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Modeling Correlation

In this chapter, we turn to the modeling of the multivariate distribution of
asset returns. The most important characteristic of the multivariate distribu-
tion relies on the dependency parameter, i.e., the parameter that measures the
strength of the link between two series. For a number of standard distributions
(namely, those belonging to the elliptical family, which includes the normal
and the Student ¢ distributions), the dependency is simply measured by the
Pearson’s correlation coefficient. We often refer to correlation when meaning
dependency. In practice, however, asset returns do not belong to this ellip-
tical family and the dependency must be modeled with specific techniques.
The modeling of the dependency parameter between asset returns has very
important consequences in a number of financial applications.

An abundant literature has addressed the issue of how correlation be-
tween stock market returns varies when markets become agitated. The time-
variability of correlation between returns is crucial from an asset management
point of view. Asset allocation is often based on the use of a correlation matrix
computed over a given sample period. If correlation increases during turbu-
lent periods, the benefits of diversification would disappear when they are the
most needed, i.e., during crashes. Implications for risk management are also
obvious because the time-variability of the dependency parameter complicates
Value at Risk (VaR) computation significantly.

As described in Chapter 2, the first tests of constancy of the dependency
parameter were based on testing the equality of linear correlation coefficients
computed before and after a crash. This approach has been found to be mis-
leading, however, because conditioning the estimation of the correlation co-
efficient on the sample period induces an estimator bias. Subsequently, most
tests of the constant correlation hypothesis have been based on the following
approach: First, estimate the joint dynamics of stock-market returns and then
describe how conditional correlations vary over time. There are several ways
to model the joint dynamics of a number of series. The most widely used
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approach is the multivariate GARCH model.! The central idea of the first
generation of such models was that covariances had to be modeled using the
same type of specification of variances in the univariate GARCH model (Kraft
and Engle, 1982, and Bollerslev, Chou, and Kroner, 1992). These models, how-
ever, raise a problem of dimensionality because the number of parameters to
be estimated increases dramatically with the number of series. Afterwards,
most extensions have tried to reduce the computational burden.

Another difficulty of multivariate GARCH models relies on the choice of
the conditional distribution of returns. When the marginal distributions are
Gaussian, the extension to the multivariate case is trivial, because the joint
distribution is simply a multivariate Gaussian distribution. However, for more
general distributions, the multivariate extension is far from trivial. Often, it
simply does not exist. In fact, an explicit multivariate extension exists only
in very few cases. This is the case in particular for the Student ¢ distribution.
In other cases, a solution consists in constructing an implicit multivariate
distribution by using copula functions. Due to the non-normality found in
most financial return series, copula functions have had a great success, be-
cause they relate in an easy way very complicated marginal distributions.
However, there is no free lunch. When copula functions are used, computing
moments or, more generally, dealing with the integration of the joint distrib-
ution, becomes analytically intractable. Therefore, only numerical algorithms
can be implemented. Unfortunately, in many financial applications, even with
a few number of assets, such a numerical integration is too demanding to be
performed in a reasonable length of time.

In this chapter, we describe how the dependency parameter may be mod-
eled in the context of a multivariate GARCH model (Section 6.1). We present
tests of constancy of the conditional dependency parameter. Notice that we
will not provide a full description of the multivariate GARCH models. Rather,
this section should be viewed as a brief introduction to this methodology, be-
fore applying multivariate models with non-normal distributions.? Then, we
consider two aspects of the multivariate extension of non-Gaussian distribu-
tions. In Section 6.2, we consider the use of explicit multivariate distributions,

1 An alternative approach is the multivariate Markov-switching model. For in-
stance, Ramchand and Susmel (1998) and Ang and Bekaert (2002) test within
this framework the hypothesis of a constant international conditional correlation
between stock markets. Some papers also consider how correlation varies when
stock-market indices are simultaneously affected by very large (positive or neg-
ative) fluctuations. Engle and Manganelli (2004) focus on the modeling of large
realizations using quantile regressions. Longin and Solnik (2001), using extreme
value theory, find that dependency increases more during downside movements
than during upside movements. Poon, Rockinger, and Tawn (2004) provide an al-
ternative statistical framework to test conditional dependency between extreme
returns.

In addition, it is worth emphasizing that the modeling of dependency in the
context of extreme events will be detailed in Chapter 7.

N
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which are generally difficult to estimate but allow a more efficient computation

of moments. Then, in Section 6.3, we present the approach based on copula,
whose estimation is much easier, although applications are more restricted.

6.1 Multivariate GARCH models

We now consider a random vector x; = (x1,4, - - ,a:mt)' whose joint dynamics
is given by
Tt = My (9) + Et, (61)
[ 2,51/2 (9) Zt, (62)

where 1, (6) denotes the (n, 1) vector of conditional means, X (6) denotes the
(n,n) conditional covariance matrix of the error term &, and @ is the vector of
unknown parameters. The standardized innovation vector z; is #4d with mean
E [z] = 0 and covariance matrix V [z] = I,,. Z‘tl/z (0) denotes the Cholesky
decomposition of Xy (#) . In this chapter, we assume that z; is drawn from the
multivariate normal N (0, I,,) distribution.

Several parameterizations have been proposed for Y;. The main issue to
be addressed is the dimensionality of the parameter vector when the num-
ber of variables n increases. Obviously, it is desirable that most statistical
features highlighted in the univariate context be incorporated in the multi-
variate framework, in particular in terms of asymmetry and tail behavior.
Some additional specific issues related to the multivariate framework have to
be addressed. First, we have to deal with the conditions guaranteeing that the
covariance matrix is positive definite at each date ¢. A second issue is whether
conditional correlations have to be modeled instead of conditional covariance,
and whether they have to be time-varying.

It should be noticed that we do not discuss the positivity and stationarity
conditions, which have been widely studied in the literature. Very complete
and comprehensive surveys of multivariate GARCH models may be found in
Bollerslev, Engle, and Nelson (1994) and Bauwens, Laurent, and Rombouts
(2005).

For further use, we define D; the (n,n) diagonal matrix with the con-
ditional variances o7 along the diagonal, so that {D;},, = {X:},, and

{Dt}i]. =0,Vi #£ j, for i,j = 1,--- ,n. We also define Ry, the (n,n) ma-
trix of conditional correlations of €;, as Ry = Dt_l/QZ’lﬁDt_l/2 = {p};;- We

deduce the (n, 1) vector of normalized innovations u; = D, v 25t. Notice that

u; differs from standardized innovations z; = X, 1/ 25t, because they are not
orthogonalized.
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6.1.1 Vectorial and diagonal GARCH models
Vech model

The first multivariate GARCH model, proposed by Kraft and Engle (1982)
and Bollerslev, Chou, and Kroner (1992), assumes that each element of the
covariance matrix is a linear function of the most recent past cross-products
of errors and conditional variances and covariances. The Vech GARCH(p, q)
model is defined as

P a
vech (X;) = vech (£2) + Z Ajvech (g,—i;_;) + Z Bjvech (X_;), (6.3)

i=1 j=1

where {2 is an (n,n) positive definite and symmetric matrix, A; and B; are
(n(n+1)/2,n(n+1)/2) matrices; vech(-) is the operator that stacks the
lower triangular elements of an (n,n) matrix as an (n(n+1)/2,1) vector.
The number of parameters is [n (n+ 1) /2] [1 4+ (p + ¢) n (n + 1) /2]. Although
this specification is very flexible, the large number of parameters (proportional
to m?) renders this model very difficult to handle. In addition, conditions
that ensure that the conditional covariance matrices are positive definite are
difficult to verify and impose.
Example: In the case p = ¢ = 1 and n = 2, this model reduces to

0%_¢ w11 a1l a1z a13 5%,#1
O12¢t | = | wiz2 | + | a21 a22 az3 €1,t—1€2,t—1
U%,t W22 a31 a3z a33 Eg,t,l
b11 b12 b3 U%,tq
+ | b21 baa bos o12,¢-1 | »
bs1 b3z b33 0341

with 21 unknown parameters.

Diagonal vec model

In order to reduce the number of unknown parameters, Bollerslev, Engle, and
Wooldridge (1988) have proposed the diagonal vec model, in which the ma-
trices A7 and B are all taken to be diagonal (n,n) matrices: each element of
the covariance matrix (o;;¢) only depends on the corresponding past elements
Oiji—1 and €; 416511

p q
Zt = Q* + ZA: ® (Et—iE;,Z‘) + ZB; © thj)

i=1 j=1
where 2% is an (n,n) positive definite and symmetric matrix, A} and B} are

(n,n) symmetric matrices and ® denotes the Hadamard product.® This model

3 The Hadamard product defines the element-wise product of two matrices. So we
have {A ® B}” = A”B”
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has a natural interpretation, because covariances as well as variances have a
GARCH-type specification. In addition, it reduces the number of unknown
parameters considerably to [n (n + 1) /2] (p + g + 1), so that it is proportional
to n? only.

Example: In the case p = ¢ =1 and n = 2, this model reduces to

* *
v, — [ W11 Yi2
t — * w*
Wi Wag
* * 2
4+ (%11 %2 o €lt-1 E1,t—21527t—1
ajp A3o €1,4-1€2,0—1 €34 1
* * 2
( 11 12) ® ( O1,t—1 0122,t1>
* * b
12 039 012,t—1 02¢—1

* * * 2 *
3, = (Wll W12> + ( a11€7,¢—1 a1251,t2152,t1)
- * * * *
Wiz Waz A1281,t-182,6—1 Q2834 1

* 2 *
< b11‘71,t—1 bioo12,0—1 >

* * 2
bi2012,t-1 b2202,t—1

+

2
01+ O12;t
where X, = Lt 750 ) . In such a case, there are 9 unknown parameters.
012t O3t
BEKK model

An alternative representation is the BEKK representation described by Engle
and Kroner (1995)*

P q
Et =N+ Z A;’Et_ié‘;_iAi + Z B;Et_ij,

i=1 j=1
where 2 is an (n,n) positive definite and symmetric matrix, and A; and Bj are
(n,n) matrices. This specification involves [n (n + 1) /2] + (p + ¢) n? unknown
parameters. The main advantage of this specification is that the conditional

covariance matrix is positive definite as long as (2 also is.
Example: In the case p = ¢ = 1 and n = 2, this model reduces to

w11 @
¥, = Y11 W12

W12 Wa2
~ ~ ! 2 ~ ~

+ a11 12 €1,6—1 €1,t—1€2,t—1 a11 a21
~ ~ 2 ~ ~
a21 a22 E1,t—1€2,t—1 €3t—1 a12 a22
~ ~ / 9 ~ ~

+ <511 b12> ( 01,t—1 012,t1> <511 b21>
i 7 2 75 ,
ba1 b2 012,4—1 0541 b12 bao

4 The acronym BEKK stands for Baba, Engle, Kraft, and Kroner.
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with 11 unknown parameters. To reduce the computational burden, this model
may be further constrained. The diagonal BEKK model is written as

w11 @
¥, = (Y1 V12
w12 W2
~ 2 ~
4 aip 0 €1,t—1 €1,t—1€2,t—1 a1 0
~ 2 ~
0 az €1,t-1€2,t—1 €341 0 a9
- ) -
n by O 0141 C7122,t—1 by O
0 boo 012,t—1 0241 0 boo ’
while the scalar BEKK model is
w11 W2 2 £ €1,4—1€2,t—1
Et — ~ ~ + a 1,t—1 y 5 3
W12 W2 €1,t—1€2,t—1 €3,t—1
2
72 O1¢—1 012,t—1
4 b 1,t—1 5 .
O12t—1 O2¢—1
Dealing with the constant term

As discussed in Engle and Mezrich (1996), these models can be estimated with
the additional constraint that the long-run covariance matrix is equal to the
sample covariance matrix. This approach is often called variance targeting.
It reduces the number of parameters dramatically and often gives improved
performance in finite sample. For instance, in the case of the Vech model, we
have the following parameterization

P q
vech (2) = | I, — ZAi - ZB]- vech (5),
i=1 j=1

T ~ af . . .
where S = % > i1 E4€y is the sample covariance matrix of residuals.

6.1.2 Dealing with large-dimensional systems

One general problem with multivariate GARCH models is the problem of di-
mensionality. The specifications described above would be very difficult to
implement for large-dimensional portfolios because of the large number of pa-
rameters to be estimated. The Factor GARCH approach (and its extensions)
reduces the number of variables (the factors) that have to be modeled with
a multivariate GARCH dynamics. The Flexible GARCH model is based on a

decentralized estimation of the covariance matrix.
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Factor GARCH model

The Factor GARCH (or F-GARCH) has been proposed by Engle, Ng, and
Rothschild (1990) to further reduce the number of parameters to be esti-
mated. Engle, Ng, and Rothschild (1992) have proposed an extension of the
F-GARCH model that allows distinguishing between the dynamic and static
structure of asset returns. Other work based on F-GARCH models is by King,
Sentana, and Wadhwani (1994) or Sentana and Fiorentini (2001).

