The technique of quantile regression has
been introduced in the statistical literature by Koenker and Bassett (1978).°
It has been applied to VaR computation by Engle and Manganelli (2004) and
Chernozhukov and Umantsev (2001). The basic idea consists in modeling a
given quantile of the distribution through time. Such an approach is justified
by that empirical evidence that volatility tends to cluster, so that the distri-
bution itself is serially correlated. Engle and Manganelli (2004) described a
new regression quantile model, called CAViaR, standing for Conditional Au-
toRegressive Value-at-Risk, which allows modeling the dynamics of the VaR.
In this section, we start by reviewing the concept of quantile regression before
turning to the one of CAViaR.

Quantile regression

The 6th quantile gy of a time series {yt}thl can be defined as the solution of
the following minimization problem

5 A general presentation can be found in Koenker and Hallock (2001).
" A well-known special case is the median (¢ = 1/2) in which the median 8 is
defined as
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min - > Ol —q+ Y. (1-0|m—d, 0<0<I,

q€R
te{t:y:>q} te{t:ye<q}

or, equivalently

T
min w, —-q),
ey ; o (Yt —q)
where
. Gzt, if Zt Z 07
we (zt)_{(le)zt, if 2, < 0.

The estimated ¢ is the unconditional #-quantile of {yt}thl . Now, in a regres-
sion context, y; = x}8 + uy, where z; is a (k,1) vector of regressors and u,
is the error term with cdf F, the 6th regression quantile of u; = y — ;8
conditional on z; is obtained as the solution of the minimization problem

min Yoo Ole—=Bl+ DY, (1=0ly—xBl,  0<f<1
te{t:y: >, B} te{t:y: <z} B8}
(8.1)
The purpose of this regression is to find the vector of parameters § that will
ensure that the #-quantile of u; will be as close to 0 as possible. A well-known
quantile regression is the one associated with § = 1/2. In this case, § is
optimized in order to obtain a median equal to 0.

The estimation technique and the asymptotic properties of the estimator of
B are developed in Koenker and Bassett (1978). This class of robust estimators
includes some that have similar efficiency to the least-square estimator under
normality of the error term but that out-perform this estimator under non-
normal errors.

Koenker and Bassett (1978) also provide some useful asymptotic results
on regression quantiles. In particular, the solution 3, (6) of the optimization
problem 8.1 for quantile 6 is shown to be consistent and asymptotically nor-
mal. This result is extended by Engle and Manganelli (2004) to the case of
non-linear regressions.

CAViaR

Engle and Manganelli (2004) proposed a model based on quantile regressions,
called CAViaR. The idea is to directly model the evolution of the quantile gy
instead of considering the entire distribution of returns. The general specifi-
cation they propose has the form

qo,t = Bo + ﬂ1%7t—1 + Z 6j+1g (-Tt—j) s

j=1

T
rﬁrle%;‘ytfﬂ‘~
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where z; is a set of regressors and ¢ (.) a possibly non-linear function of the
regressors. Some of the suggested specifications are particularly appealing:
Symmetric absolute value model

g0t = Bo + B190,t—1 + B |re—1] -

Asymmetric slope model

a0t = Bo + B1go,t—1 + ﬂ21{m71 >0} + 531{7371 <0}-

Indirect GARCH model

qz,t =By + qug,tfl + Bari 4.

The parameters of the quantile regressions are then estimated using non-
linear techniques to solve the optimization problem

min S tlm—aw B+ D =0y — a0 (B)]
te{t:yt>q0,:(B)} te{t:yi<qo,:(8)}

with 0 < 6 < 1. This approach is qualified as semi-parametric, because it does
not specify the distribution of returns. It can therefore be applied to non-iid
returns as well as to time-varying volatility. It should be mentioned that the
estimation of such a model is far from trivial. Engle and Manganelli (2004)
also propose some test procedures for evaluating VaR models. This issue is
addressed in detail in Section 8.6.1.

8.4 Parametric approaches

While the historical simulation and the unconditional EVT approaches are by
nature unable to capture changes in the behavior of returns, the GARCH-
EVT technique and CAViaR incorporates some stylized facts of returns con-
cerning the first- and second-order dynamics. We now turn to parametric
models of VaR that hold under a complete set of assumptions concerning the
dynamics and the conditional distribution of returns.®

We recall here that the main empirical features for asset returns are the
following:

1. Returns may be serially correlated, even if this correlation is not very
large in practice.

2. Return volatility is serially correlated and possibly asymmetric. These
features can be captured by the well-known GARCH family.

3. The conditional distribution of returns is probably non-normal. Typical
characteristics of this distribution are skewness and fat-tailedness.

8 Evidently, these assumptions can sometimes be excessively strong.
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These three components have not been introduced systematically in pre-
vious approaches. For instance, the widely used RiskMetrics methodology as-
sumes normality of returns. As long as such an assumption yields correct
forecasts of VaR and ES, it may be relevant. A thorough test of the implica-
tions of the assumptions and a test for the validity of the model appears as
crucial.

8.4.1 RiskMetrics — J.P. Morgan

RiskMetrics is a methodology developed by J.P. Morgan to compute VaR. It
has played an important role in the increasing popularity of VaR as a risk
measure. See J.P. Morgan’s RiskMetrics Technical Document (1996).

