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Multivariate Statistical Models

7.1 Introduction

Often we are not interested merely in a single random variable but rather in
the joint behavior of several random variables, for example, returns on sev-
eral assets and a market index. Multivariate distributions describe such joint
behavior. This chapter is an introduction to the use of multivariate distribu-
tions for modeling financial markets data. Readers with little prior knowledge
of multivariate distributions may benefit from reviewing Sections A.12–A.14
before reading this chapter.

7.2 Covariance and Correlation Matrices

Let Y = (Y1, . . . , Yd)T be a random vector. We define the expectation vector
of Y to be

E(Y ) =




E(Y1)
...

E(Yd)


 .

The covariance matrix of Y is the matrix whose (i, j)th entry is Cov(Yi, Yj)
for i, j = 1, . . . , N . Since Cov(Yi, Yi) = Var(Yi), the covariance matrix is

COV(Y ) =




Var(Y1) Cov(Y1, Y2) · · · Cov(Y1, Yd)
Cov(Y2, Y1) Var(Y2) · · · Cov(Y2, Yd)

...
...

. . .
...

Cov(Yd, Y1) Cov(Yd, Y2) · · · Var(Yd)


 .

Similarly, the correlation matrix of Y , denoted CORR(Y ), has i, jth element
ρYiYj . Because Corr(Yi, Yi) = 1 for all i, the diagonal elements of a correlation
matrix are all equal to 1. Note the use of “COV” and “CORR” to denote
matrices and “Cov” and “Corr” to denote scalars.
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150 7 Multivariate Statistical Models

The covariance matrix can be written as

COV(Y ) = E
[
{Y − E(Y )} {Y − E(Y )}T

]
. (7.1)

There are simple relationships between the covariance and correlation matri-
ces. Let S = diag(σY1 , . . . , σYd

), where σYi is the standard deviation of Yi.
Then

CORR(Y ) = S−1COV(Y )S−1 (7.2)

and, equivalently,
COV(Y ) = S CORR(Y )S. (7.3)

The sample covariance and correlation matrices replace Cov(Yi, Yj) and
ρYiYj by their estimates given by (A.29) and (A.30).

A standardized variable is obtained by subtracting the variable’s mean and
dividing the difference by the variable’s standard deviation. After standard-
ization, a variable has a mean equal to 0 and a standard deviation equal to 1.
The covariance matrix of standardized variables equals the correlation matrix
of original variables, which is also the correlation matrix of the standardized
variables.

Example 7.1. CRSPday covariances and correlations

This example uses the CRSPday data set in R’s Ecdat package. There are
four variables, daily returns from January 3, 1969, to December 31, 1998, on
three stocks, GE, IBM, and Mobil, and on the CRSP value-weighted index,
including dividends. CRSP is the Center for Research in Security Prices at
the University of Chicago. The sample covariance matrix for these four series
is

ge ibm mobil crsp
ge 1.88e-04 8.01e-05 5.27e-05 7.61e-05
ibm 8.01e-05 3.06e-04 3.59e-05 6.60e-05
mobil 5.27e-05 3.59e-05 1.67e-04 4.31e-05
crsp 7.61e-05 6.60e-05 4.31e-05 6.02e-05

It is difficult to get much information just by inspecting the covariance ma-
trix. The covariance between two random variables depends on their variances
as well as the strength of the linear relationship between them. Covariance
matrices are extremely important as input to, for example, a portfolio anal-
ysis, but to understand the relationship between variables, it is much better
to examine their sample correlation matrix. The sample correlation matrix in
this example is
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ge ibm mobil crsp
ge 1.000 0.334 0.297 0.715
ibm 0.334 1.000 0.159 0.486
mobil 0.297 0.159 1.000 0.429
crsp 0.715 0.486 0.429 1.000

We can see that all sample correlations are positive and the largest correlations
are between crsp and the individual stocks. GE is the stock most highly
correlated with crsp. The correlations between individual stocks and a market
index such as crsp are a key component of finance theory, especially the
Capital Asset Pricing Model (CAPM) introduced in Chapter 16.

¤

7.3 Linear Functions of Random Variables

Often we are interested in finding the expectation and variance of a linear
combination (weighted average) of random variables. For example, consider
returns on a set of assets. A portfolio is simply a weighted average of the assets
with weights that sum to one. The weights specify what fractions of the total
investment are allocated to the assets. For example, if a portfolio consists of
200 shares of Stock 1 selling at $88/share and 150 shares of Stock 2 selling at
$67/share, then the weights are

w1 =
(200)(88)

(200)(88) + (150)(67)
= 0.637 and w2 = 1− w1 = 0.363. (7.4)

Because the return on a portfolio is a linear combination of the returns
on the individual assets in the portfolio, the material in this section is used
extensively in the portfolio theory of Chapters 11 and 16.

First, we look at a linear function of a single random variable. If Y is a
random variable and a and b are constants, then

E(aY + b) = aE(Y ) + b.

Also,
Var(aY + b) = a2Var(Y ) and σaY +b = |a|σY .