The idea of this parameterization is that the joint dynamics of the (n, 1)
vector of returns x; can be correctly described using a small number of factors
K (K < n). This model has been used by Bollerslev and Engle (1993) to model
common persistence in stock market volatilities. The description of x; is given
by the (K, 1) vector of factors f; and the (n, K) matrix B of time-invariant
factor loadings

Tt = Bft + &¢.

Assume that the error term &; has constant (n,n) conditional covariance ma-
trix £2, that the K factors f; have conditional covariance matrix A; and that
e; and f; are uncorrelated. Then, the conditional covariance matrix of x; is
equal to®

‘/;‘71 [xt] = Et =1 + BAtB/. (64)

If we assume now that the conditional covariance matrix of factors A; is diag-
onal with elements Ay ; or if off-diagonal elements are constant and combined
into {2, then the model can be simplified as

K
T =04 BBk,
k=1

where (3, denotes the kth column in B.

F-GARCH models have several interesting implications (see Engle, Ng, and
Rothschild, 1990). First, the conditional covariance matrix X is guaranteed to
be positive semi-definite. Second, we can always construct portfolios of assets
that have the same conditional variance Ay, ; as factors (up to a constant term).
To see this, consider the portfolio 74 ; = @)z, where ¢;€ﬂj =1ifj=kand 0
otherwise. Then, the conditional variance of rj ; is given by

Vic1 [P = 0pZedp = Vg + Akt

with ¢, = ¢},£2¢,.. Therefore, the portfolio ry; has exactly the same time
variation as the kth factor, so that it can be called factor-representing port-
folio. This property indicates that the information in the factor-representing
portfolios is sufficient for predicting the variances and covariances of individ-
ual asset returns. If we assume that the dynamics of each component A ; is

5 In the case where ¢; and ft are correlated with constant correlation matrix, we
also obtain (6.4), with the constant matrix {2 regrouping terms of the covariance
matrix of €; and the conditional covariance matrix of €, and f;.
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given by univariate GARCH(1, 1) models, we obtain the following conditional
variances

2
Vit [Tt] = wi + ag (ree—1)” + v Viea [Tee—1] -

Finally, if K < n, we can always construct n — K portfolios of assets, i.e.,
linear combinations of x;, which have constant variance.

Orthogonal models

The Orthogonal GARCH model (or O-GARCH) has been proposed by Alexan-
der and Chibumba (1997) and Alexander (2001). It assumes that the observed
data can be obtained by a linear transformation of a set of uncorrelated com-
ponents and the matrix of the linear transformation is an orthogonal matrix.
The (n,n) covariance matrix X} is generated by m univariate GARCH mod-
els, where m < n is determined using principal component analysis. The main
interest of this approach is that it avoids estimating off-diagonal components
of the multivariate GARCH parameter matrices, because the model is esti-
mated not with original data but with its principal components that are by
construction unconditionally uncorrelated.

The first step is to compute the sample (n,n) correlation matrix R of the
n normalized innovations u; = D~/2¢;, where D = diag(a%7 e ,oi) with
0? the sample variance of ¢;. Then, we assume that the data are generated
by an orthogonal transformation of a small number K (K < n) of factors
f:. The matrix of this transformation is given by the eigenvectors of R. The
O-GARCH model is therefore defined as

Ut = VKfta
Vi :PKA}(/Q = Pk X dlag (A}/2a a)‘%2>7

where A is the (K, K) diagonal matrix of eigenvalues of R (ranked from the
largest to the smallest, A\; > --- > Ag), Pk the associated (n, K) orthogonal

matrix of eigenvectors, and Vi = PKA}(/Q. The unconditional covariance of f;
is the identity matrix of order K, by construction. The conditional covariance
matrix of f; is assumed to be a diagonal matrix (denoted @) where each
diagonal element is specified as a univariate GARCH model. The vector of
factors fi = (f1,,- - 7fK7t)/ is thus characterized by

Etfl [ft] = 07
Viea [ft] = Qt = dlag (Uil,ta T 70—?‘K,t) )

p q p q
2 2 2
Oft = (1 - Z Qb — Z 51;;) + Z infi—n + Z Bin0F, t—h-
h=1 h=1 h=1 h=1

Finally, the conditional covariance matrix of €; is simply given by
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5y = Vio1 [e] = DV?R,DY?,

where
Ry =V, [Ut] = VmQtVn/@-

The parameters to be estimated are the following: The individual variances o2
of g; (included in D), the sample correlation matrix of u; (the decomposition
of which provides us with V},,), and the parameters (o;, and f,;,, for i =
1,--+,K) of the univariate GARCH models. We notice that the individual
variances o7 can be estimated by the sample analogue of D. In addition, once
the number of factors K is chosen, Vi can be computed directly from the
sample counterpart of R. Consequently, the estimation burden reduces itself
to the estimation of the individual GARCH models for the K factors.

The O-GARCH model implicitly assumes that the observed data can be
linearly transformed into a set of uncorrelated components by means of an
orthogonal matrix. These unobserved components can be interpreted as a set
of uncorrelated factors that drive the market, similar to that in the F-GARCH
model. The orthogonality assumption appears to be rather restrictive, how-
ever. Van der Weide (2002) has proposed the Generalized Orthogonal GARCH
model (or GO-GARCH), in which innovations are linked by any possible in-
vertible matrix. For this purpose, he argues that, when V is the map that
links the uncorrelated components f; with the observed process wuy, then there
exists an orthogonal matrix U such that V = PAY2U, with |U| = 1. The
O-GARCH model implicitly assumes U = I.

The matrix U can be represented as a product of K (K — 1) /2 rotation
matrices U = [[,_; Gij (0i;), with —7 < 0;; < m, where Gj; (0;;) performs
a rotation in the plan spanned by e; and e; over an angle 6;; for 7,5 =
1,--+,n, and e; is the ith column of the (n,n) identity matrix. The conditional
covariance matrix of ¢; has the same expression as before

5 = Vi [e) = DY?R,DY?,

where
Ry =Vioq[u] = V@V,

with V = PAY2U. The GO-GARCH model is stationary, provided the in-
dependent GARCH processes are stationary. In the case where K = n, the
O-GARCH model can be viewed as a GO-GARCH for the particular choice
U = I,,. Note also that the GO-GARCH model is a special case of the BEKK
model, so that its properties can be derived from those of the BEKK model.

As for the O-GARCH model, an estimate of the parameters in D and V' can
be obtained from the sample analogues of D and R. Therefore, the remaining
parameters to be estimated are the parameters (a;p, and 8, fori =1,--- | K)
of the univariate GARCH models and the K (K — 1) /2 rotation angles 6;;.
Related approaches have been followed by Vrontos, Dellaportas, and Politis
(2003) and by Lanne and Saikkonen (2005).
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Flexible GARCH model

Another approach can be taken in order to reduce the computational burden
of large-scale multivariate GARCH models. Most models described in Section
6.1.1 are designed to reduce the number of parameters to be estimated. First-
generation models impose some additional structure on the general specifica-
tion. F-GARCH models summarize the information in asset returns through
factors. By contrast, the flexible GARCH model proposed by Ledoit, Santa-
Clara, and Wolf (2003) does not try to reduce the number of parameters but
instead decentralize the estimation problem.
Assume that we have to estimate a diagonal vec model of the form

Oijt = Wij + €1 1€5¢-1 + ﬁijaij,tfla

where the conditional covariance o;;+ between assets ¢ and j depends on its
own lag and on the cross-product between lagged innovations €; ;1 and €;+—1.
In this case, for each (co)variance, we have 3 parameters to estimate, so that
for n assets, we would have 3n (n + 1) /2 parameters. The idea of the flexible
GARCH model consists in estimating the parameters {wij, Qi ﬁij} for each
(,7) separately. Thus, the problem reduces to estimating one-dimensional
(when i = j) or two-dimensional (when i # j) models. The difficulty then is to
combine the various estimates into matrices 2 = {&;;}, A = {@;;} and B =
{ﬁm} Since the estimated parameters come from independent estimations,
the covariance matrix X; is not guaranteed to be positive semi-definite. Thus,
once elements of the X; matrix have been estimated, it will be necessary to
use some trick to ensure positive semi-definiteness of this matrix.

The first step of the estimation of the flexible GARCH model corresponds
to the (Q)ML estimation of the diagonal and off-diagonal elements of the
covariance matrix. Diagonal elements are estimated using the standard uni-
variate GARCH specification

2
Oiit = Wi + Q€5 41 + BiiTiit—1,

with w;; > 0, ai; > 0, B;; > 0, and ay; + 5;; < 1. Off-diagonal elements (o5 +)
are estimated using the bivariate GARCH model for assets 7 and j

_ gl/2
E(ig)t = (i), At

where
it Zit Giit Oijt
(i)t = ( ’ ) 2(ij)t = ( e Zapa= L0 20 ]
Ejt Zjt Oijt Ojjt

Oijt = Wij + € 1—1€5¢-1 + Bijaij,tfl'

and

The vector z(;jy ¢ is assumed to be normal N (0, I3). Therefore, in the bivariate
model, only the parameters pertaining to the covariance o;;; are estimated,
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and the conditional variances o;; ; and o ;;; are fixed to their first-stage values
it and 65 ¢. In order to ensure that X;;) ; is positive definite, we impose the

following bounds during the estimation: |w;;| < /W@, 0 < oy < (/Quidjj,
and 0 < Bij < \ 32‘1'3”-
Then, Ledoit, Santa-Clara, and Wolf (2003) show how to render the bi-

variate estimates compatible in the sense that matrix X is positive definite.
Using the matrix notation for the diagonal vec model

=0N+A0O (gi-18,_1) + BO Xy,

and denoting + the element-wise division, they show that the conditional
covariance matrix X} is positive semi-definite if the three matrices D =
2+ (I,—B), A, and B are positive semi-definite and ay; + 3; < 1,
Vi =1,--- ,n. Now, if we define D = 2 + (In — B), we need to transform

the estimated parameter matrices A, B, and D in order to ensure positive
semi-definiteness of the conditional covariance matrix. The new matrices A,
B and D are chosen to be the closest to A B and D but such that the
dlagonal parameters obtained from the estimation of the univariate GARCH
models remain unchanged. Formally, we have to solve the following problems

w0}
b
s.t. D is positive semi-definite and d;; = d;;,Vi =1,--- ,n,
-]
A
s.t. A is positive semi-definite and &; = &, Vi = 1,--- ,n,
m_in‘ 3
s.t. B is positive semi-definite and B” = Bmw =1,---,n

Once these matrices have been obtained, we deduce 2 = D ® (In — B) .

One interesting property of this approach is that we have, by construction,
|avij +Bi;] <1, V4,5 =1, ,n. Therefore, it is sufficient to impose that d; +
Bii < 1,Vi=1,---,n to ensure positive semi-definiteness of the conditional
covariance matrix.

A drawback of this approach is that there is no straightforward way to
compute the standard errors of the parameter estimates. The reason is that
the new matrices A, B, and D are very nonlinear transformations of the initial
matrices A, B7 and D for which standard errors are available. Ledoit, Santa-
Clara, and Wolf (2003) suggest the use of the bootstrap procedure to obtain
standard errors. It should be noticed that for large-scale multivariate GARCH
models, the need for such standard errors is not clear.
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6.1.3 Modeling conditional correlation

The models described in the first section can be viewed as natural extensions
of the baseline univariate GARCH model. In particular, they all propose a
specification for the conditional covariances that is similar to the one adopted
for modeling variances in the univariate GARCH model. Unfortunately, they
have some drawbacks. First, the number of unknown parameters is a power
function of the number of variables, so that the estimation of these models
becomes extremely difficult as n grows. Second, the derivation of the restric-
tions ensuring that the covariance matrix is positive definite is often difficult
(except for the BEKK model).

Second-generation models focus on the dynamics of correlations rather
than on the dynamics of covariances. At first sight, this task is more de-
manding, because it cannot be constructed as a natural generalization of the
univariate GARCH model. However, due to the critical role of correlations in
finance, this shift from covariances to correlations was needed.

The Constant Conditional Correlation (CCC) model

Bollerslev (1990) has suggested that the time-varying conditional covariances
be parameterized in order to be proportional to the product of the corre-
sponding conditional standard deviations. The intuition for this model is the
following. Assume that o;, is the covariance between two assets 7 and j to be
modeled. Also, let 0?7t be the conditional variance modeled by some univari-
ate GARCH model. Under the assumption of keeping correlation constant,
denoting p;; the constant correlation between the assets 7 and j, it follows
that
pi~=% = Oijt = P;;0i,t0jt-
J 0it0t J> 177 LY,

Thus, knowledge of p,; that can be computed using standardized innovations,
and knowledge of the marginal GARCH models, yields a description of the
time-varying covariance.