The RiskMetrics methodology uses historical return data to forecast future
volatility. More precisely, the basic RiskMetrics model is based on the following
assumptions:

1. The return r; is modeled as r; = p, + €+ with e; = o¢2:.

2. Daily log-returns are supposed to be centered (or are preliminary de-
meaned), so that u, = 0.

3. The dynamic of volatility is modeled using an exponentially weighted
moving average (EWMA), with

o2 =Xo?  +(1=Nr? fort=2,---,T, (8.2)

with 0 < A < 1. This model may be viewed as a special case of the
Integrated GARCH model. In the first versions of RiskMetrics, the decay
factor A was chosen to be equal to 0.94. The recursion can be initialized

by the sample variance (02 = %) or by the square of the first observation
(oF =19).

4. The innovation z; is supposed to be distributed as an #d N (0,1).

Under these various assumptions, the conditional distribution of r; at date
tis N (0,0’%). If we are interested in the one-step-ahead VaR, we need the
conditional distribution of r;y;. Conditionally on the information at time ¢, it
is N (0,07 (1)) where o7 (1) = Ao7 + (1 — X\) r#. For the N(0,1) distribution,
we denote g9 = &' (0) the quantile for a probability of loss equal to 6. For
instance, for 6 = 1%, we have gy = —2.326. Now, the daily VaR is given by

VaRg, = —qg X 04 (1). (8.3)
In addition, we have the following expression for the ES

ESpt = —E[riry < —VaRg,]

T T —VaRg,
o (1)|Ut ()~ (1)
= ES§7t x ot (1)

=-F

X O¢ (1)
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where

ESZ_;/_(IG XL 1203_1()
T B () ) T VP20 )T

where ¢ (z) denotes the pdf of the N (0, 1) distribution. Finally, we obtain

ES@t — @(QQ)at (1) )

Multi-period VaR

One interesting property of the RiskMetrics approach is that a multi-period
VaR can be very easily computed. Assume we have to compute the VaR over
the following k periods. We observe that the log-return between ¢ and ¢ + k
is simply defined as r¢[k] = r441 + -+ + re4k. We deduce that the volatility
forecast for the k-period log-return is

oi[k] = Vi [re[k]] = Vi

k
E Tt4i| -
i=1

As we have seen in Section 4.3, for an IGARCH model, the k-step ahead
volatility forecast is

o (k)= =02(2) =07 (1) = Ao + (1 = \) 73, for k > 1,

because the innovation process is #id. Therefore, the volatility forecast for the
k-period log-return is
of[k] = ko (1),

so that the volatility forecast of r[k] is proportional to the horizon k. We
finally obtain that the k-day VaR is given by

VaRg 141 = —qo X Vo (1).

This expression is known as the square-root-of-time rule. This rule has been
recommended by the Basle Committee’s Amendment to the Capital Accord
to Incorporate Market Risks (1996) in order to compute the 10-day VaR from
daily estimates.

Multiple position

Above, we computed the VaR of a single asset, a case that is not very in-
teresting in practical applications. Notice that we may alternatively view r;
as the return of the portfolio, not as the return of an asset. In such a case,
consistently with the portfolio-level approach, the computations correspond
to the aggregate VaR. Notice that this interpretation also raises some new
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difficulties. Since the portfolios of financial institutions are likely to change
daily, it implies that each day, the risk manager would have to compute a
historical time series of the new portfolio and to estimate the aggregate VaR
using this approach.

Another way, consistent with the asset-level approach, has been suggested
for the latter. It is based on the observation that the aggregate VaR can be
rewritten as

VaRg, = —qo X 0ps (1) = —qo X Vo' X (1) &

where X (1) is the one-step-ahead forecast of the covariance matrix of asset
returns. It is computed assuming that all variances and covariances are driven
by the same model (8.2)

2y .2 2 o
ol =AoTqF (1=Nriy, fori=1,---,nm,
Oijt = A0ijp—1+ (1= AN)riparjp—1, fori,j=1,--- n,

using the same parameter A for all assets.

It is clear that such an approach is equivalent to computing the VaR of
each asset in the portfolio and then deducing the VaR of the portfolio. To see
this, we denote VaRzyt the VaR of asset ¢ =1, -+ ,p. Then, we observe that,
for a given asset, we have the relation between variance and VaR

1 N2
= (v, ) .
, % :
so that the VaR of the portfolio is now

VaRp: = —qo/o' X (1)

ZO[ Uzt )+2Z Z Q05 ¢ (1)

i=1 j=i+1

If we use 054+ (1) = 044(1)0j¢(1)p;;, (1) where p;;, (1) denotes the one-
period forecast of the correlation between assets ¢ and j, we obtain after
simplification (see, for instance, Longin, 2000)

(VaRy,)* Za (VaRj,) +2Z Z pije (1) o VaRy ,VaR),.
=1 j=i+1

The squared VaR of the portfolio is simply the quadratic form of the VaR
of returns, weighted by the correlation matrix between returns. Computing
the VaR in this way does not even require the knowledge of the portfolio
weights.
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Advantages and limitations

The main advantage of RiskMetrics is its simplicity of implementation. If we
are willing to accept the value of the decay factor adopted by RiskMetrics, no
estimation is needed, and the update of the VaR of any portfolio is extremely
fast. In addition, computing multi-period VaR or multi-position VaR does not
raise any additional difficulty. Obviously, this simplicity has a cost. Some of
the underlying assumptions are in fact overly strong.