Next, we consider linear combinations of two random variables. If X and
Y are random variables and w1 and w2 are constants, then

E(w1X + w2Y ) = w1E(X) + w2E(Y ),

and

Var(w1X + w2Y ) = w2
1Var(X) + 2w1w2Cov(X, Y ) + w2

2Var(Y ). (7.5)
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Check that (7.5) can be reexpressed as

Var(w1X + w2Y ) = (w1 w2 )
(

Var(X) Cov(X,Y )
Cov(X,Y ) Var(Y )

)(
w1

w2

)
. (7.6)

Although formula (7.6) may seem unnecessarily complicated, we will show
that this equation generalizes in an elegant way to more than two random
variables; see (7.7) below. Notice that the matrix in (7.6) is the covariance
matrix of the random vector ( X Y )T.

Let w = (w1, . . . , wd)T be a vector of weights and let Y = (Y1, . . . , Yd) be
a random vector. Then

wTY =
N∑

i=1

wiYi

is a weighted average of the components of Y . One can easily show that

E(wTY ) = wT{E(Y )}

and

Var(wTY ) =
N∑

i=1

N∑

j=1

wi wj Cov(Yi, Yj).

This last result can be expressed more succinctly using vector/matrix nota-
tion:

Var(wTY ) = wTCOV(Y )w. (7.7)

Example 7.2. The variance of a linear combination of correlated random vari-
ables

Suppose that Y = (Y1 Y2 Y3)T, Var(Y1) = 2, Var(Y2) = 3, Var(Y3) = 5,
ρY1,Y2 = 0.6, and that Y1 and Y2 are independent of Y3. Find Var(Y1 + Y2 +
1/2 Y3).

Answer: The covariance between Y1 and Y3 is 0 by independence, and the
same is true of Y2 and Y3. The covariance between Y1 and Y2 is (0.6)

√
(2)(3) =

1.47. Therefore,

COV(Y ) =




2 1.47 0
1.47 3 0
0 0 5


 ,

and by (7.7),

Var(Y1 + Y2 + Y3/2) = ( 1 1 1
2 )




2 1.47 0
1.47 3 0
0 0 5







1
1
1
2
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= ( 1 1 1
2 )




3.47
4.47
2.5




= 9.19.

¤

A important property of a covariance matrix COV(Y ) is that it is sym-
metric and positive semidefinite. A matrix A is said to be positive semidefinite
(definite) if xTAx ≥ 0 (> 0) for all vectors x 6= 0. By (7.7), any covariance
matrix must be positive semidefinite, because otherwise there would exist a
random variable with a negative variance, a contradiction. A nonsingular co-
variance matrix is positive definite. A covariance matrix must be symmetric
because ρYi Yj = ρYj Yi for every i and j.

7.3.1 Two or More Linear Combinations of Random Variables

More generally, suppose that wT
1 Y and wT

2 Y are two weighted averages of
the components of Y , e.g., returns on two different portfolios. Then

Cov(wT
1 Y ,wT

2 Y ) = wT
1 COV(Y )w2 = wT

2 COV(Y )w1. (7.8)

Example 7.3. (Example 7.2 continued)

Suppose that the random vector Y = (Y1, Y2, Y3)
T has the mean vector

and covariance matrix used in the previous example and contains the returns
on three assets. Find the covariance between a portfolio that allocates 1/3 to
each of the three assets and a second portfolio that allocates 1/2 to each of
the first two assets. That is, find the covariance between (Y1 +Y2 +Y3)/3 and
(Y1 + Y2)/2.

Answer: Let
w1 = ( 1

3
1
3

1
3 )T

and
w2 = ( 1

2
1
2 0 )T .

Then

Cov
{

Y1 + Y2

2
,
Y1 + Y2 + Y3

3

}
= wT

1 COV(Y )w2

= ( 1/3 1/3 1/3 )




2 1.47 0
1.47 3 0
0 0 5







1/2
1/2
0
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= ( 1.157 1.490 1.667 )




1/2
1/2
0




= 1.323.

¤

Let W be a nonrandom N × q matrix so that W TY is a random vector
of q linear combinations of Y . Then (7.7) can be generalized to

COV(W TY ) = W TCOV(Y )W . (7.9)

Let Y 1 and Y 2 be two random vectors of dimensions n1 and n2, respec-
tively. Then ΣY1,Y2 = COV(Y 1, Y 2) is defined as the n1 × n2 matrix whose
i, jth element is the covariance between the ith component of Y 1 and the jth
component of Y 2, that is, ΣY1,Y2 is the matrix of covariances between the
random vectors Y 1 and Y 2.

It is not difficult to show that

Cov(wT
1 Y 1,w

T
2 Y 2) = wT

1 COV(Y 1, Y 2)w2, (7.10)

for constant vectors w1 and w2 of lengths n1 and n2.

7.3.2 Independence and Variances of Sums

If Y1, . . . , Yd are independent, or at least uncorrelated, then

Var
(
wTY

)
= Var

(
n∑

i=1

wiYi

)
=

n∑

i=1

w2
i Var(Yi). (7.11)

When wT = (1/n, . . . , 1/n) so that wTY = Y , then we obtain that

Var(Y ) =
1
n2

n∑

i=1

Var(Yi). (7.12)

In particular, if Var(Yi) = σ2 for all i, then we obtain the well-known result
that if Y1, . . . , Yd are uncorrelated and have a constant variance σ2, then

Var(Y ) =
σ2

n
. (7.13)

Another useful fact that follows from (7.11) is that if Y1 and Y2 are uncorre-
lated, then

Var(Y1 − Y2) = Var(Y1) + Var(Y2). (7.14)
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7.4 Scatterplot Matrices

A correlation coefficient is only a summary of the linear relationship between
variables. Interesting features, such as nonlinearity or the joint behavior of
extreme values, remain hidden when only correlations are examined. A so-
lution to this problem is the so-called scatterplot matrix, which is a matrix
of scatterplots, one for each pair of variables. A scatterplot matrix can be
created easily with modern statistical software such as R. Figure 7.1 shows a
scatterplot matrix for the CRSPday data set.

ge

−0.10 0.00 0.10 −0.06 −0.02 0.02

−0
.0

5
0.