The extension to a general model with n assets is straightforward. Boller-
slev (1990) introduces a time-invariant (n,n) correlation matrix with unit
diagonal elements

1 pyg -+ Pin

R=| M L (6.5)
D ' Pn—1n
Pin """ Pn—1n 1
Therefore, the temporal variation in X is determined solely by the conditional
variances

%, = D}*RD}"?, (6.6)

where D; is, as before, the diagonal matrix of conditional variances. We only
need to model the dynamics of the n conditional variances and to estimate
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the constant correlation matrix, so that the number of parameters to estimate
reduces itself to n (1 +p + ¢) + n(n+ 1) /2. An advantage of this approach is
that if the conditional variances in the D; matrices are all positive and the
conditional correlation matrix R is positive definite, the sequence of condi-
tional covariance matrices X; is guaranteed to be positive definite for all .
Note, in addition, that as argued before, the correlation matrix R may be esti-
mated in a preliminary step using the sample correlation matrix of normalized
residuals.

The CCC model has been widely used in the empirical literature because
of its computational simplicity. However, at least for financial returns, the
assumption of constant correlation is not supported by the data. There is
a huge empirical evidence that correlations vary over time (see Chapter 2).
Several extensions of the CCC model have been recently proposed to allow
time-varying conditional correlations.

The first models with time-varying conditional correlations have been pro-
posed by Engle (2002), Engle and Sheppard (2001), and Tse and Tsui (2002).
The basic idea is that the conditional correlation matrix R; is in fact time
varying, so that the conditional covariance matrix previously defined by (6.6)
is now defined as

%, = D}?*R,D}'*. (6.7)
Since the two models of Engle (2002) and Tse and Tsui (2002) are conceptually
different, we present both of them in turn.

The dynamic conditional correlation (DCC) model

Engle (2002) and Engle and Sheppard (2001) have developed a model in which
the conditional correlation matrix in (6.7) is defined by

R, = diag (@)% x Q, x diag (Q,)~*/?,
Qe =(1=1061—02) Q+ 61 (u—1u;_1) +62Q¢ 1,

where @ is the unconditional covariance matrix of u; = {Ei,t/Ui,t}i:L___ . and
diag(Q;) is the (n,n) matrix with the diagonal of Q; on the diagonal and
zeros off-diagonal. The matrix Q) may be estimated by the sample analogue
% Zthl G40} Parameters d; and d5 are assumed to satisfy 0 < §1,02 < 1 and
01 + do < 1. Once these restrictions are imposed, the conditional correlation
matrix Ry is guaranteed to be positive definite during the estimation.

A drawback of this approach is that only two additional parameters §; and
0o drive the dynamics of all the correlations. Cappiello, Engle, and Sheppard
(2003) have recently suggested an extension of this model in which each ele-
ment of the correlation matrix has an autonomous and asymmetric dynamics

R; = diag (Qt)71/2 X Q¢ x diag (Qt)71/2 ;
Q= (Q—A'QA—BQB—G'NG) + A (u_1uj_;) A
+B'Qi 1B+ G (n_1n;_y) G,



208 6 Modeling Correlation

where A, B and G are (n,n) diagonal parameter matrices and ny = 1y, <0} ©Ous
is the (n 1) vector that contains the normalized residual if it is negative and
0 otherwise. Q = Elusu}] and N = E[nyn}] are estimated by their sample

analogues 7 thl @) and Zthl ey

The conditional covﬁarianceﬁ matrix 72} = D; / 2RtDt1 /2 s guaranteed to
be positive definite if (Q — A’QA — B'QB — G’NG) is positive definite. The
DCC model of Engle (2002) is obtained as a special case if G = 0 and if A
and B have /8, and /02 on the diagonal, respectively.

The time-varying correlation (TVC) model

The idea of Tse and Tsui (2002) is to specify the dynamic of the conditional
correlation matrix R; as an ARMA process

Ry=(1-01—02) R+01R; 1 + 029 1, (6.8)

where R = {p,;} is a time-invariant (n,n) matrix of correlations as in (6.5).
The key idea of Tse and Tsui (2002) is to model the (n,n) matrix ¥ = {1;; , }
using a set of past normalized observations

for 1 <i<j<n,

Z;n;ol Us t—hUjt—h
wij t =
\/(Zh 0 uzt h) (Zh 0 u],t h)

where u; = Dt_let = (€it/0it);_y .. , - Stated differently, ¥; is the sample

. . . . /
correlation matrix of normalized residuals By = (uy, -+ , Ut—m+1) - Therefore,

1/2
if we define B; the (n,n) diagonal matrix with (Z;”;Ol u?7t7h) as ith di-

agonal element, we can rewrite ¥; as
YU, = BflEtEéBfl = {wij,t}'

As long as m > n, the matrix ¥, will be in general positive definite, of course
if the u;; are not linearly dependent. To ensure positive definiteness of the
matrix R, the parameters 6#; and 65 have to satisfy 0 < 67,0, < 1 and
01 + 65 < 1. Note that the constant conditional correlation model is nested
in this model, because it corresponds to the case where 6; = 05 = 0. Time-
variability in the conditional correlation matrix is therefore obtained at the
cost of only two additional parameters.

While the model proposed by Tse and Tsui (2002) builds on an ARMA
process for the dynamics of the correlation matrix, the model of Engle (2002)
is based on a GARCH-type specification for the dynamics of the covariance
matrix. An advantage of the latter approach is that the dynamic of @Q; is
based on a single lag of the w;: terms (as in the standard GARCH(1,1)
model), whereas (6.8) requires an arbitrary number m of observations to com-
pute sample correlations.
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General dynamic covariance model

A generalization of most of the previous models has been developed by Kroner
and Ng (1998). The so-called general dynamic covariance (GDC) model nests
many of the existing models while including asymmetric effects. The model is
defined as follows

Et = DtRDt + @ @ 8t7
Dt = {dij,t} with dii,t = \/Gii,ta Vi and dij,t = O, Vi 75 j,
Or = {0354},
HZ-N = w;; + CL;Etfl&;,lai + biEtflb; Vi, 4,
R= {pij} with p;; =1 Vi,
P = {‘pij} with ¢;; =0, Vi and ¢;; = ¢j;, Vi, J,

where a;, b;, i = 1,--- ,n, are (n, 1) parameter vectors, Pijs Pij» and w;; are
scalars with {2 = {w;;} and R positive definite and symmetric matrices.

The GDC model has two components: the first term D;RD; is like the
constant correlation model but with the variance functions given by that of
the BEKK model. The second term @ ® @, has zero diagonal elements but
has off-diagonal elements given by the BEKK-type covariance functions. Note
that the elements of X, can be written as

Oiit = it Vi,
Tijt = pij\ it/ e + 050 ViF ]

Thus, the GDC model is a hybrid of the constant conditional correlation model
and the BEKK model.

Proposition 6.1. (Kroner and Ng, 1998) Consider the following set of con-
ditions:

Lop;=0 Vi#j.

2. a; = aye; and b; = Be; Vi, where e; is the ith column of an (n,n) identity

matriz, and o; and B;, i =1,--- n, are scalars.

;=0 Vi # j.

4opy=1  Vi#j

5. A=a(wX) and B =B (wX') where A= {a;};_,, B={b;}!" |, w and A
are (n,1) vectors and a and 5 are scalars.

@

The GDC model reduces to several multivariate GARCH models under dif-
ferent combinations of these conditions. Specifically, the GDC model becomes
a restricted vech model (with the restrictions B;; = 8;,8;; and oij = aiiaj;)
under conditions (i) and (ii), the constant conditional correlation model under
conditions (ii) ad (i), the BEKK model under conditions (i), and (iv) and
the F-GARCH model under conditions (i), (iv), and (v).
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Kroner and Ng (1998) also develop an extension to the GDC that allows for
asymmetry. The asymmetric dynamic covariance (ADC) model has the same
structure as the GDC model, except that the equation for 6;;, incorporates
the leverage effect in the BEKK model, in a way close to the GJR model

Oiji = wij + ajer 1610 +bi X b+ gin 190 Vi,

where Ny = (nl,tv e ann,t)l with T]i,t = max (_Ei,ta 0) and i, i= 1a ccr N, are
scalars.

6.1.4 Estimation issues
Maximum likelihood

We suppose now that we have a sample of size T of the (n, 1) vector of observa-
tions written as xp = {zt}z;l with conditional mean and conditional variance
given by (6.1) and (6.2). Unknown parameters are regrouped in 6. Under the
assumption of conditional multivariate normal distribution, the log-likelihood
function for xzp is

T
Ly (0lzr) = 34, (0),
t=1
with

(log | X (O)] + (x¢ — 1, (0))" £ (6) (20 — 11, ())) 4
(6.9)
where the term —1 log | ()| comes from the Jacobian of the transformation
from the innovation process to the observed variables.
Then, the ML estimator 0,7, that maximizes (6.9), is asymptotically nor-
mal with asymptotic distribution

VT (D = 00) = N (0,457) .

n 1
t: (0) = *glog(%) 35

where A is the information matrix evaluated at the true parameter vector
0. See Section 4.3.3 for further details on the construction and estimation of
Ap.

Estimation of the DCC model

For the DCC model, Engle (2002) and Engle and Sheppard (2001) have also
proposed a two-step estimation, based on the idea that parameters of the
conditional variances (denoted 6y) and of the conditional correlations (de-
noted 0¢) can be estimated separately with 6 = (9"/, 9/0)/.6 A justification is

5 Bollerslev (1990) proposed a similar two-step approach for the estimation of the
CCC model. We present here the case of the DCC model, because it nests the
CCC model.
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that the log-likelihood can be written as the sum of a volatility part and a
correlation part. Since X, = Dtl/thDtl/z, we have

log | X[ = log | Dy| + log | Ry |,

because D, is diagonal, and

-1
(w0 = ) T (= ) = (00— ) (DYPRDY?) (2= )

= up Ry Mg + (v — ) Dy (e — ) — uju,

—1/2 . . . .
where u; = D, / €t is a vector of normalized innovations. The last two terms

of the second equality are clearly equal, but this expression allows one to break
down the log-likelihood in the two following terms

(Ov,0clzr) = bv (Ovizy) + Lo (Ov, 0c|zy),
with

1
2

M=

n _
by (Bvlar) = —5 D [ log (2m) + log |Di] + (o — ) D7 w1 — )|

T 1 Tit — i\
3 log (27) + 5 Z <log (Uit) + (U”t> )1 ,

t=1 ’

o~
Il

1

I

«
Il
—

N =
B

le (Ov,0c|zr) = — (log | Re| + wj Ry My — ujuy) -

t=1

Notice that ¢y (6y|z,) is simply the sum of log-likelihoods of the individual
GARCH equations for each series. The second step consists in estimating the
parameters pertaining to the correlation matrix, conditionally on the parame-
ters estimated in the first stage.

Therefore, since squared residuals are not dependent on correlation para-
meters, these parameters can be ignored for the estimation of the conditional
volatility dynamics. The two-step estimation then relies on maximizing the
log-likelihood as follows. First, we estimate the volatility parameters through

0y € argmax by (Oyla,t=1,---,T),
{6v}

and then

T

Z (log |Re| + @y Ry Mty — tiyie )
=1

N | =

Oc € arg?;?}f Lo (9v790|£T) = -

where 4; ¢ = (Ti,t — [Li’t) [Git.
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Engle and Sheppard (2001) show that the two-step estimator fpg =

(@/V, élc)’ is consistent and asymptotically normal, with distribution
\/T (éTS — 90) = N (O, AoilBOAzjil) ’

where

%4y (8vo) 0

A — 90y 067,

0= 82130(90) 920 (60) |
90y 90, 90c 00,

1 oty 9\/0 0l (
Z 00 Z 890

t 1 14

Due to the structure of Ay, the asymptotic variances of the GARCH parame-
ters év for each series are the standard robust covariance matrix estimators.
For the second-stage parameters, however, the asymptotic variance involves
all parameters.

Since the two sets of parameters are estimated using limited information,
the estimator O7g is not fully efficient. However, as argued by Pagan (1986),
if we perform an additional iteration of the Newton-Raphson algorithm to
the log-likelihood, starting at 9T5, then we obtain an asymptotically efficient
estimator.

6.1.5 Specification tests

Due to its computational burden, it is important to test whether a multi-
variate GARCH model is able to fit the data correctly. A first preliminary
test would be to evaluate the ability of univariate GARCH models to cor-
rectly describe the data for each series. However, such an approach cannot be
recommended, because it does not take into account the possible correlation
between the series, which is actually the main characteristic of multivariate
models. Therefore, multivariate tests are needed.

We do not focus in this section on the detection of non-normality in a mul-
tivariate GARCH context. The issue of dealing with non-normal distributions
is addressed in the next section devoted to the modeling of multivariate mod-
els with non-normal distributions. We thus consider tests of GARCH effects,
or alternatively tests of serial correlation in square standardized residuals.
There are basically two types of tests. The first series of tests is based on the
properties of standardized residuals, and the second test is a Portmanteau
test.