First, the assumption of normality of innovations is simply untenable. Most
asset returns are characterized by a distribution with fat tails and/or asymme-
try. Such assumption will lead in general to an underestimation (in absolute
value) of the quantile gy to be used in the VaR formula.

Second, the dynamics of volatility is too simplistic. Although the IGARCH
model has the advantage that the multi-period VaR can be computing using
the simple square-root-of-time rule, it also yields some undesirable properties,
such as the lack of mean-reversion in the variance process. This issue has been
investigated by Diebold et al. (1998). They show that the square-root-of-time
rule produces overestimates of the variability of long-horizon volatility.

A last, less stringent, assumption is the absence of dynamics for the ex-
pected return. This is probably too strong an assumption, but in practice, the
effect of altering the conditional mean equation on the VaR measures is barely
noticeable. The reason is that for most asset returns, the VaR computation is
largely dominated by volatility, rather than expected return, considerations.

8.4.2 The portfolio-level approach

The variance-covariance method, also known as the correlation method, is
essentially a parametric approach in which the VaR is measured from the
variances and covariances of the constituents of a portfolio. A simple version
of this approach is the RiskMetrics methodology. The main task of this ap-
proach is to model the different components of the dynamic of returns that
are useful for VaR computation. As seen above, these components are: The
dynamic of expected returns, the dynamic of volatility and finally the condi-
tional distribution of the innovation process.

We assume that returns are possibly autocorrelated, that volatility o is
driven by a GARCH(1, 1) model and that innovations z; are distributed as an
iid N (0, 1). The conditional distribution of r; at date ¢ is then N (11, 07). The
main change as compared with the RiskMetrics method is a conceptual one:
the parameters of this model have to be estimated, rather than calibrated.
This estimation is more demanding in terms of computational burden, in
particular if a set of asset returns must be modeled.

The choice of a GARCH(1, 1) model with parameters o and ( estimated
without the assumption a4+ § = 1 is very likely to provide a more realistic
mean-reverting behavior of volatility forecasts. The 1-step ahead forecasts for
fqq and o7, are
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My (1) = QA+ o7,
0? (1) = w + ag? + fo?.

Conditionally on the information at time ¢, the conditional distribution of
i1 is N (p (1), 07 (1)). The daily VaR is given by

VaRg: = — (py (1) +go x 04 (1)),

and the ES is

ESp; = %«p <_V“}ffj(l_)”f (1)> oy (1) — py (1)
= 2W0) 0y ). (8.4)

0

Conditional distribution

Although the model above is able to capture the dynamic in expected returns
as well as in volatility, the conditional distribution is still assumed to be
normal. Empirical evidence suggests that distributions allowing fat tails and
asymmetry should be used for modeling the innovations. In Chapter 5, we
described several alternative distributions that may be used in such a context.
For instance, the Student ¢ distribution may be very easily used in place of
the normal distribution, because procedures to compute the inverse of its cdf
are available in most econometric software. The skewed Student ¢ distribution
also appears as an obvious alternative.’

For instance, assume now that the innovation process is drawn from a
standardized Student t distribution with v degrees of freedom. It is worth em-
phasizing that in the context of a GARCH model, the innovation process z; is
supposed to have zero mean and unit variance. Consequently, the appropriate
distribution is not the usual, but the standardized t, defined as

v+1
22\ 7
t = 1
Gl =e(1e25)

with v — 2 in place of v and ¢ = I' (1) /( m(v—2)I (%)) Since this
is the usual ¢ that is available in most software, the quantiles have to be
appropriately corrected.'” Finally, the #-VaR for r;,; is given by

VaRg: = — (py (1) +Go x 04 (1)),

9 Since the VaR computation only involves the tails of the distribution, the quantiles
of the skewed Student t distribution can be computed using the procedure built
for the standard Student ¢, provided the asymmetric component is properly taken
into account.

10 More precisely, if Zq is the g-quantile of the usual ¢ distribution with v degrees
of freedom (in general given by econometric software), then the quantile Z, of
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where Gg = t,;1 (0) is the quantile for a probability of loss equal to 6 from
the standardized t distribution. For the ES, we have to evaluate the same
expression as for the normal case

ESpr = ESj, x o1 (1) = e (1),

where

v41

Bs: 1 —qg ) 2’2 —3 p
”mq@)/w ( *a—?) :

5 PN, 7 5%
cv— dp 2

= - 1

9V—1< +V—2> ’

so that we have eventually

v+1

cv—2 @ \ 2
E597t:§V_1 (1+ 1/—62> XO't(l)—/,Lt (1) (85)

Multi-period VaR

Computing the VaR over k periods requires the cumulative expected return
and volatility forecasts over k-periods. Using, abusively, the definition of the
multi-period log-return, the k-period expected return is

1—<pk
ut[k]:ut+1+...+pt+k:k/¢+1_@1 (g (1) — ), for k> 1.
1

Moreover, the k-step ahead volatility forecast of a GARCH(1,1) is given by
o2 (k) =0+ (a+b)""" (o7 (1) —0?), for k > 1.