00
0.

05

−0
.1

0
0.

00
0.

10

ibm

mobil

−0
.0

5
0.

00
0.

05
0.

10

−0.05 0.00 0.05

−0
.0

6
−0

.0
2

0.
02

−0.05 0.00 0.05 0.10

crsp

Fig. 7.1. Scatterplot matrix for the CRSPday data set.

One sees little evidence of nonlinear relationships in Figure 7.1. This lack
of nonlinearities is typical of returns on equities, but it should not be taken
for granted—instead, one should always look at the scatterplot matrix. The
strong linear association between GE and crsp, which was suggested before
by their high correlation coefficient, can be seen also in their scatterplot.
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A portfolio is riskier if large negative returns on its assets tend to occur
together on the same days. To investigate whether extreme values tend to
cluster in this way, one should look at the scatterplots. In the scatterplot for
IBM and Mobil, extreme returns for one stock do not tend to occur on the same
days as extreme returns on the other stock; this can be seen by noticing that
the outliers tend to fall along the x- and y-axes. The extreme-value behavior
is different with GE and crsp, where extreme values are more likely to occur
together; note that the outliers have a tendency to occur together, that is, in
the upper-right and lower-left corners, rather than being concentrated along
the axes. The IBM and Mobil scatterplot is said to show tail independence.
In contrast, the GE and crsp scatterplot is said to show tail dependence. Tail
dependence is explored further in Chapter 8.

7.5 The Multivariate Normal Distribution

In Chapter 5 we saw the importance of having parametric families of uni-
variate distributions as statistical models. Parametric families of multivariate
distributions are equally useful, and the multivariate normal family is the best
known of them.

(a) corr = 0.5

X1

X
2

 0.02 

 0.04 

 0.06 

 0.08 

 0.1 

 0.12 

 0.14  0
.1

6 

−2 −1 0 1 2

−2
−1

0
1

2

(b) corr = −0.95

X1

X
2

−2 −1 0 1 2

−2
−1

0
1

2

Fig. 7.2. Contour plots of a bivariate normal densities with N(0, 1) marginal dis-
tributions and correlations of 0.5 or −0.95.

The random vector Y = (Y1, . . . , Yd)T has a d-dimensional multivariate
normal distribution with mean vector µ = (µ1, . . . , µd)T and covariance ma-
trix Σ if its probability density function is
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φd(y|µ, Σ) =
[

1
(2π)d/2|Σ|1/2

]
exp

{
−1

2
(y − µ)TΣ−1(y − µ)

}
, (7.15)

where |Σ| is the determinant of Σ. The quantity in square brackets is a
constant that normalizes the density so that it integrates to 1. The density
depends on y only through (y−µ)TΣ−1(y−µ), and so the density is constant
on each ellipse {y : (y − µ)TΣ−1(y − µ) = c}. Here c > 0 is a fixed constant
that determines the size of the ellipse, with larger values of c giving smaller
ellipses, each centered at µ. Such densities are called elliptically contoured.
Figure 7.2 has contour plots of bivariate normal densities. Both Y1 and Y2 are
N(0, 1) and the correlation between Y1 and Y2 is 0.5 in panel (a) or −0.95 in
panel (b). Notice how the orientations of the contours depend on the sign and
magnitude of the correlation. In panel (a) we can see that the height of the
density is constant on ellipses and decreases with the distance from the mean,
which is (0, 0). The same behavior occurs in panel (b), but, because of the
high correlation, the contours are so close together that it was not possible to
label them.

If Y = (Y1, . . . , Yd)T has a multivariate normal distribution, then for every
set of constants c = (c1, . . . , cd)T, the weighted average (linear combination)
cTY = c1 Y1 + · · · + cdYd has a normal distribution with mean cTµ and
variance cTΣc. In particular, the marginal distribution of Yi is N(µi, σ

2
i ),

where σ2
i is the ith diagonal element of Σ—to see this, take ci = 1 and cj = 0

for j 6= i.
The assumption of multivariate normality facilitates many useful proba-

bility calculations. If the returns on a set of assets have a multivariate normal
distribution, then the return on any portfolio formed from these assets will
be normally distributed. This is because the return on the portfolio is the
weighted average of the returns on the assets. Therefore, the normal distribu-
tion could be used, for example, to find the probability of a loss of some size of
interest, say, 10% or more, on the portfolio. Such calculations have important
applications in finding a value-at-risk; see Chapter 19.

Unfortunately, we saw in Chapter 5 that often individual returns are not
normally distributed, which implies that a vector of returns will not have a
multivariate normal distribution. In Section 7.6 we will look at an important
class of heavy-tailed multivariate distributions.