Residual-based statistics

A natural diagnostic test for the multivariate GARCH model, proposed by
Tse (2002), is based on the regression of cross-products of the standardized
residuals 2; :2;+ on own lags as follows
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P
PO N k (A N N
ZitZjt = Pijt = Z Qg (Zi,t—kzj,t—k - pij,t—k) + Vijt
k=1

fori,57 =1,---,n, 7 > i. The choice of explanatory variables in these regres-
sions may theoretically differ from one exercise to the other, depending on
the type of dependency we want to test. If we denote d;j; = (%, 1-1%j1-1, - -,
Zit—pZji—p) , the test statistic is

RB (p) = Td;jfzmﬁglf/”d”,

with

T
. 1 /
Lij = phm (T ;dij,tdij,t> 5

T—o0

2
2;;=FE [(Zi,tzj,t — Pijit) } Lij — Qi;GQj;,

T
) 1 0 (zitzjt — pij,
Qi; = plim (Tzdw ( tgg/ Jt>>’

T—o00 —1

where 6 is the vector of parameters in the GARCH model and G is the as-
ymptotic covariance matrix of @, such that /T (é — 9) = N(0,G). Tse
(2002) shows that, under the null hypothesis that the specification is correct,
the statistic RB (p) is asymptotically distributed as a x? with p degrees of
freedom.

Evidently, a similar test can be performed for squared standardized resid-
uals 7:'12,“ using the following regression

Qthlzzaf(QZt—kfl)JrVi,t fori=1,---,n.

Portmanteau statistics

The Ljung-Box portmanteau test for serial correlation has been extended to a
multivariate context by Baillie and Bollerslev (1990) (see also Hosking, 1980).
It is written as

Hp) =123 (T - l) tr (GG GGy ).
i=1

where C; = T ZtT:iH (xy — %) (x,_; — &) is the sample autocovariance matrix
of order ¢ of ;. Under the null hypothesis of constant correlation, the statistics
H (p) is distributed as a x> (nzp).

This test statistic may be used to test the presence of ARCH effects in
the squared returns. In this case, we define the n (n+ 1) /2 vector of cross-
products as y; = vech ((z; — ) (x; — Z)'). Then, the test statistic H (p) is
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estimated with C; = T ZtT:i+1 (y: — 7) (yi—i — 7)" as a sample autocovariance
matrix for the covariances. Under the null hypothesis of no ARCH effect, the
test statistic H (p) is asymptotically distributed as a x? (nQp).

6.1.6 Test of constant conditional correlation matrix

Due to its computational simplicity, the CCC-GARCH model is very popular
among empirical researchers. However, there are several problems that seem
to be overlooked in empirical applications. First, the assumption of constant
correlation is often taken for granted and seldom analyzed or tested. Second,
the issue of how the assumption of a constant conditional correlation affects
the dynamics of the conditional variance is rarely considered.

Alternative tests can be based on a specific parametric specification of the
conditional correlation. In this case, however, implementing the test proce-
dure is more demanding, because we have to estimate, or at least to specify,
the dynamics of correlation. Therefore, we loose the main advantage of the
constant correlation GARCH model, for which the sample correlation matrix
is a consistent estimator of the conditional correlation matrix. Several tests
have been proposed that rely on different dynamics of the correlation ma-
trix under the alternative. The dynamic correlation models presented above
evidently provide a suitable setup for testing the constant correlation hypoth-
esis.” In the following, we focus on tests that do not require the estimation of
a complete GARCH model with timescale correlations.

Test based on the information matrix

Bera and Kim (2002) suggested an Information Matrix (IM) test for the
constant-correlation hypothesis in a bivariate GARCH model. The basic idea
is to derive a score test of the hypothesis that the variances of the parame-
ters of interest are 0, so that it does not require the explicit specification of
an alternative hypothesis. A definite advantage of this approach is thus that
the test statistic does not depend on a particular specification of correlation
variations.

Under the null hypothesis of constant correlation, the conditional covari-
ance matrix X} can be written as X, = Dtl/QRDtl/2 with

2
_ (o1 O _(1p
Dt—( 0 0§7t>, and R—(p1>.

The matrix X is positive definite for all ¢, if each of the conditional variances
o, are positive, and if the conditional correlation matrix is positive definite,
ie, |p| < 1.

" For instance, in the model by Tse and Tsui (2002), the null of constant correlation
simply corresponds to 61 = 02 = 0.
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The conditional log-likelihood is then defined as

1 Z
MOEE=SAGS
t=1
with 6 the vector of unknown parameters and

1 1,
€ () = —log (27) — §log | Ze| — §E;Et ‘e

1 1
= —log (27) — 3 log (1—p*) — §u;R_1ut,

with u; = Dt1 / Qst denoting normalized innovations.
Then, first and second derivatives with respect to p are

0l (9) 1
ap = m (v1,4v2,6 + p)
020, (0) B 1

(v} =03, + 2001 090 + 14 p%),

0 (1)
where v, = (u1; — pug g, uss — pury) /y/1 — p?. This implies that the score is

2 2
5 (0) = (862)9)) n 8;;59)

1
= m (U%tﬂg,t + dpuypvos — ’Uit - U%,t +1+ 2/’2) .

Suppose now that we have the ML estimator 0 of the parameter vector,
so that 9;; is the estimate of v;; with 6 replaced by 6. In particular, we have

p= % 23;1 11 4l2,¢. Note that
T
L3 NP 1 ifi=j,
T2 et = { ~pifi )

Therefore, we obtain the indicator d <9) in the IM test for the constancy of
Py, when 0 is the MLE of 0, as

T
a(0) = (1- )" Yo sull) = 5 D (43, 1 - 27).
t=1 t=1

Bera and Kim (2002) also show that the asymptotic variance of d(f) is

vV [VTd@)| =4 (1+4p% + "),
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which can be consistently estimated by substituting the MLE p in place of p.
Therefore the test statistic is

Td(0)? (Zt L (0,03, —1—2p ))2

MOV vrae)] T

It is asymptotically distributed as a x? (1) under the null of constant correla-
tion.

Test based on the LM statistic

Tse (2000) proposed a test for the constant-correlation hypothesis based on
the LM approach. The idea is to extend the constant-correlation model to
one that includes time-varying correlations. When certain parameters in the
extended model are imposed to be zero, the constant-correlation model is
obtained. The extension proposed by Tse is simply

Pijt = Pij T 0ij€it—1Ejt-1,
Oijt = Pijt0it0j,ts

where d;; are additional parameters.

The constant-correlation hypothesis can be tested by examining the hy-
pothesis Hy : §;; = 0 for 1 < ¢ < j < 1. Under the null hypothesis, there are
n(n — 1) /2 independent restrictions.

To ensure that the alternative model provides well-defined positive definite
conditional covariance matrices, further restrictions have to be imposed on
the parameters d;;. It is assumed that within a neighborhood of d;; = 0, the
optimal properties of the LM test hold under some regularity conditions.®

We denote 6 the vector of unknown parameters, including §;;, 1 <i < j <
n. We define the (n, 1) score vector

B ZT: o, (0
t=1
and the (n,n) information matrix

)

8 An alternative specification is to allow correlation to depend on the products of
the lagged standardized residuals

Pije = Py T 0ijZit—12j,0-1.

In this case, however, because z;; depends on other parameters of the model
through o; ¢, an analytic derivation of the LM statistic is intractable.



6.1 Multivariate GARCH models 217

Then, the LM statistic for the null of constant correlation is &’ V13, where
the hats denote evaluation at # under the null hypothesis. Tse suggests to
replace V' by the sum of cross-products of the first derivatives of ¢;, so that

LMC =3 (S’S) s

where S is the (T, n) matrix the rows of which are the partial derivatives of
Ol; (0) /0¢'. Under the regularity conditions, LMC' is asymptotically distrib-
uted as a x% (n(n—1)/2).

Monte-Carlo simulations have been performed by Tse (2000) to compare
the two test statistics IMC and LMC'. Although both test statistics appear
to be correctly sized under the null, the LM test is found to have better power
against some alternatives and to be more robust to non-normality. It should
be noticed, however, that the alternatives considered by Tse (2000) are close
to the specification he proposes to model time-variability in correlations. It is
unclear which statistic would perform best for alternatives that are different
from those envisaged by Tse (2000).

6.1.7 Illustration

Several papers have investigated the variability of the dependency parame-
ter over time. Hamao, Masulis, and Ng (1990), Susmel and Engle (1994),
and Bekaert and Harvey (1995) measured the interdependence of returns and
volatilities across stock markets. More specifically, Longin and Solnik (1995)
tested the hypothesis of a constant conditional correlation between a large
number of stock markets. They found that correlation generally increases in
periods of high volatility of the U.S. market. Recent contributions by Kroner
and Ng (1998), as well as Engle and Sheppard (2001) develop GARCH models
capable of estimating and testing hypotheses of time-varying covariance ma-
trices. Ang and Chen (2002) document that dependency between U.S. stocks
and the aggregate U.S. market increases more during downside movements
than during upside movements.

To illustrate some properties of the multivariate GARCH models described
above, we estimate several specifications for two pairs of time series: the SP500
and DAX daily returns, and the SP500 and FT-SE returns, over the period
from 1980 to 2004. We begin with first-generation models. We estimate several
versions of the bivariate BEKK model, the full, diagonal, and scalar versions.
Parameter estimates and log-likelihoods of these models are reported in Table
6.1. Parameter estimates indicate that, in the full BEKK model, cross-effects
(12, a1, B15 and f4;) are in general rather small and insignificant. This
provides a rationale for the diagonal BEKK model. Now all parameters are
significant. As already highlighted for the univariate GARCH models, the sum
of parameters (here, a3, 433, and a3,+33,, due to the structure of the model)
is close to (yet smaller than) one. In addition, we notice that a7 and ass on
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one hand and f;; and 3,5, on the other hand are rather close, suggesting a
further reduction of the number of parameters, assuming a1 = a2 = o and
B11 = Bay = B. The so-called scalar BEKK model assumes that the variances
and covariances have the same structure and the same parameters o and

2 2
Oijt = Wij + 0 € 16541+ B 04501

Now, we compare the dynamics of correlations given by first-generation
models with those obtained with models specifically designed to capture time-
varying correlation, namely the Engle’s (2002) DCC model and the Tse and
Tsui’s (2002) TVC model. Table 6.2 reports parameter estimates correspond-
ing to the CCC, DCC, and TVC models. First, they are estimated using the
two-step approach proposed in Section 6.1.3. Therefore, the parameter esti-
mates for the SP500 are obviously the same whatever the second return of
the pair. Second, the parameters a and 3 in this table can be interpreted as
the square of the parameters in the previous table. The dynamics of variances
are very close to those obtained with BEKK models. The difference relies in
the estimation of the covariances / correlations. In the BEKK models, covari-
ances are rather smoothed, whereas correlations are very erratic (see Figures
6.1 and 6.3). With the CCC model, the correlation parameter is constant by
definition. In contrast, the DCC and TVC models provide very similar and
smoothed dynamics for the correlation parameter.

Figures 6.1 and 6.3 display the conditional correlation between the SP500
and the DAX, and between the SP500 and the FT-SE, respectively, as im-
plied by the full BEKK model. As it appears clearly, these conditional corre-
lations are very erratic. Figures 6.2 and 6.4 display the conditional correlation
obtained with the CCC, DCC, and TVC models. First, we notice that the
conditional correlations are now much smoother than those obtained with
BEKK models. Second, we observe that the correlations implied by the DCC
and TVC models are barely distinguishable from each other. Therefore, in
many empirical applications, the direct modeling of the conditional correla-
tion (through a DCC or a TVC model) is likely to provide a rather sensible
estimate of the evolution in the correlation parameter.