Summing these volatilities, we obtain the volatility forecast for the k-period
log-return

1—(a+0b)"

oilk] = ko® + ————

(o7 (1) —0?), for k> 1.
Contrary to what we obtained with RiskMetrics, the volatility forecast of r¢[k]
is now mean-reverting, meaning that the dynamic of volatility estimated over

the sample plays a role in the forecast process. Finally, the k-day VaR is given
by

the standardized ¢ distribution is deduced using the relation: z; = ‘/”7_22(1. For
instance, for v = 5, the 1%-quantile of the usual ¢ distribution is 2, = —3.3649,
and the corresponding quantile of the standardized ¢ distribution is 2, = —2.6065.
As it can be noticed, the difference if very significant for small degrees of freedom.
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VaRg vk = — (k] + g x o1 [k])
where
1 — o}
L=y
This expression for the VaR is less intuitive than the square-root-of-time rule.
But it is also more consistent with the observed dynamic of volatility, in that
it displays mean-reversion.

py k] = kp+ (e () —p),  for k> 1.

8.4.3 The asset-level approach

The asset-level estimation of the aggregate VaR has been advocated as allow-
ing for a better control on the VaR estimation. As already argued, it allows
measuring the effect on the aggregate VaR of a change in portfolio weights
(the portfolio-level approach would require a complete re-estimation of the
model). However, this advantage comes at a cost. Since we are interested in
the modeling of the joint dynamic of asset returns, we have to turn to a mul-
tivariate GARCH-type model. As we have seen in Section 6.1, this approach
raises a dimensionality problem, even for a moderate number of assets. Even
though we emphasized the importance of non-Gaussian distributions for re-
turns, the multivariate modeling in a non-Gaussian setting still represents
a challenge. For this reason, at the asset-level approach, it is customary to
assume a multivariate Gaussian distribution.

Once the multivariate GARCH model is estimated, computing the aggre-
gate VaR is easy, since the distribution of the portfolio return is

Tp,t ~ N (ﬂp,t)ait) )

with p, , = ajp, and UzQz,t = o} Y. We deduce the aggregate VaR as

VaRgy = — (py; (1) + g9 X 00 (1)),

where gy = ! () is the quantile for a probability of loss equal to 6, from the
univariate normal distribution A/ (0,1). The ES is given by expression (8.4).

Conditional distribution

The main limitation of this approach is the maintained assumption of mul-
tivariate normality. Although the estimation of the DCC model can be per-
formed under normality with a reasonable computational burden, another
distributional assumption would dramatically increase the burden for large-
dimension portfolios. The reason is that in such case the log-likelihood cannot
be broken in separate components anymore. To be more precise, two cases
have to be considered:
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e For elliptical distributions (such as the Student ¢ distributions) but the
Gaussian distribution, the n univariate GARCH processes cannot be esti-
mated separately anymore, because these different components interact in
the log-likelihood. Yet, the DCC part of the model can still be estimated
separately. In Section 6.2.4, we have seen that the log-likelihood of ellipti-
cal distributions only involves (r; — p,)" Xt (74 — p1;), that can be rewritten
as z;zt, therefore justifying the preliminary estimation of the covariance
matrix dynamic.

e For other distributions (including the skewed ¢ distribution), the estima-
tion of the full model has to be performed in one step. Even for moderate-
scale portfolios, such an estimation would be simply unmanageable.

An additional issue has to be addressed in the context of non-Gaussian
distributions. Once the multivariate GARCH model is estimated, we need to
compute the quantile of the distribution of the portfolio. The difficulty is that,
in general, the distribution of the aggregate return cannot be deduced from
the multivariate distribution of asset returns. The exception is once again the
elliptical distribution family. In this case, the aggregate VaR is computed in
exactly the same way as for the Gaussian case. Assume for instance that asset
returns are distributed as a multivariate Student ¢ distribution (as defined
in (6.15) in Section 6.2.1) with v degrees of freedom. The aggregate VaR is
therefore given by

VaRg+ = — (/“Lp,t (1) +do X opyt (1)) J

where §g = t,,! (6) is the quantile for a probability of loss equal to 6 from the
univariate Student ¢ distribution with v degrees of freedom. The ES is given
by (8.5).

In the non-elliptical cases, no analytical solution for the distribution of
the portfolio return is available. Therefore, we have to turn to alternative
techniques, such as numerical integration or Monte Carlo simulation.

First, numerical integration would not be possible in most applications of
interest in VaR computation. The reason is that, even for moderate-scale port-
folios, the computation burden is excessive. The difficulty is accentuated by
the fact that the part to be integrated lies in the lower tail of the distribution.