7.6 The Multivariate t-Distribution

We have seen that the univariate t-distribution is a good model for the returns
of individual assets. Therefore, it is desirable to have a model for vectors of
returns such that the univariate marginals are t-distributed. The multivariate
t-distribution has this property. The random vector Y has a multivariate
tν(µ, Λ) distribution if

Y = µ +
√

ν

W
Z, (7.16)
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where W is chi-squared distributed with ν degrees of freedom, Z is Nd(0,Λ)
distributed, and W and Z are independent. Thus, the multivariate t-distribu-
tion is a continuous scale mixture of multivariate normal distributions. Ex-
treme values of Z tend to occur when W is near zero. Since W−1/2 multiplies
all components of Z, outliers in one component tend to occur with outliers in
other components, that is, there is tail dependence.

For ν > 1, µ is the mean vector of Y . For 0 < ν ≤ 1, the expectation of Y
does not exist, but µ can still be regarded as the “center” of the distribution
of Y because, for any value of ν, the vector µ contains the medians of the
components of Y and the contours of the density of Y are ellipses centered
at µ.
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(a) Multivariate−t
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(b) Independent t

X1

X
2

Fig. 7.3. (a) Plot of a random sample from a bivariate t-distribution with ν = 3,
µ = (0 0)T and identity covariate matrix. (b) Plot of a random sample of pairs of
independent t3(0, 1) random variables. Both sample sizes are 2500.

For ν > 2, the covariance matrix of Y exists and is

Σ =
ν

ν − 2
Λ. (7.17)

We will call Λ the scale matrix. The scale matrix exists for all values of
ν. Since the covariance matrix Σ of Y is just a multiple of the covariance
matrix Λ of Z, Y and Z have the same correlation matrices, assuming ν >
2 so that the correlation matrix of Y exists. If Σi,j = 0, then Yi and Yj

are uncorrelated, but they are dependent, nonetheless, because of the tail
dependence. Tail dependence is illustrated in Figure 7.3, where panel (a) is a
plot of 2500 observations from an uncorrelated bivariate t-distribution with
marginal distributions that are t3(0, 1). For comparison, panel (b) is a plot
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of 2500 observations of pairs of independent t3(0, 1) random variables—these
pairs do not have a bivariate t-distribution. Notice that in (b), outliers in Y1

are not associated with outliers in Y2, since the outliers are concentrated near
the x- and y-axes. In contrast, outliers in (a) are distributed uniformly in all
directions. The univariate marginal distributions are the same in (a) and (b).

Fig. 7.4. Scatterplot matrix of 500 daily returns on six midcap stocks in R’s
midcapD.ts data set.

Tail dependence can be expected in equity returns. For example, on Black
Monday, almost all equities had extremely large negative returns. Of course,
Black Monday was an extreme, even among extreme events. We would not
want to reach any general conclusions based upon Black Monday alone. How-
ever, in Figure 7.1, we see little evidence that outliers are concentrated along
the axes, with the possible exception of the scatterplot for IBM and Mobil. As
another example of dependencies among stock returns, Figure 7.4 contains a
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scatterplot matrix of returns on six midcap stocks in the midcapD.ts data set
in R’s in fEcofin package. Again, tail dependence can be seen. This suggests
that tail dependence is common among equity returns and the multivariate
t-distribution is a promising model for them.

7.6.1 Using the t-Distribution in Portfolio Analysis

If Y has a tν(µ, Λ) distribution, which we recall has covariance matrix Σ =
{ν/(ν − 2)}Λ, and w is a vector of weights, then wTY has a univariate
t-distribution with mean wTµ and variance {ν/(ν − 2)}wTΛw = wTΣw.
This fact can be useful when computing risk measures for a portfolio. If the
returns on the assets have a multivariate t-distribution, then the return on
the portfolio will have a univariate t-distribution. We will make use of this
result in Chapter 19.

7.7 Fitting the Multivariate t-Distribution by Maximum
Likelihood

To estimate the parameters of a multivariate t-distribution, one can use the
function cov.trob in R’s MASS package. This function computes the maximum
likelihood estimates of µ and Λ with ν fixed. To estimate ν, one computes
the profile log-likelihood for ν and finds the value, ν̂, of ν that maximizes
the profile log-likelihood. Then the MLEs of µ and Λ are the estimates from
cov.trob with ν fixed at ν̂.

Example 7.4. Fitting the CRSPday data

This example uses the data set CRSPday analyzed earlier in Example 7.1.
Recall that there are four variables, returns on GE, IBM, Mobil, and the
CRSP index. The profile log-likelihood is plotted in Figure 7.5. In that figure,
one see that the MLE of ν is 5.94, and there is relatively little uncertainty
about this parameter’s value—the 95% profile likelihood confidence interval
is (5.41, 6.55).

AIC for this model is 7.42 plus 64,000. Here AIC values are expressed
as deviations from 64,000 to keep these values small. This is helpful when
comparing two or more models via AIC. Subtracting the same constant from
all AIC values, of course, has no effect on model comparisons.