The multivariate GARCH approach described so far assumes that the joint
distribution of innovations is normal. Obviously, it is not likely to be the case
in practice, because the univariate distribution of returns has generally been
found to be non-normal. We therefore turn now to the modeling of the joint
distribution. More precisely, we are interested in identifying some multivariate
distributions that may help capturing the asymmetry and fat-tailedness of the
return distribution.
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Table 6.1. Parameter estimates of various specifications of the BEKK model

SP500-DAX SP500-FT-SE
Estimate Std error Estimate Std error
Full BEKK model

w11 0.0745 (0.0185) 0.0602 (0.0428)
w12 —0.0081 (0.0251) —0.1099 (0.1213)
w22 0.1603 (0.0244) 0.1215 (0.0715)
a11 0.1818 (0.0204) 0.1408 (0.0367)
a2 —0.0319 (0.0628) —0.2017 (0.0655)
a1 0.0258 (0.0185) 0.0842 (0.0497)
a22 0.2803 (0.0264) 0.3078 (0.0347)
b11 0.9805 (0.0049) 0.9882 (0.0089)
bi2 0.0105 (0.0097) 0.0531 (0.0230)
b21 —0.0059 (0.0045) —0.0223 (0.0187)
ba2 0.9524 (0.0079) 0.9109 (0.0298)
log-lik. —18113.3 — —15983.0 —
Diagonal BEKK model

w11 0.0863 (0.0139) 0.0796 (0.0144)
w12 0.028 (0.0111) 0.0395 (0.0200)
w22 0.1505 (0.0229) 0.1170 (0.0248)
ai 0.1996 (0.0168) 0.2063 (0.0234)
a22 0.2620 (0.0223) 0.2381 (0.0490)
b11 0.9761 (0.0040) 0.9758 (0.0051)
b2 0.9582 (0.0062) 0.9617 (0.0171)
log-lik. —18120.3 — —16100.2 —
Scalar BEKK model

w11 0.1083 (0.0124) 0.0982 (0.0187)
w12 0.0215 (0.0089) 0.026 (0.0064)
w22 0.134 (0.0193) 0.0911 (0.0116)
a 0.2326 (0.0159) 0.2186 (0.0177)
b 0.9669 (0.0043) 0.9711 (0.0056)

log-lik. —18131.1 - —16106.3 -
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Table 6.2. Parameter estimates of the CCC, DCC, and TVC models

SP500-DAX SP500-FT-SE
Estimate Std error Estimate Std error
CCC model
w1 0.0066 (0.0025) 0.0066 (0.0025)
a1 0.0459 (0.0082) 0.0459 (0.0082)
b1 0.9480 (0.0094) 0.9480 (0.0094)
ws 0.0296 (0.0113) 0.0201 (0.0059)
as 0.1019 (0.0221) 0.0894 (0.0135)
b2 0.8834 (0.0213) 0.8875 (0.0168)
p 0.2576 (0.0174) 0.3058 (0.0258)
log-lik. —18144.5 — —16047.1 —
DCC model
w1 0.0066 (0.0025) 0.0066 (0.0025)
a1 0.0459 (0.0082) 0.0459 (0.0082)
by 0.9480 (0.0094) 0.9480 (0.0094)
w2 0.0296 (0.0113) 0.0201 (0.0058)
a2 0.1019 (0.0221) 0.0894 (0.0135)
b 0.8834 (0.0213) 0.8875 (0.0167)
01 0.0079 (0.0026) 0.0073 (0.0030)
02 0.9909 (0.0032) 0.9867 (0.0055)
log-lik. —18027.1 — —16030.1 —
TVC model
w1 0.0066 (0.0025) 0.0066 (0.0025)
a1 0.0459 (0.0082) 0.0459 (0.0082)
b1 0.9480 (0.0094) 0.9480 (0.0094)
w2 0.0296 (0.0113) 0.0201 (0.0058)
a2 0.1019 (0.0221) 0.0894 (0.0135)
ba 0.8834 (0.0213) 0.8875 (0.0168)
0, 0.0084 (0.0026) 0.0068 (0.0031)
02 0.9909 (0.0029) 0.9896 (0.0055)

log-lik. —18028.2 — —16022.1 -
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Fig. 6.1. SP500-DAX. Conditional correlation implied by the full BEKK model.
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Fig. 6.2. SP500-DAX. Conditional correlation implied by the CCC, DCC and TVC
models.
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Fig. 6.3. SP500-FT-SE. Conditional correlation implied by the full BEKK model.
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Fig. 6.4. SP500-FT-SE. Conditional correlation implied by the CCC, DCC, and
TVC models.
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6.2 Modeling the multivariate distribution

. . . /
We now assume that the dynamic of the time-series z; = (14, -+, Tn,t)
is given by the following multivariate dynamic regression model, with time-
varying means, variances, and covariances

Ty = [y + Et,
€ = E;mzt,
py = Elx | Fi1] = p (0, Fir),
Sy =Vwe|Foor] = 2 (0, Foor),
2t~ g (2en) .- (6.14

The dynamics of the (n,1) conditional mean vector u, is given by (6.12),
whereas the dynamics of the (n,n) conditional variance matrix X is given
by (6.13). Last, standardized residuals z;, defined as 251/2 (x¢ — py), is the
itd random vector of dimension (n, 1) with a zero mean and identity variance

matrix. There are several possibilities to obtain Etl /2 The first and proba-

bly most common one is the Cholesky decomposition, where Etl /% is a lower
triangular matrix. Another possibility is based on the eigenvector decompo-
sition, Xy = £2;D;(2;, where §2; is the matrix of eigenvectors, standardized to
unit length, and D, is the diagonal matrix of eigenvalues. By construction,
we have (2,2, = I;. Then, 23/2 = QtDtl/z, where Di/z is the matrix whose
diagonal elements are the square roots of the eigenvalues. Vector 6 includes
all parameters of the conditional mean and variance equations. As specified
in (6.14), the conditional distribution is g, with shape parameters 7.

As in the univariate case, the choice of the conditional distribution g (.) is
crucial. Engle and Gonzélez-Rivera (1991) and Newey and Steigerwald (1997)
have shown that the following results hold: (i) Under the assumption of a
correct specification of the conditional mean and variance matrix, the ML
estimation, assuming z; to be iid with a Gaussian distribution, provides con-
sistent estimators, even when the Gaussian assumption does not hold. (ii) The
ML estimator relying on a Gaussian distribution is inefficient, however, with
the degree of inefficiency increasing with the degree of departure from nor-
mality. (iii) The ML estimation, assuming z; to be iid with a non-Gaussian
distribution, provides more efficient estimators than the Gaussian ML, when
the assumption made on the innovation process holds. (iv) When the assump-
tion made on the innovation process does not hold, the ML estimation relying
on a non-Gaussian distribution provides inconsistent estimators.

Another difficulty in the multivariate case comes from the way dependency
between variables is introduced. In the Gaussian framework, dependency is
introduced through the covariance matrix. The multivariate Gaussian distri-
bution with zero mean and identity covariance matrix is defined as

o 1,
g(zt)—Wexp —§ztzt .
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Fig. 6.5. Pdf of the bivariate Gaussian distribution, with p = 0.5.

Therefore, the Gaussian distribution of the observations z; with conditional
mean p;, and covariance matrix X, is given by

[ ) = (27$n/2 |21|1/2 exp (—; (@ = ) 27 (e — Mt)) :

Given that the Gaussian distribution only depends on g, and X}, the nat-
ural measure of dependency is Y. For the general case, dependency may be
introduced in various ways.

Figure 6.5 shows the pdf of the bivariate Gaussian distribution. The two
variables are supposed to have a zero mean and unit variance. The correlation
is 0.5. The contour of the distribution is displayed in Figure 6.6.

One of the strong limitations of the multiviarate Gaussian distribution
is that it does not allow any dependence between the two variables in the
tails (for more details, see Section 6.3), a feature that has been found to
play a central role in the joint modeling of asset returns, especially in the
context of VaR applications. In addition, as seen in the univariate context,
the Gaussian distribution is symmetric, so that it is unable to capture the
observed asymmetry in the return distribution.
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Fig. 6.6. Contour of the pdf of the bivariate Gaussian distribution, with p = 0.5.

6.2.1 Standard multivariate distributions
Multivariate Student t distribution

The multivariate Student ¢ distribution is a distribution that naturally gener-
ates dependency in the tails. Yet, this extension to the Student ¢ distribution
depends on the way in which dependency between innovations is introduced.
Assume that the n innovations are expressed as Z; = U;/\/S?v;, i =1,--+ ,n,
where the U;s and S;s are all mutually independent, with U; having a uni-
variate Gaussian distribution, and S? a y? distribution with v; degrees of
freedom. In this case, because the Z;s are independent, the joint density func-
tion is simply the product of the individual Student ¢ density functions.

Now, there are basically two ways to introduce dependence into the joint
distribution of returns X:

First, dependence can be introduced in the innovation process Z, by as-
suming that the x2-variables S? that appear in the definition of the Z;s are the
same for each component, with v degrees of freedom, so that Z; = U; /v S?v,

i =1,---,n. We may also assume that Uy, -- ,U, have a joint multivari-
ate distribution with covariance matrix R. Since the U;s are normalized,
R = {p,;;} is also the correlation matrix of (Uy,---,U,). In this case, the

multivariate Student ¢ distribution, with dependent components and degree-
of-freedom parameter v, is
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I (u-;—n

1
1+ Z’R_lz)
(x(v=2))" 1 (5) IR"? ( V=2
When the U;s are mutually independent (R = I,,), the distribution reduces to

9(zlv) = I () ) <1+ o >_+n (6.15)

(e =2 (5) \ V=2

_v+tn
) =

g(zlv) =

Each marginal distribution is symmetric, with zero mean, unit variance (this
is obtained by using the terms (v — 2) rather than v in 6.15), zero skewness,
and a kurtosis equal to 3 (v —2) /(v —4). When the Student ¢ distribution
is introduced to capture fat-tailedness of the series, however, there is neither
theoretical nor empirical reason for the degree-of-freedom parameters to be
equal for all series. Assuming a unique degree of freedom v for all components
would therefore introduce an artificial dependence in the system.

Alternatively, the Gaussian variables U; and the x2-distributed variables
S2 can be assumed to be independent components, with dependence intro-
duced for the X's via some linear structure involving a Choleski decomposition
of the covariance matrix. If the degrees of freedom v; are different for each
variable, the Student ¢ distribution with independent components is written
as

vi+l
—rits

v;,+1 22
g(zlvy, - v H (2 12(112) <1+ Vil—2> , (6.16)

while the multivariate return process X is assumed to be correlated through
a non-diagonal covariance matrix X', such that the distribution of X, denoted
f(z|vy,--- ,vy), is deduced from the relation X = X1/27,

Now, each marginal distribution is symmetric, with zero mean, unit vari-
ance, zero skewness, and a kurtosis equal to 3 (v; —2) / (v; — 4). Clearly, in
empirical applications, the equality of the v;s can be explicitly tested in a
second step. An undesirable property of this distribution is that it is not a
member of the elliptical familly described below (Section 6.2.1). As a conse-
quence, as described in Section 6.2.4, in a multivariate GARCH model with
skewed Student ¢ innovations, the estimation of the GARCH parameters and
of the shape parameters cannot be performed separately.

Figures 6.7 and 6.9 shows the pdf of the two types of bivariate Student
t distributions. The first one corresponds to the distribution with dependent
components (equation (6.15)) with degree of freedom v = 6 and correlation
between the z;s equal to p;5 = 0.5. The second is the distribution with inde-
pendent components (equation (6.16)) with degrees of freedom v1 = vy = 6
and correlation between the x;s equal to p;5 = 0.5. In the two cases, the two
variables are supposed to have a zero mean and unit variance. The contours
of the two distributions are displayed in Figures 6.8 and 6.10 respectively.
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Fig. 6.7. Pdf of the Student t distribution with dependent components and p;5 = 0.5.
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Fig. 6.8. Contour of the pdf of the Student t distribution with dependent components
and p;5 = 0.5.
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Fig. 6.9. Pdf of the Student t distribution with independent components and p,o =
0.5.

3

ol J
1t J

XN 0 L//w
a4+ 4
2 - 4
I I I I

-3 2 -1 0 1 2 3

Fig. 6.10. Contour of the pdf of the Student t distribution with independent com-
ponents and p;5 = 0.5.
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Multivariate Student ¢ distributions are able to capture the fat-tailedness
of the empirical distribution of asset returns. However, they are not designed to
take asymmetry into account. Before turning to asymmetric distributions, we
briefly describe the class of multivariate elliptical distributions, which includes
the Gaussian and Student ¢ distributions. Indeed, a series of papers have
proposed a general class of multivariate distributions with asymmetry, based
on elliptical distributions (see Section 6.2.2).

Elliptical distributions

A well-studied class of multivariate distributions is the class of elliptical dis-
tributions. For more detail, see Fang, Kotz, and Ng (1990). An n-dimensional
vector Z is said to be elliptically distributed with location vector p and (n,n)
dispersion matrix X, if the density is

9w 2) =122 (= p) 27z - ), (6.17)

for some density generating function f(™ (u), u > 0, such that

/OO un/2flf(n) (u) du = r (n/2)’

0 Tn/2

so that f(") is a spherical n-dimensional density. We denote this function
Z ~ Ely (p; 25 f™) with pdf g (.) and cdf G e (.).

Elliptical distributions have several interesting properties. In particular, if
Z ~ Bl (; X f(")) , then for any (k,n) matrix A with rank & < n and any
(k, 1) vector b, we have AZ+b ~ Ely, (Au + b AYA; f(k)) . Another property
is that if Z is partitioned as

Z I 21 2o (n)
Z = ~ Eln 5 ; )
()~ () (332)
with Z; an (n;, 1) vector (with n = mny + ng), then Z; is also elliptically
distributed with Z; ~ El, (p;; Xi; f™)) .

Instances of elliptical distribution are the multivariate Gaussian distribu-
tion, for which

e—u/2
I () =
(u) R
so that
1 —1/2 1 ! y—1
9(Z|N72):W|E\ exp —§(Z—M)E (z—n) -
s

Similarly, the multivariate Student ¢ distribution is defined by

—(v4n)/2
u) v >0,

7O () = (1 +-
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so that

F(l/-gn) |2|_1/2 (1+ (Z—M)/E—l (Z—//[I)>_V42:n

(71'1/)"/2 r (%) v

9(Z|M72)=

Notice that this specification slightly differs from (6.15). As explained above,
(6.15) ensures that the variance of Z is by construction equal to one, while
here we have V [Z] = v/ (v — 2).