Consequently, Monte Carlo simulation seems to be the only promising way
of evaluating the aggregate VaR when asset returns are modeled through a
multivariate distribution whose inverse cdf is not known analytically. Giot and
Laurent (2003) adopted such a simulation-based approach for the estimation
of the VaR of a portfolio with asset returns distributed as a multivariate
skewed t distribution. To illustrate how this approach works, we assume that
the distribution of the innovation process is F (z|n) where 7 is the vector of
shape parameters. The general procedure is the following for computing the
aggregate VaR between dates ¢t and t + 1:

1. At simulation j, simulate a sample of innovations z/ = (zI,--- 27,
drawn from the multivariate distribution F' (z|7)). Deduce the sample of
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asset returns r{_H =, (1) + 2 (1)_1/2 zJ. Compute the implied portfolio
return T]j;,t-u = a,’frgH.

2. Tterate step 1 for j =1,--- ,J, where J should be large enough to provide
accurate estimates of the desired quantile.

3. Sort the sample {r;’t +1}3]:1 in increasing order and compute the desired
f-quantile as the |0.J]-th value of the sample.

Needless to say that, for large-scale portfolios, the use of such Monte-Carlo
simulations at a daily basis would be quite heavy.

Dealing with large-scale portfolios

Some multivariate GARCH models are well designed for large-scale portfo-
lios. Some of them have been described in Section 6.1.2. They include Factor
GARCH models (and their generalizations, such as Orthogonal GARCH mod-
els) and the Flexible GARCH model. The former approach relies on reducing
the dimensionality of the problem by selecting a reasonably small number
of factors to which the multivariate GARCH model gets adjusted. The lat-
ter approach decentralizes the estimation task, by estimating the dynamic
covariance matrix using univariate and bivariate GARCH models only.

It should be emphasized that these models have been designed in a
Gaussian context. For the Flexible GARCH model, it is not clear how it may
be extended to a non-Gaussian distribution. Ledoit, Santa-Clara, and Wolf
(2003) suggest a trick to circumvent this difficulty. Once the large-dimensional
covariance matrix X is estimated (as described in Section 6.1.2), it is used to
estimate the conditional distribution of the portfolio return. They first esti-
mate the variance of the portfolio return as 612),15 = aéf],gat. Then, they adjust
a (standardized) Student ¢ distribution to the standardized innovations eval-
uated as 2 = «aj (ry — ft) /6p.+, where [i is the sample mean of the vector of
asset returns. They are then able to compute the quantile of the portfolio
return.'!

Copula functions

It is clear from the discussion above that the main limitation of the use of
the asset-level approach for computing VaR is the difficulty to deal with a
multivariate non-elliptical distribution, in particular for the estimation of the
complete model. This approach has recently benefited from the development of
the copula approach (see Section 6.3). One definite advantage of this approach

11 A comparison of multivariate GARCH models designed for large-scale portfolios
has been performed by Ledoit, Santa-Clara, and Wolf (2003). They compare Risk-
Metrics, the diagonal BEKK model, the DCC model, and the Flexible GARCH
models in terms of their ability to estimate the quantile of some empirical portfo-
lios correctly. They do not find significant differences between the various models.
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is that the estimation of the marginal distributions (typically, the univariate
GARCH models) and the dependence structure can be performed separately.
This is true whatever the (possibly different) marginal distributions adopted
for the asset returns and whatever the dependence structure. For instance, it
is possible to model the univariate distribution of each asset return using a
GARCH model with skewed ¢ innovations and then to join these various mar-
gins through a Student ¢ copula or any other copula function. Of course, this
makes the use of copula much less constraining than the use of multivariate
distributions.
The design of a conditional copula in this context can be the following:

1. Each asset return r; ; has its own marginal model given by r; ; = My tEit
with €;+ = 0;,42;+. Expected returns iy AY be assumed to be constant,
so that returns can be demeaned in an initial step. Volatility is modeled
as a GARCH(1, 1) model 07, = w; +ae, | +b;io7,_ ;. The standardized
innovation z;; is #d with zero mean and unit variance with distribution
function F; (z;). For instance, it may be a skewed Student ¢ distribution,
denoted t,, »,, where \; denotes the asymmetry parameter.

2. The margin of each univariate distribution is given by w;; = t;l A, (zi4) -
Then, the copula that links the various margins is

H (Zl,t7 e 7Z’n,t> = C (F]. (Z].,t) y "7 )Fn (Zn,t)) .

Assuming, for instance, a Student ¢ copula with v degrees of freedom would
yield

H (Zl,t7 e 7Zn,t> TR v ( V1,1 (zl,t) y T 7t;nl’)\n (Z’I’L,t)) )

where T, is the cdf of the multivariate Student ¢ distribution

TRV ultu"' unt)
v4n
Ut Un,t l/+n /R—l — T2
/ / V 2 ) (1 + Y y) dy,
(%) /()" R v
with R the (n,n) correlation matrix of u; = (w14, - - 7umt)’ .

This example illustrates why the copula approach may appear so promising
at first sight. The estimation of this model only requires the estimation of
(n+ 1) models (the univariate components and the dependence structure),
with each time only a few number of parameters.