The maximum likelihood estimates of the mean vector and the correlation
matrix are called $center and $cor, respectively, in the following output:
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Fig. 7.5. CRSPday data. A profile likelihood confidence interval for ν. The solid curve
is 2Lmax(ν), where Lmax(ν) is the profile likelihood minus 32,000. 32,000 was sub-
tracted from the profile likelihood to simplify the labeling of the y-axis. The horizontal
line intersects the y-axis at 2Lmax(bν)− χ2

α,1, where bν is the MLE and α = 0.05. All
values of ν such that 2Lmax(ν) is above the horizontal line are in the profile likelihood
95% confidence interval. The two vertical lines intersect the x-axis at 5.41 and 6.55,
the endpoints of the confidence interval.

$center
[1] 0.0009424 0.0004481 0.0006883 0.0007693

$cor
[,1] [,2] [,3] [,4]

[1,] 1.0000 0.3192 0.2845 0.6765
[2,] 0.3192 1.0000 0.1584 0.4698
[3,] 0.2845 0.1584 1.0000 0.4301
[4,] 0.6765 0.4698 0.4301 1.0000

These estimates were computed using cov.trob with ν fixed at 5.94.
When the data are t-distributed, the maximum likelihood estimates are

superior to the sample mean and covariance matrix in several respects—the
MLE is more accurate and it is less sensitive to outliers. However, in this
example, the maximum likelihood estimates are similar to the sample mean
and correlation matrix. For example, the sample correlation matrix is
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ge ibm mobil crsp
ge 1.0000 0.3336 0.2972 0.7148
ibm 0.3336 1.0000 0.1587 0.4864
mobil 0.2972 0.1587 1.0000 0.4294
crsp 0.7148 0.4864 0.4294 1.0000

¤

7.8 Elliptically Contoured Densities

The multivariate normal and t-distributions have elliptically contoured densi-
ties, a property that will be discussed in this section. A d-variate multivariate
density f is elliptically contoured if can be expressed as

f(y) = |Λ|−1/2g
{
(y − µ)TΛ−1(y − µ)

}
, (7.18)

where g is a nonnegative-valued function such that 1 =
∫
<d g

(‖y‖2) dy, µ is
a d× 1 vector, and Λ is a d× d symmetric, positive definite matrix. Usually,
g(x) is a decreasing function of x ≥ 0, and we will assume this is true. We will
also assume the finiteness of second moments, in which case µ is the mean
vector and the covariance matrix Σ is a scalar multiple of Λ.

For each fixed c > 0,

E(c) = {y : (y − µ)TΣ−1(y − µ) = c}

is an ellipse centered at µ, and if c1 > c2, then E(c1) is inside E(c2) because
g is decreasing. The contours of f are concentric ellipses as can be seen in
Figure 7.6. That figure shows the contours of the bivariate t4-density with
µ = (0, 0)T and

Σ =
(

2 1.1
1.1 1

)
.

The major axis of the ellipses is a solid line and the minor axis is a dashed
line.

How can the axes be found? From Section A.20, we know that Σ has an
eigenvalue-eigenvector decomposition

Σ = O diag(λi) OT,

where O is an orthogonal matrix whose columns are the eigenvectors of Σ
and λ1, . . . , λd are the eigenvalues of Σ.

The columns of O determine the axes of the ellipse E(c). The decomposi-
tion can be found in R using the function eigen and, for the matrix Σ in the
example, the decomposition is
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Fig. 7.6. Contour plot of a multivariate t4-density with µ = (0, 0)T, σ2
1 = 2, σ2

2 = 1,
and σ12 = 1.1.

$values
[1] 2.708 0.292

which gives the eigenvalues, and

$vectors
[,1] [,2]

[1,] -0.841 0.541
[2,] -0.541 -0.841

which has the corresponding eigenvectors as columns; e.g., (−0.841,−0.541) is
an eigenvector with eigenvalue 2.708. The eigenvectors are only determined up
to a sign change, so the first eigenvector could be taken as (−0.841,−0.541),
as in the R output, or (0.841, 0.541).

If oi is the ith column of O, the ith axis of E(c) goes through the points
µ and µ + oi. Therefore, this axis is the line

{µ + k oi : −∞ < k < ∞}.

Because O is an orthogonal matrix, the axes are mutually perpendicular. The
axes can be ordered according to the size of the corresponding eigenvalues. In
the bivariate case the axis associated with the largest (smallest) eigenvalue is
the major (minor) axis. We are assuming that there are no ties among the
eigenvalues.
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Since µ = 0, in our example the major axis is k (0.841, 0.541), −∞ < k <
∞, and the minor axis is k (0.541,−0.841), −∞ < k < ∞.

When there are ties among the eigenvalues, the eigenvectors are not unique
and the analysis is somewhat more complicated and will not be discussed in
detail. Instead two examples will be given. In the bivariate case if Σ = I,
the contours are circles and there is no unique choice of the axes—any pair
of perpendicular vectors will do. As a trivariate example, if Σ = diag(1,1,3),
then the first principle axis is (0,0,1) with eigenvalue 3. The second and third
principal axis can be any perpendicular pair of vectors with third coordinates
equal to 0. The eigen function in R returns (0,1,0) and (1,0,0) as the second
and third axes.