6.2.2 Skewed elliptical distribution

The multivariate skewed Gaussian distribution has been first studied by Az-
zalini and Dalla Valle (1996), Azzalini and Capitanio (1999), and extended to
the Student ¢ distribution by Azzalini and Capitanio (2003). Branco and Dey
(2001) have introduced a general class of multivariate skew-elliptical distrib-
utions.

This approach builds on the univariate skewed Gaussian distribution, de-
fined by Azzalini (1985). A random variable Z has a so-called skewed Gaussian
distribution if its pdf is defined by

9(2) =2¢(2) @ (X2),

where ¢ (z) is the standard Gaussian pdf, and & (z) is the corresponding cdf.
Some intuition for this specification is provided below. When A = 0, g (z) is the
standard normal distribution. When A — —oo (400), we obtain a Gaussian
distribution truncated from above (below) at zero. The parameter A plays the
role of shape parameter.

Skewed Gaussian distribution

This distribution has been extended in several ways. In particular, Azzalini
and Dalla Valle (1996) have considered the case of the multivariate skewed
Gaussian distribution. Branco and Dey (2001) have extended this approach
to the elliptical distribution in a multivariate framework.

The multivariate extension of the skewed Gaussian distribution has been
proposed by Azzalini and Dalla Valle (1996), and Azzalini and Capitanio
(1999). If Z is a (n, 1) random vector with mean zero and, unit variances and
correlation matrix R, its pdf is defined by

9(2) =2¢, (2|R) P (Nz),

where ¢, (2|R) is the multivariate Gaussian pdf with covariance matrix R,
and A is a (n,1) vector.

When the random vector Z is not assumed to have zero means and unit
variances, we can define the skewed Gaussian distribution as follows. Let
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Y = {0} be the (n,n) covariance matrix of Z, D = diag(o11,--- ,0n,) the
matrix containing variances, and R = D~/2XD~1/2 the associated correla-
tion matrix. Let £ be the (n, 1) location parameter vector. Then, the random
variable Z has a skew normal distribution if its pdf may be written as

9(2) =20, (: —¢IZ) @ (VD2 (2 - 9)).

We then write Z ~ SN, (€, X, )), referring to &, X, and A as the location,
dispersion, and shape (or skewness) parameters, respectively.

Such a distribution can be derived in several ways, described by Azzalini
and Capitanio (1999). A first way of generating a skewed Gaussian distrib-
ution is conditioning. Suppose that Uy is a scalar random variable and U is
an n-dimensional variable, such that the joint distribution is a multivariate
Gaussian distribution

Ui « . « 16
<Uv0>’\’ n+1(032) with % _<6R>7

where X* is a full-rank covariance matrix. Then, the distribution of U |Uy > 0
is SN, (0, R, \), where X is defined as

v dr?
(1—8R15)"*

Alternatively, the random variable defined by

L, U iUy >0,
“1-U ifU, <0,

is also distributed as a skewed Gaussian variate.
The skewed Gaussian distribution can also be obtained by transformation.
Suppose that

U . . " 10
<U9>N n+1(072) with D) :<0w>,

where ¥ is a full-rank covariance matrix. Also define the (n, 1) vector

Zj =6, |[Uol + /1 - 63U7,

with weights given by —1 < §; < 1 for j = 1,--- ,n. Then, (Z1,---,Z,)
has an n-dimensional skewed Gaussian distribution with parameters that are
functions of the §’s and V.

Skewed elliptical distribution

Branco and Dey (2001), Sahu, Dey, and Branco (2003), and Azzalini and Cap-
itanio (2003) have proposed a general class of multivariate skewed elliptical
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distributions, based on the approach developed by Azzalini and Dalla Valle
(1996) and Azzalini and Capitanio (1999). The standard multivariate elliptical
distribution is defined in Section 6.2.1.

Suppose that Uy is a scalar random variable and U is a n-dimensional
variable, such that the joint distribution is a multivariate elliptical distribution

Ut = ([{ﬁ) = Bl (7, 2% £

. (0 . (14&
o= (2) - (5)

where X* is a full-rank covariance matrix. Then, Y = U |Uy > 0 has a skewed
elliptical distribution, such that Y ~ SE, (p, X, 8; f™*+Y), with location ,
scale X, characteristic function ¢, and skewness parameter 0. The pdf of YV is
denoted

with

gy () = 2950 () G,y (N (v — 1)),

where g () is the pdf of El, (,u,E; f(”)) with generator function £ (.)
and Gy, (.) is the cdf of a univariate elliptical distribution El; (0,1; fy(2))
with f,(.) as the generator function. In addition, A is defined as

Vo §x-t
o 15\ 127
(1—0'2-16)
and
oy = L0 0t a()
q(y =

f™(qy)

with ¢ (y) = (y — p)' T~ (y — p).
A special case is the skewed Student ¢ distribution. The pdf of Y can be
written as

vin \Y?
gy (y) =2t, (y,v) T1 (6’D1/2(y—#) (q(y?ﬂ) ;V+n>,

where
1

tn (y,v) = e (a(y);v)

is the density function of a n-dimensional Student ¢ variate with v degrees
of freedom and Tj (z;v +n) denotes the univariate Student ¢ distribution
function with v 4+ n degrees of freedom.
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6.2.3 Skewed Student ¢ distribution

There are other ways to generate multivariate skewed distributions. For in-
stance, Bauwens and Laurent (2005) have generalized the approach proposed
by Fernandez and Steel (1998) in the univariate context, presented in Section
5.2.4. The method consists in changing the shape of the distribution at each
side of the mode. If h (y) is a symmetric multivariate distribution with zero
mean and identity covariance matrix, the new (n, 1) random vector Z has an
asymmetric distribution with the same mode as h (y)

9(z1§) = <H§42—1> h(y),
vg

i=1

where y = (y1,- - ,yn)', with

g bz <0,
e {ZZ‘/&- if z; > 0. (6.18)

Such a specification has several interesting properties. First, the marginal
densities have the same patterns as the ones defined in the univariate case
by Ferndndez and Steel (1998) (see Section 5.2.4). Second, &, is a measure of
the asymmetry of the marginal density of Z;. Third, the rth moment of Z;
is given by
1, (=17
*\ 7T _ gl + 5;'+1 *\ 7T
E((Z5) &) = ——=—2E(Z)" |Z: > 0].
&+ g

Finally, the components of Z* are uncorrelated, because those of Y are un-
correlated by assumption. Consequently, if a is the vector of means and b
the vector of standard deviations of Z*, then Z* can be standardized by the
transformation Z = (Z* — a) + b, where <+ denotes the element-wise division.

This general formulation has been specialized by Bauwens and Laurent
(2005) and Jondeau and Rockinger (2005) to the case of the multivariate
skewed Student ¢ distribution. This distribution is therefore a multivariate
extension of the distribution proposed by Hansen (1994), Ferndndez and Steel
(1998), and Jondeau and Rockinger (2003a), and is presented in Section 5.2.4.°

The case with dependent components

Following the two approaches described in Section 6.2.1, we now define the
multivariate distribution assuming dependent or independent components. We
begin with the specification with dependent components, which is given as

9 As discussed in Section 5.2, the skewed ¢ distribution proposed by Fernandez and
Steel (1998) is directly related to the distribution proposed by Hansen (1994)
through a change of notation of the asymmetry parameter. In this section, we use
the notation of Ferndndez and Steel (1998) for the asymmetry parameter.
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v+n

) <1+ Vyiy2>_ L (6.19)

n 2,
g(z|y,£,---,§n):c< -
! Hevz

where y = (y1,- - ,yn) is defined in (6.18) with 2 = (b;z; + a;), and

1
bf=<§?+€2—1)—af.

Notice that the standardized variables Z; = (Z} — a;) /b; have zero mean and
unit variance. This formulation is an extension of the multivariate Student ¢
distribution with dependent components, defined in (6.15).

The case with independent components
We now describe the asymmetric extension of the multivariate Student ¢ dis-
tribution with independent components, defined in (6.16). It is expressed as

n vit+1

2b;c; 20\
g(Z|V1,"'7Vn,§1,"'7£n):H = <1+ Yi > 5 (620)

i:lgi—’_ﬁ% vi—2

where y; is given by (6.18) with 2z} = (b;z; + a;), and

r ()

m(vi —2)I (%)
A G N N P
VA (R) (e-2)

1
v = <§?+§2—1>—a?.

It is worth emphasizing that, although the standardized variables Z; =
(ZF — a;) /b; are independent by construction, returns can be modeled as de-
pendent through their covariance matrix. Assume that returns are defined as
X = YY27* The moments of returns can, therefore, be computed in the
following way. We denote X1/2 = (wij)i,jzl,m,n the Choleski decomposition
of the covariance matrix of returns, so that X; =Y _, w;Z;.'* In addition,

P =

N

19 For ease of exposition, we assume that E[X] = u = 0 and we intentionally omit
the dependence of the covariance matrix X~ and hence of the w;;s with respect to
time.
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we recall that because innovations Z* are assumed to be independent, their
first moments are given by /151) =0, /152) =1 and (see Section 5.2.4)

,u§3) = (M@g — 3CL7;MZ‘72 + 2(1‘:) /bf,
/1454) = (Mi74 — 4aiM¢73 =+ GG?MLg — 3@?) /bi‘L

The (i,7) component of the covariance matrix of returns is given by
n
E[XiX,] = Z Wirljr.
r=1
The (i, j, k) component of the third central moments of returns is

E [X,XJX]J = Zwirwjrwkr,uf’).

r=1

Finally, the (¢, j, k,{) component of the fourth central moments of returns is

E[XX;Xp X)) = Y wirwjrwprwirpt + 0> o, uP p,
r=1 r=1s=1

S#T

where V.., = WirWjrWisWis + Wirl jsWrrWis + Wirld jsWhrWis-

Analytical expressions of moments are quite cumbersome to derive, yet
their numerical computation is very fast, because only matrix manipulations
are required. For an n-variable system, the dimension of the covariance matrix
is (n,n), but only n (n + 1) /2 elements have to be computed. Similarly, the co-
skewness matrix has dimension (n,n,n), but only n (n + 1) (n + 2) /6 elements
have to be computed. Finally, the co-kurtosis matrix has dimension (n,n,n,n),
but only n (n + 1) (n + 2) (n + 3) /24 elements have to be computed.!!

As it clearly appears from these expressions, co-skewness between excess
returns depends on individual skewness of innovations and correlations be-
tween returns (through the w;;s). Co-kurtosis between excess returns depends
on individual kurtosis and volatilities of innovations and correlations between
returns. Such a time-variability is likely to have two sources. On one hand,
the covariance matrix between excess returns is time-varying, so that the w;;
elements themselves are time-varying. On the other hand, skewness and kur-
tosis of innovations may be time-varying, for instance, if the degree-of-freedom
parameter (v) or the asymmetry parameter () vary over time. In our illus-
tration (Section 6.2.6), we do not consider the latter case, but persistence
in conditional higher moments has been found, in a univariate context, by
Jondeau and Rockinger (2003a).

1 For n = 5, one has 15 different elements for the covariance matrix, 35 elements
for the co-skewness matrix, and 70 elements for the co-kurtosis matrix (whereas
these matrices have 25, 125, and 625 elements, respectively).
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Fig. 6.11. Contour plot of the bivariate skewed Student t distribution with dependent
components and p = 0.

Comparison

Figures 6.11 to 6.13 show the pdf and the contour plot of the two types of
bivariate skewed Student ¢ distributions (6.19) and (6.20). The two variables
have a zero mean and unit variance. The degree-of-freedom parameter v is
equal to 6 in all cases. The asymmetry parameters are equal to £ = (1;0.5)
so that the first component is symmetric but the second one is markedly
asymmetric. In Figure 6.11, the correlation coefficient p,, is assumed to be 0,
whereas in Figures 6.12 and 6.13, it is equal to 0.5.

6.2.4 Estimation

The estimation of the multivariate model with non-Gaussian multivariate dis-
tribution, given by (6.10)—(6.14), raises some additional difficulties as com-
pared with the Gaussian case. Unknown parameters are now 6 (for the dy-
namics of the conditional mean and conditional covariance matrix) and 7
(for the conditional distribution). Define & = (¢, 77’)’ the vector of unknown
parameters. The ML estimator of the parameter vector £ is obtained by max-
imizing

Ly (flar) =>4 (6),

where
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¢

Fig. 6.12. Contour plot of the bivariate skewed Student t distribution with dependent
components and p = 0.5.