It should be noticed however that the great generality allowed by copula
functions has also a cost. When we are ultimately interested in VaR compu-
tation, we need once again to compute the #-quantile of the portfolio return
distribution. The only available approach appears to be the Monte Carlo sim-
ulation. A similar procedure to the one presented in Section 8.4.3 may be
adopted. A further cost is the difficulty to use copula functions for the case
of more than two or three assets.
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8.5 Non-linear models

Other recent research focuses on estimating the VaR, of portfolios containing
options or other positions with non-linear price behavior. VaR methods em-
ploying a linear approximation to the relation between instrument values and
the underlying risk factors are unlikely to be robust when applied to non-linear
portfolios. Britten-Jones and Schaefer (1999) proposed a VaR framework that
is based on a second order “delta-gamma’” approximation and recognizes the
impact that this will have, not only on variance, but on the form of the dis-
tribution.

Let us now describe this approach. As seen in Section 8.1, the change in the
value of the portfolio is AWy 1 (o) = o Apy = Z::l o 1 Ap; 4, where Ap; 4
denotes the change in the value of asset 7. Clearly, the change in the portfolio
value is linear in the change of the asset prices. In some cases, however, the
portfolio may include some derivatives that would introduce a non-linear re-
lation between asset prices and portfolio value. To cope with this non-linear
relation, two main approaches have been proposed: the “delta-only” method
uses a linear approximation; the “delta-gamma” method involves a linear-
quadratic approximation. We investigate these various approaches in turn.
An alternative approach is based on a Monte Carlo simulation of a large
number of market scenarios.

8.5.1 The “delta-only” method

We assume that the assets depend on a set of K risk factors. For instance, in
a structured product such as an insured portfolio, containing the underlying
asset and a put option, the risk factor would be the underlying asset. The
first-order approximation of the value of the portfolio is given by

AWt+1 Zaztapz At—i-z thapl /1) Aft
i=1 =1

K
= g +25kAfkt Hs

k=1

w’
of
where p5 denotes the change in portfolio value due to time, and ¢y, is the ag-
gregate effect on the portfolio value of factor k. The last equation introduces
notations to be used below. In some cases, this approach may be viewed as
a valid approximation for evaluating the portfolio value. However, in gen-

eral, as exemplified by Britten-Jones and Schaefer (1999), it may yield large
approximation errors.

8.5.2 The “delta-gamma” method

If we incorporate the second-order effects of the risk factors, we then obtain
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oW’ 1 o*w
AWy = py + Tfﬂft + §Aféwﬂft~
If we define § = OW/f and I = 9*W/ (0fdf’), the (K, 1) vector and (K, K)
matrix of aggregate delta and gamma, respectively, we have

1
A’th+1 = MV + 6/Aft + §Af£ I Aft (86)
Completing the square in (8.6), we obtain
1
AWoir = pe+ 5 (Afe + r=18)'r(Af, + 1),

with p, = p, — %5’1"’15.

Assume now that the factor vector is distributed as a multivariate nor-
mal distribution Af; ~ N(,uf,Ef). Then, we have that (Af, + I'"16) ~
N (pp+I716,%y) so that, defining y, = DYV (Af, + I'"1§), we obtain
ye ~ N (pp + 716, I ) . If we define A = Y12 5-1/2 we have
1
2
which shows that the change in portfolio value is a linear combination of
uncorrelated non-central y3 variables.

This result is useful for computing the VaR of such a portfolio. It is possible
to evaluate the moment generating as well as the characteristic functions of
(AYWig1 — p,) - See for instance Johnson, Kotz, and Balakrishnan (1995, vol.
2, p. 447). The characteristic function can be numerically inverted to compute
probabilities such as Pr[AYW;11 — p, < 2] and then to evaluate the VaR of
this portfolio.'?

Glasserman, Heidelberger, and Shahabuddin (2000) propose an extension
of the delta-gamma method to the case where risk factors are assumed to be ¢
distributed rather than normally distributed. In such case, the difficulty comes
from the fact that, although uncorrelated, risk factors are not independent
anymore.

AW = pe + =y Ay,

8.6 Comparison of VaR models

Several contributions present and compare the main approaches adopted for
computing VaR. They include the work of Hsieh (1993), van den Goorbergh
and Vlaar (1999), Christoffersen, Hahn, and Inoue (2001), Giot and Laurent
(2003), and Ledoit, Santa-Clara, and Wolf (2002). Many tools have been used
to compare these various techniques. Various statistical methods for evaluating
VaR models have been suggested by Kupiec (1995), Christoffersen (1998),
Lopez (1998), and Engle and Manganelli (2004).

12 Britten-Jones and Schaefer (1999) propose an alternative approach based on the
approximation of the distribution of a sum of independent non-central x? vari-
ables.
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8.6.1 Evaluation of VaR models

A natural way to evaluate VaR models is the “hit” test developed by Christof-
fersen (1998) already described in Section 5.3.3. The test is designed to eval-
uate if a given model is able to provide interval forecast that have the same
coverage as in the data. Here, the central object in the approach is the Hit,
variable, defined in the case of VaR evaluation as

1 if Tpt+1 < VCLR@J,

Hitrr = {0 if 7101 > VaRe . (8.7)

Lopez (1998) proposes a supplementary evaluation based on ad hoc loss
functions. The loss function is specified as the cost of the various outcomes

C 1= f (T‘p,tJrl) VaRG,t)a lf Tp,t+1 < VaR@,t;
o g(rpir1,VaRgys), ifrpir1>VaRgy,

Since this is a cost function and because prevention of VaR exceedances is of
paramount importance, f (z,y) > g (z,y) for a given y. The best VaR model
is the one that minimizes the total cost over the IV last days, Zf\sol Ci_;.