7.9 The Multivariate Skewed t-Distributions

Azzalini and Capitanio (2003) have proposed a skewed extension of the multi-
variate t-distribution. The univariate special case was discussed in Section 5.7.
In the multivariate case, in addition to the shape parameter ν determining
tail weight, the skewed t-distribution has a vector α = (α1, . . . , αd)T of shape
parameters determining the amounts of skewness in the components of the dis-
tribution. If Y has a skewed t-distribution, then Yi is left-skewed, symmetric,
or right-skewed depending on whether αi < 0, αi = 0, or αi > 0. Figure 7.7 is
a contour plot of a bivariate skewed t-distribution with α = (−1, 0.25)T. No-
tice that, because α1 is reasonably large and negative, Y1 has a considerable
amount of left skewness, as can be seen in the contours, which are more widely
spaced on the left side of the plot compared to the right. Also, Y2 shows a
lesser amount of right skewness, which is to be expected since α2 is positive
with a relatively small absolute value.

Example 7.5. Fitting the skewed t-distribution to CRSPday

We now fit the skewed t-model to the CRSPday data set using the function
mst.fit in R’s sn package. This function maximizes the likelihood over all
parameters, so there is no need to use the profile likelihood as with cov.trob.
The estimates are as follows.

$dp$beta
[,1] [,2] [,3] [,4]

[1,] -0.0001474 -0.001186 3.667e-05 0.0002218

$dp$Omega
[,1] [,2] [,3] [,4]

[1,] 1.242e-04 4.751e-05 3.328e-05 4.522e-05
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multivariate skewed t:  α1 = −1, α2 = 0.25
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Fig. 7.7. Contours of a bivariate skewed t-density. The contours are more widely
spaced on the left compared to the right because X1 is left-skewed. Similarly, the
contours are more widely spaced on the top compared to the bottom because X2 is
left-skewed, but the skewness of X2 is relatively small and less easy to see.

[2,] 4.751e-05 1.822e-04 2.255e-05 3.822e-05
[3,] 3.328e-05 2.255e-05 1.145e-04 2.738e-05
[4,] 4.522e-05 3.822e-05 2.738e-05 3.627e-05

$dp$alpha
[1] 0.07929 0.12075 0.03998 -0.01585

$dp$df
[1] 5.8

Here dp$beta is the estimate of µ, dp$Omega is the estimate of Σ, dp$alpha
is the estimate of α, and dp$df is the estimate of ν. Note that the estimates
of all components of α are close to zero, which suggests that there is little if
any skewness in the data.

AIC for the skewed t-model is 9.06 plus 64,000, somewhat larger than 7.45,
the AIC for the symmetric t-model. This result, and the small estimated values
of the αi shape parameters, suggest that the symmetric t-model is adequate
for this data set.
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Fig. 7.8. Normal plots of the four returns series in the CRSPday data set. The
reference lines go through the first and third quartiles.

In summary, the CRSPday data are well fit by a symmetric t-distribution
and no need was found for using a skewed t-distribution. Also, normal plots in
Figure 7.8 of the four variables show no signs of serious skewness. Although
this might be viewed as a negative result, since we have not found an im-
provement in fit by going to the more flexible skewed t-distribution, the result
does give us more confidence that the symmetric t-distribution is suitable for
modeling this data set.

¤

7.10 The Fisher Information Matrix

In the discussion of Fisher information in Section 5.10, θ was assumed to be
one-dimensional. If θ is an m-dimensional parameter vector, then the Fisher
information is an m×m square matrix, I, and is equal to minus the matrix of
expected second-order partial derivatives of log{L(θ)}.1 In other words, the
i, jth entry of the Fisher information matrix is
1 The matrix of second partial derivatives of a function is called its Hessian matrix,

so the Fisher information matrix is the expectation of minus the Hessian of the
log-likelihood.
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Iij(θ) = −E

[
∂2

∂θi ∂θj
log{L(θ)}

]
. (7.19)

The standard errors are the square roots of the diagonal entries of the inverse
of the Fisher information matrix. Thus, the standard error for θi is

sbθi
=

√
{I(θ̂)−1}ii. (7.20)

In the case of a single parameter, (7.20) reduces to (5.19). The central limit
theorem for the MLE in Section 5.10 generalizes to the following multivariate
version.

Theorem 7.6. Under suitable assumptions, for large enough sample sizes,
the maximum likelihood estimator is approximately normally distributed with
mean equal to the true parameter vector and with covariance matrix equal to
the inverse of the Fisher information matrix.

The key point is that there is an explicit method of calculating standard
errors for maximum likelihood estimators. The calculation of standard errors
of maximum likelihood estimators by computing and then inverting the Fisher
information matrix is routinely programmed into statistical software.

Computation of the expectation in I(θ) can be challenging. Programming
the second derivatives can be difficult as well, especially for complex models.
In practice, the observed Fisher information matrix, whose i, jth element is

Iobs
ij (θ) = − ∂2

∂θi ∂θj
log{L(θ)} (7.21)

is often used. The observed Fisher information matrix is, of course, the mul-
tivariate analog of (5.21). Using observed information obviates the need to
compute the expectation. Moreover, the Hessian matrix can be computed nu-
merically by finite differences, for example, using R’s fdHess function in the
nlme package.

Inverting the observed Fisher information computed by finite differences
is the most commonly used method for obtaining standard errors. The ad-
vantage of this approach is that only the computation of the likelihood, or
log-likelihood, is necessary, and of course this is necessary simply to compute
the MLE.