Fig. 6.13. Contour plot of the bivariate skewed Student t distribution with indepen-
dent components and p = 0.5.
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£0(&) = 3 log |24 (0)] + 9 (2 (0)* (e — 1, (0)) )

In general, the maximization of the log-likelihood has to be performed in one
step, because the two sets of parameters 6 and 7 interact.

A noticeable exception is the class of elliptical distributions. In this case,
the distribution only involves (z; — u, (0)) X;* () (x; — p, (#)), which can be
rewritten as z;(0)'z:(0) with z.(0) = 2:(6) =2 (x; — p,(0)). Therefore, a two-
step estimation can be performed, in which the two sets of parameters are
estimated separately. The parameters 6 are estimated using QML, assuming
normality of the innovation process. Therefore, it is obtained by maximizing

T
Ly (0lzr) = 3 4:(0).

n 1 _
0 (0) = =5 log (2m) = 5 (log | X (O)] + (w1 — 1, (0)) T (0) (w4 — 11 (6))) -
This procedure yields a consistent estimator of 6 even if the true distrib-
ution is not normal. This consistency result has been proven by Bollerslev
and Wooldridge (1992) and Jeantheau (1998). Once the parameter vector

0 has been estimated, the standardized residuals are obtained as () =
ZA't(@)_lm (azt — ﬂt(@)) Then, parameters 7 are estimated by maximizing the

log-likelihood function, assuming now that innovations are drawn from the
multivariate distribution g (z:|n)

i/T (9,77@T> = XT:ét (9777) )
where o ) A 1 . A
() =~ ()] - 3 o ()

Such an approach can be adopted for the estimation of GARCH models with
Gaussian or Student ¢ innovations. However, it would not apply for the skewed
Student ¢ distribution, because it does not belong to the elliptical family. In
such case, a joint estimation is required.!? See Section 6.1.4 for further details
on the estimation of the covariance matrix of 6.

Hafner and Rombouts (2003) have recently proposed an extension of the
semi-parametric estimation technique of Engle and Gonzalez-Rivera (1991) to

12 Notice that, in the case of the Student ¢ distribution, parameters # and 7 can
be estimated separately. However, if we estimate a DCC model, it is not possible
to estimate the parameters pertaining to the variances and to the correlations
separately anymore. The reason is that the log-likelihood cannot be broken down
into variances and correlations components.
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multivariate GARCH models. As in the univariate framework (Section 8.3),
this approach is based on the following steps. The first step consists in esti-
mating the model by QML, providing an estimate of the parameters 6, say 6.
Then, the fitted residuals é; and the fitted variances 6?(@‘) are used to com-
pute the standardized residuals 2,(0) = &,/64(0), which should have zero mean
and unit variance. In a third step, the density g(2:(6)) is estimated using a
non-parametric method. The estimated density is denoted §. Finally, the para-
meters of the GARCH model are estimated by maximizing the log-likelihood
function, with g held as fixed.

6.2.5 Adequacy tests

In Section 5.3, we described some tests aimed at assessing the ability of a
given univariate distribution to capture the stylized facts of the empirical dis-
tribution. Most of these tests have been extended to the multivariate context.
For instance, Diebold, Hahn, and Tay (1999) proposed an extension of the
test introduced by Diebold, Gunter, and Tay (1998). The basic idea consists
in writing the joint distribution g; (21,4, - , 2n,¢) as the product of conditional
distributions, as in

gt (Zl,m s ,Zn,t) =0t (zn,t|zn71,t7 T ,Zlﬁt) X X gt (22,t|21,t) X gt (Zl,t) .

Then, at each period, it is possible to transform each component of the vector
(z1,t, - ,znyt)/ by its corresponding conditional distribution. We then obtain
n series of u; ; = ff;; 9t (Yit|Yi—1., -+, y1,6)dys¢ that should be found to be
itd U (0,1), both individually and jointly, if the model is correct.

One difficulty occurs in the multivariate case, because there are n! ways to
factor the joint distribution in terms of conditional distributions. For instance,
in the bivariate case, we can write the joint distribution as

gt (21,6, 22.4) = gt (22,¢]21.4) X g¢ (21.4) 5

or

gt (21,65 22,0) = g1 (21,4]22,0) X gt (22,1) -

The first decomposition would provide us with probability integral transforms
u1,¢ and ug); and the second would provide ua; and uyj2 ¢, where we denote
for instance

Z2,t
Ug|1,p = / 9t (Y2,¢y1,¢) dya .
— 00

Finally, we have to test if wui, ugji, us and uyjy are each d U (0,1) and if
(1,1,17’(,LQ|1) and (UQ, um) are also #d U (0,1). Consequently, for large numbers
of variables, implementing the adequacy test may be quite cumbersome.
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6.2.6 Illustration

To illustrate the working of the Student ¢ and skewed Student ¢ distributions
in the context of multivariate GARCH models, we use once again two pairs
of time series: the SP500 and DAX daily returns and the SP500 and FT-SE
returns, over the period from January 1980 to August 2004. We consider the
DCC model of Engle (2002), whose estimation under normality is reported
in Table 6.2, and we estimate the same specification assuming Student ¢ and
skewed Student ¢ innovations (with dependent components) in turn. Table 6.3
reports parameter estimates corresponding to these various models.!® The log-
likelihood indicates that the model with Student ¢ innovations very markedly
dominates the model with Gaussian innovations (compare with Table 6.2).
The degree-of-freedom parameter v is in the same range of values as found
previously, in the univariate context, in Section 5.4.

Introducing an asymmetric ¢ distribution also helps improving the fit of
the empirical joint distribution, although less significantly. This finding can
be explained by the weak asymmetry in the distribution of the SP500 return.
Such evidence has been already observed in the univariate estimation. Finally,
we do not display the dynamics of the conditional correlation, because there is
no noticeable difference with the one obtained under normality (Section 6.1).

6.3 Copula functions

In many situations where marginal distributions are not Gaussian, it is simply
impossible to define a joint distribution. This is the case when we want to
link two variables that have different marginal distributions (for instance, a
Student ¢ variate and a Pareto variate). This is also the case for a large number
of marginal distributions, for which a multivariate extension does not exist.
In such contexts, a solution is to use copula functions. These functions have
the property to relate two marginal distributions instead of the two series
directly. Therefore, once margins have been computed, no reference is made
to their true functional form. This is the reason why copula functions are able
to relate any kind of margin.

The textbooks for the analysis of copula functions are Joe (1997) and
Nelsen (1999). Some surveys also provide valuable information on copulas,
see in particular Riboulet, Roncalli, and Bouyé (2000), and Embrechts, Lind-
skog, and McNeil (2003). It should be noticed at this point that copula func-
tions have been abundantly used to investigate the behavior of the tails of a
multivariate distribution. This issue is addressed in detail in Section 7.2.

13 Notice that the parameter estimates of the SP500 obtained for the models with
Student ¢ and skewed Student ¢ innovations differ for the two pairs of returns.
The reason is that in such cases, two-step estimation is precluded, because the
log-likelihood cannot be broken down into the variance part and the correlation
part. However, the difference remains barely noticeable.
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Table 6.3. Parameter estimates of the DCC model under various distributions

SP500-DAX SP500-FT-SE
Estimate Std. err. Estimate Std. err.
DCC with Student ¢ innovations
w1 0.0058 (0.0017) 0.0061 (0.0018)
a1 0.0407 (0.0053) 0.0414 (0.0060)
B4 0.9527 (0.0062) 0.9512 (0.0070)
w2 0.0152 (0.0033) 0.0148 (0.0031)
o) 0.0730 (0.0082) 0.0727 (0.0084)
By 0.9185 (0.0088) 0.9087 (0.0107)
v 7.5728 (0.5586) 8.1771 (0.6486)
01 0.0090 (0.0026) 0.0078 (0.0078)
d2 0.9898 (0.0031) 0.9848 (0.0188)
log-lik. —17599.1 - —15639.1 -
DCC with skewed Student ¢ innovations
w1 0.0058 (0.0019) 0.0062 (0.0020)
ay 0.0409 (0.0056) 0.0417 (0.0064)
B4 0.9524 (0.0068) 0.9509 (0.0077)
w2 0.0152  (0.0040) 0.0145 (0.0034)
Qo 0.0722 (0.0095) 0.0719 (0.0090)
By 0.9193 (0.0108) 0.9099 (0.0118)
v 7.6718 (0.5665) 8.2845 (0.6580)
I3 0.9790 (0.0141) 0.9882 (0.0139)
& 0.9412 (0.0156) 0.9180 (0.0159)
o1 0.0090 (0.0026) 0.0073 (0.0087)
b2 0.9898 (0.0032) 0.9858 (0.0213)
log-lik. —17593.4 - —15626.5 -

6.3.1 Definitions and properties

The study of copulas is quite a recent phenomenon in statistics. Hence, it
is not astonishing that copulas have only recently found their way into em-
pirical finance. In order to understand their usefulness, consider two random
variables X and Y with marginal distributions, or margins, F(z) = Pr[X < z]
and G(y) = Pr[Y < y]. In this paper, we assume that the cumulative distri-
bution functions (cdf) are continuous. The random variables may also have
joint distribution function, H(z,y) = Pr[X < z,Y < y]. All the distribution
functions, F (), G(-), and H(:,-) have as range the interval [0,1]. In some
cases, a multivariate distribution exists, so that the function H(-,-) has an
explicit expression. One such case is the multivariate normal distribution. In
many cases, however, a description of the margins F'(-) and G(+) is relatively
easy to obtain, whereas an explicit expression of the joint distribution H(:, ")
may be difficult to obtain. This is where copulas are useful because they link
margins into a multivariate distribution function.

Definition 6.2. A bivariate copula is a function C : [0,1] x [0,1] — [0, 1] with
the three following properties:
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1. C(u,v) is increasing in u and v.

2. C(0,v) =C(u,0) =0, C(1,v) =v, C(u,1) = u.

3. C(UQ,’UQ) — C(UQ,’Ul) — C(Ul,’l)g) + C(ul,vl) Z 0, Vul,u2,’01,1}2 m [O, 1]
such that u; < ug and vy < vs.

Property 1 states that, when one marginal distribution is constant, the
joint probability will increase provided that the other marginal distribution
increases. Property 2 states that if one margin has zero probability to occur,
then it must be the same for the joint occurrence. Also, if on the contrary,
one margin is certain to occur, then the probability of a joint occurrence is
determined by the remaining margin probability. Property 3 indicates that, if
u and v both increase, then the joint probability also increases. This property
is, therefore, a multivariate extension of the condition that a cdf is increasing.

Furthermore, if we set u = F(z) and v = G(y), then C(F(z), G(y)) yields a
description of the joint distribution of X and Y. Having obtained this intuitive
definition, we now propose the following important theorem, proven in Sklar
(1959) and Schweizer and Sklar (1974).

Theorem 6.3 (Sklar’s theorem). Let F' and G be the marginal distributions
of X andY, respectively, and let H be the joint distribution function of (X,Y).
Then, there exists a copula C such that, for all real numbers (z,y),

H(z,y) = C(F(z),G(y))- (6.21)

Furthermore, if F and G are continuous, then C is unique. Conversely, if F'
and G are the distributions of X and Y, respectively, then the function H
defined by (6.21) is a joint distribution function with marginal distributions
F and G.

The density of a copula is related to its cdf through the following relation

0?C(u,v)
udv

Similarly, the density h of the distribution H is defined by the relationship

h(z,y) =c(F(z),G(y) x f(x) xg(y)-

Notice that many results developed in this section extend to a higher
dimensional framework. Some of the results, however, hold in the bivariate
framework only. In many cases, the ease of interpretation of the dependency
parameter does not hold when there are more than two margins.

c(u,v) =

6.3.2 Measures of concordance

For a number of standard distributions (namely, the elliptical family, which in-
cludes the Gaussian and the Student ¢ distributions), dependency is naturally
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measured by Pearson’s correlation coefficient. However, when other distribu-
tions are considered, alternative measures are needed to characterize the link
between time series. Most of the results in this section are drawn from Nelsen
(1999) and Embrechts, Lindskog, and McNeil (2003).

Following Nelsen (1999, p. 136), two pairs of random variables (X,Y") and
(X, }7) are concordant if X < X implies Y <Y or if X > X implies Y > Y
and discordant if X < X implies Y > Y or if X > X implies Y < Y.

Kendall’s tau for the random variables X and Y is defined as the probabil-
ity of concordance minus the probability of discordance (or non-covariation)
of two independent pairs of random variables (X,Y) and (X,Y)

X, Y] =Pr[(X = X)(Y = ¥) > 0] - Pr [(X - X)(v = ¥) < 0],
Spearman’s rho for the random variables X and Y is defined as
05 [X, Y] =3 (Pr [(X = £)(v = ¥") > 0] = Pr[(x = )(v - ¥) <0]),

where (X,Y), (X,Y), and (X', Y”) are three independent copies. Since X and
Y’ are independent, Spearman’s rho can be viewed as the distance between the
distribution of X and Y and independence. Spearman’s rho was first proposed
in 1904 by the psychologist C. Spearman. Similar to Kendall’s tau, it is related
to the probabilities of concordance and discordance. The distinction is that
one pair (X,Y) has distribution H (z,), and the second pair, say (X,Y),
is a pair of independent random variables with same margins as X and Y,
meaning that (X,Y) has distribution function F(z)G (y). To render this
concept operational, it is convenient to consider three independent pairs of
random variables (X,Y), (X,Y) and (X’,Y") each drawn from H (z,y). The
assumption that all pairs are independent means that X can be viewed as
drawn from F' (z) and Y’ from G (y). The issue then is to see if (X,Y) and
(X,Y") are concordant.