There are many ways to specify f and g depending on the concern of the
decision maker. For instance, choosing f (z,y) = 1 and g (z,y) = 0, we obtain
Christoffersen’s hit test. If the exceedances as well as the magnitude of the
exceedances are of importance, we may choose

Cpoq = 1+ (Tp7t+1 — VCI,R97,¢)2 , ifrpep < VaRgy,
s O7 if Tp,t+1 Z VQRQJ.

For the bank that implements the VaR model and that has to set aside
capital reserves, g = 0 is not appropriate because liquid assets do not provide
good returns. So one cost function that will take into account the opportunity
cost of money is

o .
Ct+1 _ |rp,t+1 — VaR91t| , - lf Tp,t+1 < VaRg,t,
|7pi41 — VaRgy| x4, if rp41 > VaRg,,

where 7y reflects the seriousness of large exception and i is a function of interest
rate.

8.6.2 Comparison of methods

In this section, we present some guidelines on some empirical studies that
appeared in the literature.

Van den Goorbergh and Vlaar (1999) compare several approaches for com-
puting VaR, including historical simulation, unconditional EVT, and various
GARCH models with normal (RiskMetrics) and ¢ innovations. Using data
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from the Dutch stock index and the Dow Jones, they show that (i) condi-
tional methods (GARCH models) out-perform unconditional ones, suggesting
that the main characteristic of returns for evaluating VaR is volatility cluster-
ing; (ii) using a conditional ¢ distribution provides a better fit than a normal
distribution, implying that capturing distribution fat-tailedness is also cru-
cial for an accurate measure of VaR. The GARCH model with ¢ innovations
is the only model found to perform well for all the probabilities considered.
Other techniques such as historical simulation and EVT tend to underesti-
mate the actual VaR. Importantly, this empirical evidence suggests that the
unconditional EVT approach is unable to capture the consequences of the
time-variability of volatility.

McNeil and Frey (2000) compare the conditional EVT method with
GARCH models that have either normal or ¢ innovations. They show that the
conditional EVT model provides more accurate estimates of the VaR than
the GARCH with normal innovations. Their coverage test does not reject the
two approaches that are able to capture both the volatility clustering and
the fat-tailedness of the distribution, i.e., the GARCH-EVT method and the
GARCH model with ¢ innovations.

Giot and Laurent (2003) more specifically investigate the GARCH ap-
proach and consider several distributional assumptions. They highlight that,
at least for some return series, the asymmetry of the distribution should be
taken into account for capturing VaR. Indeed, they obtain for NASDAQ and
Nikkei indices, that a GARCH model with ¢ innovations fails to measure the
VaR accurately. In contrast, the model with skewed ¢ innovations performs
very well. When extended to the multivariate set-up, the model with skewed
t innovations provides very accurate measures as well.

Ledoit, Santa-Clara, and Wolf (2002) compare the performances of various
techniques in the context of a large-scale portfolio. More precisely, working
with a large number of asset returns, they compute the covariance matrix using
different approaches and then compute the VaR assuming a ¢ distribution for
portfolio returns. They find that the various techniques (including the CCC,
BEKK and Flexible GARCH models) perform broadly equally well in terms
of unconditional coverage.

8.6.3 10-day VaR and scaling

It is well-known that the variance of a Gaussian variable follows a simple
scaling law. Indeed, the Basel Committee, in its 1996 Amendment, states
that it will accept a simple /T scaling of 1-day VaR for deriving the 10-day
VaR required in calculating market risk related risk capital.

The stylized facts of financial market volatility and research findings have
repeatedly shown that a 10-day VaR is not likely to be the same as v/10 x 1-
day VaR. First, the dynamic of a stationary volatility process suggests that if
the current level of volatility is higher than unconditional volatility, the sub-
sequent daily volatility forecasts will decline and converge to unconditional
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volatility, and vice versa for the case where the initial volatility is lower than
the unconditional one. The rate of convergence depends on the degree of
volatility persistence. In the case where initial volatility is higher than uncon-
ditional volatility, the scaling factor will be less than v/10. In the case where
initial volatility is lower than unconditional volatility, the scaling factor will be
more than v/10. In practice, due to volatility asymmetry and other predictive
variables that might be included in the volatility model, it is always better to
calculate 6t2+1, c}f+2, e 7‘}?—5-10 separately. The 10-day VaR is then produced

10
using the 10-day volatility estimate computed from the sum g - iy
i=

Second, financial asset returns are not normally distributed. Danielsson
and de Vries (1997) show that the scaling parameter for quantile derived
using the EVT method increases at the approximate rate of T¢, which is
typically less than the square-root-of-time adjustment. For a typical value of
¢ (=0.25), we have T¢ = 1.778, which is less than 10°® (= 3.16). McNeil and
Frey (2000) on the other hand dispute this finding and claim the exponent to
be greater than 0.5. The scaling factor of 10%® produced far too many VaR
violations in the back-test of five financial series, except for returns on gold.
In view of the conflicting empirical findings, one possible solution is to build
models using 10-day returns data. This again highlights the difficulty due to
the inconsistency in the rule applying to VaR for calculating risk capital and
the one applying to VaR for back-testing.