7.11 Bootstrapping Multivariate Data

When resampling multivariate data, the dependencies within the observation
vectors need to be preserved. Let the vectors Y 1, . . . , Y n be an i.i.d. sample
of multivariate data. In model-free resampling, the vectors Y 1, . . . , Y n are
sampled with replacement. There is no resampling of the components within
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a vector. Resampling within vectors would make their components mutually
independent and would not mimic the actual data where the components are
dependent. Stated differently, if the data are in a spreadsheet (or matrix)
with rows corresponding to observations and columns to variables, then one
samples entire rows.

Model-based resampling simulates vectors from the multivariate distribu-
tion of the Y i, for example, from a multivariate t-distribution with the mean
vector, covariance matrix, and degrees of freedom equal to the MLEs.
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Fig. 7.9. Histograms of 200 bootstrapped values of bα for each of the returns series
in the CRSPday data set.

Example 7.7. Bootstrapping the skewed t fit to CRSPday

In Example 7.5 the skewed t-model was fit to the CRSPday data. This
example continues that analysis by bootstrapping the estimator of α for each
of the four returns series. Histograms of 200 bootstrap values of α̂ are found
in Figure 7.9. Bootstrap percentile 95% confidence intervals include 0 for all
four stocks, so there is no strong evidence of skewness in any of the returns
series.
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Despite the large sample size of 2528, the estimators of α do not appear to
be normally distributed. We can see in Figure 7.9 that they are right-skewed
for the three stocks and left-skewed for the CRSP returns. The distribution of
α̂ also appears heavy-tailed. The excess kurtosis coefficient of the 200 boot-
strap values of α̂ is 2.38, 1.33, 3.18, and 2.38 for the four series.

The central limit theorem for the MLE guarantees that α̂ is nearly nor-
mally distributed for sufficiently large samples, but it does not tell us how
large the sample size must be. We see in this example that in such cases the
sample size must be very large indeed since 2528 is not large enough. This
is a major reason for preferring to construct confidence intervals using the
bootstrap rather than a normal approximation.

A bootstrap sample of the returns was drawn with the following R code.
The returns are in the matrix dat and yboot is a bootstrap sample chosen by
taking a random sample of the rows of dat, with replacement of course.

yboot = dat[sample((1:n),n,replace =T),]

¤

7.12 Bibliographic Notes

The multivariate central limit theorem for the MLE is stated precisely and
proved in textbooks on asymptotic theory such as Lehmann (1999) and van
der Vaart (1998). The multivariate skewed t-distribution is in Azzalini and
Capitanio (2003).
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7.14 R Lab

7.14.1 Equity Returns

This section uses the data set berndtInvest in R’s fEcofin package. This data
set contains monthly returns from January 1, 1987, to December 1, 1987, on
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16 equities. There are 18 columns. The first column is the date and the last
is the risk-free rate.

In the lab we will only use the first four equities. The following code
computes the sample covariance and correlation matrices for these returns.

library("fEcofin")

Berndt = as.matrix(berndtInvest[,2:5])

cov(Berndt)

cor(Berndt)

If you wish, you can also plot a scatterplot matrix with the following R code.

pairs(Berndt)

Problem 1 Suppose the four variables being used are denoted by X1, . . . , X4.
Use the sample covariance matrix to estimate the variance of 0.5X1 +0.3X2 +
0.2X3. Include with your work the R code used to estimate this covariance.
(Useful R facts: “t(a)” is the transpose of a vector or matrix a and “a %*% b”
is the matrix product of a and b.)

Fit a multivariate-t model to the data using the function cov.trob in the
MASS package. This function computes the MLE of the mean and covariance
matrix with a fixed value of ν. To find the MLE of ν, the following code
computes the profile log-likelihood for ν.

library(MASS) # needed for cov.trob

library(mnormt) # needed for dmt

df = seq(2.5,8,.01)

n = length(df)

loglik_max = rep(0,n)

for(i in 1:n)

{

fit = cov.trob(Berndt,nu=df[i])

mu = as.vector(fit$center)

sigma =matrix(fit$cov,nrow=4)

loglik_max[i] = sum(log(dmt(Berndt,mean=fit$center,

S=fit$cov,df=df[i])))

}

Problem 2 Using the results produced by the code above, find the MLE of
ν and a 90% profile likelihood confidence interval for ν. Include your R code
with your work. Also, plot the profile log-likelihood and indicate the MLE and
the confidence interval on the plot. Include the plot with your work.

Section 7.14.3 demonstrates how the MLE for a multivariate t-model can
be fit directly with the optim function, rather than be profile likelihood.
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7.14.2 Simulating Multivariate t-Distributions

The following code generates and plots three bivariate samples. Each sam-
ple has univariate marginals that are standard t3-distributions. However, the
dependencies are different.

library(MASS) # need for mvrnorm

par(mfrow=c(1,4))

N = 2500

nu = 3

set.seed(5640)

cov=matrix(c(1,.8,.8,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w,w)

plot(x,main="(a)")

set.seed(5640)

cov=matrix(c(1,.8,.8,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w1 = sqrt(nu/rchisq(N, df=nu))

w2 = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w1,w2)

plot(x,main="(b)")

set.seed(5640)

cov=matrix(c(1,0,0,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w1 = sqrt(nu/rchisq(N, df=nu))

w2 = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w1,w2)

plot(x,main="(c)")

set.seed(5640)

cov=matrix(c(1,0,0,1),nrow=2)

x= mvrnorm(N, mu = c(0,0), Sigma=cov)

w = sqrt(nu/rchisq(N, df=nu))

x = x * cbind(w,w)

plot(x,main="(d)")