8.6.4 Illustration

We consider once again the four market indices, SP500, DAX, FT-SE, and
Nikkei over the period from January 1980 to December 2004. We create a
portfolio composed of the four indices with an equal weight of 25%. Then,
we compute the 1% and 5% VaR using different approaches developed in the
previous sections. We consider the historical simulation (based on subsamples
of size N = 500), RiskMetrics (with A = 0.94), the GARCH-EVT approach
of McNeil and Frey (2000) (with u corresponding to the 10% lower tail), a
GARCH(1,1) model with ¢ innovations, and finally a GARCH(1,1) model
with skewed ¢ innovations.

Notice that the parameter estimates in the gpd for the GARCH-EVT ap-
proach are found to be equal to ;‘ = 0.0504 (with a standard error of 0.0324)
and {p = 0.5929 (with a standard error of 0.2993), suggesting that the lower
tail of standardized residuals is not very fat and is actually quite close to the
attraction domain of the Gumbel distribution. Given that the univariate series
produce fat-tailed residuals, this result suggests that extreme risks diversify
away in a portfolio. Table 8.2 reports the parameter estimates for the three
GARCH(1,1) models estimated (with standard errors in parentheses). The
QML estimation of the McNeil and Frey model assumes normality of inno-
vations, whereas the two other GARCH(1,1) models assume t and skewed ¢
innovations, respectively. We notice that estimates of the parameters pertain-
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ing to the volatility evolution are not significantly affected by the change of
conditional distribution. We also observe that the degree-of-freedom parame-
ter v is too small to be consistent with the normality assumption.!® Finally,
the asymmetry parameter X is strongly significant, suggesting that allowing
fat tails without asymmetry would not be sufficient in order to evaluate the
VaR accurately.

Table 8.3 reports information concerning the computation of the VaR and
ES. First, since we consider conditional VaR and ES, for each day, we have
a different estimate of these statistics. For this reason, we therefore present
the average of the estimates obtained from the various methods. Second, the
number of exceedances is the number of dates ¢ when the observed return
exceeds the theoretical VaR. The expected exceedance is given by 67 where 6
is the confidence level and T the number of observations in the sample. Then,
we present the three tests developed by Christoffersen (1998) (see Section
8.6.1). They allow identifying where the possible rejection of the model comes
from (p-values are in parentheses).

At the 1% confidence level, two methods perform very well: the GARCH-
EVT method and the GARCH model with skewed ¢ innovations. In both cases,
the actual number of exceedances is very close to the expected number. The
unconditional coverage is not rejected for the two methods, and the condi-
tional coverage is not rejected for the GARCH-EVT method only. At the 5%
confidence level, the only method able to satisfy the unconditional coverage
test is the GARCH model with skewed ¢ innovations. The independence of
Hits is rejected for all methods.

To sum up, it appears that the conditional EVT method performs very
well for very small confidence levels.'* In contrast, for larger confidence levels,

Table 8.2. Parameter estimates of GARCH(1,1) models

Normal Student ¢ Skewed ¢
distribution distribution distribution

w 0.0122 0.0084 0.0085
(0.0017) (0.0017) (0.0017)

« 0.1159 0.0917 0.0904
(0.0084) (0.0098) (0.0095)

I3 0.8661 0.8948 0.8960
(0.0089) (0.0109) (0.0105)

v — 8.0622 8.1545
(0.7245) (0.7463)
A — — —0.0943
(0.0170)

13 Remember that the Student t distribution converges to a normal distribution
when v — oo.

14 Unreported results indicate that it is the only approach to accurately estimate
the VaR at the 0.5% level.
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the GARCH model with skewed t innovations provides accurate estimates of
the VaR, as well.

Table 8.3. VaR computation for various methods

Var  Number Uncond. Indep. Cond.
ES of exceed. coverage of Hits coverage

(avg)
1% conf. level Exp.: 59
Hist. simulation 2.093 83 8.462 37.409 45.871
2.609 (0.004)  (0.000) (0.000)
RiskMetrics 1.649 119 46.857 17.878 64.735
1.952 (0.000) (0.000) (0.000)
GARCH-EVT 1.897 55 0.332 2.570 2.902
2.557 (0.565) (0.109) (0.234)
GARCH-t 1.768 71 2.170 6.384 8.554
2.256 (0.141)  (0.012) (0.014)
GARCH-skewed t 1.866 59 0.002 8.941 8.943
2.393 (0.963) (0.003) (0.011)
5% conf. level Exp.: 296
Hist. simulation 1.192 357 12.105 83.593 95.698
1.689 (0.001) (0.000) (0.000)
RiskMetrics 1.157 381 23.166 33.818 56.984
1.518 (0.000) (0.000) (0.000)
GARCH-EVT 1.156 340 6.335 7.750  14.085
1.777 (0.012) (0.005) (0.001)
GARCH-t 1.125 368 16.761 13.703 30.464
1.590 (0.000) (0.000) (0.000)
GARCH-skewed t  1.167 325 2.740 11.921 14.661

1.667 (0.098) (0.001) (0.001)