Note the use of these R commands: set.seed to set the seed of the ran-
dom number generator, mvrnorm to generate multivariate normally distributed
vectors, rchisq to generate χ2-distributed random numbers, cbind to bind
together vectors as the columns of a matrix, and matrix to create a matrix
from a vector. In R, “a*b” is elementwise multiplication of same-size matrices
a and b, and “a%*%b” is matrix multiplication of conforming matrices a and
b.
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Problem 3 Which sample has independent variates? Explain your answer.

Problem 4 Which sample has variates that are correlated but do not have
tail dependence? Explain your answer.

Problem 5 Which sample has variates that are uncorrelated but with tail
dependence? Explain your answer.

Problem 6 Suppose that (X, Y ) are the returns on two assets and have a
multivariate t-distribution with degrees of freedom, mean vector, and covari-
ance matrix

ν = 5, µ =
(

0.001
0.002

)
, Σ =

(
0.10 0.03
0.03 0.15

)
.

Then R = (X +Y )/2 is the return on an equally weighted portfolio of the two
assets.

(a) What is the distribution of R?
(b) Write an R program to generate a random sample of size 10,000 from

the distribution of R. Your program should also compute the 0.01 upper
quantile of this sample and the sample average of all returns that exceed
this quantile. This quantile and average will be useful later when we study
risk analysis.

7.14.3 Fitting a Bivariate t-Distribution

When you run the R code that follows this paragraph, you will compute the
MLE for a bivariate t-distribution fit to CRSP returns data. A challenge
when fitting a multivariate distribution is enforcing the constraint that the
scale matrix (or the covariance matrix) must be positive definite. One way to
meet this challenge is to let the scale matrix be AT A, where A is an upper
triangular matrix. (It is easy to show that AT A is positive semidefinite if A
is any square matrix. Because a scale or covariance matrix is symmetric, only
the entries on and above the main diagonal are free parameters. In order for
A to have the same number of free parameters as the covariance matrix, we
restrict A to be upper triangular.)

library(mnormt)

data(CRSPday,package="Ecdat")

Y = CRSPday[,c(5,7)]

loglik = function(par)

{

mu = par[1:2]



7.15 Exercises 173

A = matrix(c(par[3],par[4],0,par[5]),nrow=2,byrow=T)

scale_matrix = t(A)%*%A

df = par[6]

f = -sum(log(dmt(Y, mean=mu,S=scale_matrix,df=df)))

f

}

A=chol(cov(Y))

start=as.vector(c(apply(Y,2,mean),A[1,1],A[1,2],A[2,2],4))

fit_mvt = optim(start,loglik,method="L-BFGS-B",lower=c(-.02,-.02,

-.1,-.1,-.1,2),

upper=c(.02,.02,.1,.1,.1,15),hessian=T)

Problem 7 Let θ = (µ1, µ2, A1,1, A1,2, A2,2, ν), where µj is the mean of the
jth variable, A1,1, A1,2, and A2,2 are the nonzero elements of A, and ν is the
degrees-of-freedom parameter.

(a) What does the code A=chol(cov(Y)) do?
(b) Find θ̂ML, the MLE of θ.
(c) Find the Fisher information matrix for θ. (Hint: The Hessian is part of

the object fit mvt. Also, the R function solve will invert a matrix.)
(d) Find the standard errors of the components of θ̂ML using the Fisher in-

formation matrix.
(e) Find the MLE of the covariance matrix of the returns.
(f) Find the MLE of ρ, the correlation between the two returns (Y1 and Y2).

7.15 Exercises

1. Suppose that E(X) = 1, E(Y ) = 1.5, Var(X) = 2, Var(Y ) = 2.7, and
Cov(X, Y ) = 0.8.
(a) What are E(0.2X + 0.8Y ) and Var(0.2X + 0.8Y )?
(b) For what value of w is Var{wX +(1−w)Y } minimized? Suppose that

X is the return on one asset and Y is the return on a second asset.
Why would it be useful to minimize Var{wX + (1− w)Y }?

2. Let X1, X2, Y1, and Y2 be random variables.
(a) Show that Cov(X1 + X2, Y1 + Y2) = Cov(X1, Y1) + Cov(X1, Y2) +

Cov(X2, Y1) + Cov(X2, Y2).
(b) Generalize part (a) to an arbitrary number of Xis and Yis.

3. Verify formulas (A.24)–(A.27).
4. (a) Show that

E{X − E(X)} = 0

for any random variable X.
(b) Use the result in part (a) and equation (A.31) to show that if two

random variables are independent then they are uncorrelated.
5. Show that if X is uniformly distributed on [−a, a] for any a > 0 and if

Y = X2, then X and Y are uncorrelated but they are not independent.
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6. Verify the following results that were stated in Section 7.3:

E(wTX) = wT{E(X)}

and

Var(wTX) =
N∑

i=1

N∑

j=1

wi wj Cov(Xi, Xj)

= Var(wTX)wTCOV(X)w.
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