Theorem 6.4. (Schweizer and Wolff, 1981) Let X andY be continuous ran-
dom variables whose copula is C. Then Kendall’s tau and Spearman’s rho for
X and Y are defined as

F(X,Y) = 4//{011]2 C (u,v) dC (u,v) — 1 = 4B [C (U, V)] - 1,
QS(X,Y):12//[01]2uvd0(u,v)—3:12E[U,V]—3.

Note that Spearman’s rho can be written as g [X,Y] = p[F (X),G (Y)],
and may thus be viewed as Pearson’s correlation of the marginal distributions
F(X) and G(Y).

Nelsen (1999) shows that Kendall’s tau and Spearman’s rho satisfy con-
ditions required to be concordance measures. If kx y denote Kendall’s tau or
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Spearman’s rtho between X and Y, we have in particular that —1 < xxy <1,
RX X = 1, RX,-X = 71, RX)Yy = Ry, X and R_X)y = RX,-Yy = —RX)Yy- For
continuous variables, all values of Kendall’s tau and Spearman’s rho in the
interval [—1, 1] can be obtained by a suitable choice of the underlying copula.

While Pearson’s correlation is a natural scalar measure of dependence in
elliptical distributions (for instance, the Gaussian or the Student ¢ distribu-
tions), using it as a measure of dependence in more general situations might
prove misleading. Indeed, Pearson’s correlation has some undesirable prop-
erties. First, it is possible that the correlation p[X,Y] between two random
variables X and Y is equal to zero while the two variables are not independent.
Second, the range of permissible values for the correlation is not necessarily
[—1,1]. Indeed, depending on the marginal distributions of the two variables,
the actual range may be much smaller than [—1,1]. Third, Pearson’s corre-
lation is not invariant for an increasing transform of X and Y. Finally, we
may have that p [X,Y] > 0, while X and Y do not have necessarily a positive
dependence.

6.3.3 Non-parametric copulas

A first approach to the modeling of non-linear dependence consists in non-
parametrically estimating the unrestricted joint density (Silverman, 1986,
Hardle, 1990, Scott, 1992). This method has been used by Deheuvels (1979,
1981) and Fermanian and Scaillet (2003) to deduce a non-parametric estimate
of the associated unrestricted copula. The advantage of this approach is that
it does not require any additional assumption on the non-linear dependence.
However, it suffers from the drawbacks of any non-parametric approach. In
particular, the interpretation of the patterns of non-linear dependence is often
complicated, and it is likely to provide inaccurate and erratic results, even in
the bivariate case. This approach has been recently improved by the work of
Gagliardini and Gouriéroux (2006), who propose an intermediate approach
in which the joint density is constrained and depends on a small number of
one-dimensional functional parameters, yielding efficient non-parametric es-
timators for the one-dimensional functional parameters, which characterize
non-linear dependence.

The non-parametric copula has been proposed by Deheuvels (1979, 1981).
It is defined as

T
tot\ 1 ,
Cr (r T) =72 Ynsra sy WISt BT,

where x; 7 denotes the order statistics, i.e., ;7 < -+ < xpp are ordered
realizations. The empirical copula frequency is then defined as

c ti ta) _ % if (¢, 7,y1,, ) belongs to the sample
T\T’T )~ 10 otherwise,
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so that Cr and cp are related through the relation

CT<1 2) tzltzch( )

p=1g=1

Sample versions of Kendall’s tau and Spearman’s rho are given by
T T t1 to
2T t1 to (p Q)
S ZZI[CT(T,T) er (2,1
e (4 (P b
"\r'r) "\1r'T)]

ran ()74

t1 1to=1

and

A non-parametric estimation of copulas has been developed by Fermanian
and Scaillet (2003), using a kernel-based approach. Such an approach has the
advantage to provide a smooth reconstitution of the copula function without
assuming any particular parametric structure on the dependence structure
between margins.

6.3.4 Review of some copula families

We provide in this section a few examples of copula functions that have been
studied and estimated in the empirical finance literature. Such copulas can
be found, for instance, in Riboulet, Roncalli, and Bouyé (2000), Jondeau and
Rockinger (2006b), and Patton (2006). The copula functions described in this
section cover some of the most used distribution in the literature. For a more
general description of copula functions, see Joe (1997) and Nelsen (1999).
We do not consider in this review how margins are defined. They may be
parametric as well as non-parametric.

Table 6.4 reports, for the copula functions considered below, the range
of possible values that can be reached by the concordance measures. k de-
notes the Kendall’s tau or the Spearman’s rho. This table indicates that some
copula functions may be able to reproduce only positive or only negative de-
pendence. For instance, the Clayton , Gumbel or Marshall-Olkin copula only
have positive dependence.

Elliptical copulas

The class of elliptical distributions includes several well-known multivariate
distributions, such as the Gaussian and the Student ¢ distributions. Let X be
a n-dimensional random vector, u € R™ and X' a (n,n) non-negative definite,
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Table 6.4. Description of some usual copula functions

Copula Parameter space Range for k
Gaussian copula -1<p<1 -1<k<1
Student ¢ copula —l<p<landn>2 —-1<k<1
Frank copula —00 <0 < oo -1<kr<l1
Clayton copula 0<0<o0 0<k<1

Gumbel copula 1<0 <o 0<k<1

Plackett copula 0<fh<owandf#1 —-1<k<l1

Marshall-Olkin copula 0<a<land0<p<1 0<k<1

symmetric matrix. Then, if the characteristic function ¢ x_, (t) of (X — p) is
a function of the quadratic form #'t, ie., px_,, (t) = ¢ (#'2t), then X has
an elliptical distribution with parameters i, X2, and ¢. In addition, if X has
a density, it is of the form |X|7/?g (X —p)' 271 (X — p)), for some non-
negative function g of one scalar variable. Therefore, the contours of equal
density form ellipsoids in R™.

Gaussian copula
The Gaussian copula is defined by the following cdf
C, (u,v) =P, (45_1 (u) ,@‘1 (v))

() 52 — 2pst + t2
exp | ———————— ) dsdt,
/ / 2m/1— p2 P < 2(1-p?) >

where @, is the bivariate standardized Gaussian cdf with Pearson’s correlation
p € [-1;1] and &~ denotes the inverse of the distribution function of the
univariate standard normal distribution.

The density of the Gaussian copula is given by

1 1., 4
¢ (1,0) = — 75 exp (—w R -1, w) 7
P |R‘ 1/2 2 ( )
where ¢ = (&1 (u), &1 (1)), and R is the (2,2) correlation matrix between
u and v with p as correlation parameter.

Kendall’s tau and Spearman’s rho are given respectively by

2
T(C,) = - arcsin (p) ,

05 (Cy) = > arcsin (p/2).

Figure 6.14 displays the Gaussian copula ¢, (u,v) for p = 0.5. Figure 6.15
presents the density h of the two-dimensional distribution defined as: h (z,y) =
¢, (F(x),G(y)) x f(x) x g(y). In the first case, the two variables are sup-
posed to be distributed as A (0, 1), so that the Gaussian copula is equivalent
to the multivariate Gaussian distribution. In the second case, X is a t3 while
YisaN(0,1).
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)

Fig. 6.14. Gaussian copula and its contour plot.

N(0,1)

-
N(0,1)

N(©,1) Student (3)

Fig. 6.15. Contour plot of the density of the Gaussian copula.
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Student t copula

The Student ¢ copula is defined by

Cp,n (u U) ton (t ! )atnl( ))

/ “>/ (%2) (Hw’R—lw)"?? "
1— p? n ’

where ¢ = (¢! (u) , ;" (v))/, t,n is the bivariate Student ¢ cdf with n degrees
of freedom and correlation p, and t,,! denotes the inverse of the distribution
function of the univariate Student ¢ distribution with n degrees of freedom.
The density of the Student ¢ copula is given by

Com (U, v) = 1 (%) (2%) (1 + %w/R_lw)szj

As for the Gaussian copula, Kendall’s tau is given by

7(C,) = % arcsin (p) .
The analytic expression for Spearman’s rho is unknown. Consequently, it must
be computed numerically.
Figure 6.16 represents the density of the Student ¢ copula for v = 3 and
= 0.5, corresponding to a Kendall’s tau equal to 0.333. The left figure
corresponds to Gaussian margins, whereas the right figure corresponds to a
Gaussian and a Student ¢ with v = 3 margins.

Archimedean copulas

Unlike the copulas described so far, the Archimedean ones are not derived from
multivariate distribution functions. An advantage is that most Archimedean
copulas have closed form expressions. A disadvantage is that multivariate
extensions of Archimedean copulas are somewhat difficult to establish.

Theorem 6.5. (Nelsen, 1999, p. 91) Let ¢ be a continuous, strictly decreasing
function from [0,1] to [0,00) such that ¢ (1) = 0 and let ¢~ be the inverse of
@. Then, the function from |0, 1]2 to [0,1] given by

C (u,0) = ¢ (¢ (u) + ¢ (v))
is a copula if and only if v is convez.
The function ¢ is called a generator of the copula. Assuming that ¢! is
twice continuously differentiable, the copula density is
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N(0,1)

L

-3 L L -3 L L
2 0 2 -2 0 2
N(0,1) Student t(3)

Fig. 6.16. Contour plot of the density of the Student t copula.

e (o (u) + ¢ (v))
1

) T @) (e )

In this case, Kendall’s tau is given by

7 (C) = 1+4/0 ;f,((?)dt.

Many additional details on Archimedean copulas are provided by Nelsen
(1999) and Embrechts, Lindskog, and McNeil (2003).

Frank copula

When ¢ (t) = log (e7? — 1) — log (e=% — 1), for 6 # 0, we obtain the Frank
family of copulas. The Frank copula is defined by

(e —1) (e7 — 1)) 7

1
Cg(u,v)z—glog <1+ ]

and [ 0(u+v)
0 (1—e?) e fute
CG(“?”)_ ( ‘ )e

e = (et (1 et
The copula is defined for 6 # 0. Kendall’s tau is given by
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=)
N(,1)
=)

N(0,1)

2 0 2 i 2 0 2
N(0,1) Student t(3)

Fig. 6.17. Contour plot of the density of the Frank copula.

T(Ce):1—471_€1 (9),

and Spearman’s rho is

Dy (0) — D5 (0)

05 (Cy)=1-12 0 ,

where

e (®) I atr ifx >0,
EZ) =19 & 0 4k .
%+ﬁf$ ett—ldt 1f1‘<0

is the Debye function (see Abramowitz and Stegun, 1970).

Figure 6.17 represents the density of the Clayton copula for 8 = 3, corre-
sponding to a Kendall’s tau equal to 0.307.
Clayton copula

When ¢ (t) = (t7% — 1) /6, for § € [~1;00) \ {0}, we obtain the Clayton family
of copulas. The Clayton copula is defined by

C@ (U,’l}) = max ((u_e + U_g _ 1)_1/9 ,O) -

For 6 > 0, the copula simplifies to
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&

2 0 2 2 0 2
N(©,1) Student t(3)

Fig. 6.18. Contour plot of the density of the Clayton copula.

Co (u,v) = (u™? +07% - 1)_1/‘9 .

The density of the copula is given by

co (u,v) = (1+6) (wv) " (u™? 4070 - 1)—2—1/9 _

Kendall’s tau is given by
0

(G =52

Figure 6.18 represents the density of the Clayton copula for § = 1, correspond-
ing to a Kendall’s tau equal to 0.333. The figure confirms that the Clayton
copula generates dependence in the lower-tail but not in the upper tail. In
order to also generate some dependence in the upper tail, we can use the so-
called rotated copula, defined as follows: if (U, V) has copula Cjy (u,v), then
(1-U,1—V) is distributed according to the rotated copula C§* (u,v). For
the Clayton copula, we have

Cf(u,v) =u+v—Cp(l —u,1—v),

with density
el (u,v) =co (1 —u,1 —v).

The rotated copula has dependence in the upper tail.
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Gumbel copula

When ¢ (t) = (—logt)o, for @ € [1;00), we obtain the Gumbel family of
copulas. The Gumbel copula is defined by

Co(u,v) = exp {— [(— logu)a + (- logv)e] 1/9} ,

and

Cy(u,v) [logu x logve_1
co(u,v) = o )[a ]9 2-1/6 <
uv [(—logu) + (—logw) ]

{[(— logu)” + (~ logv)’| - 1} .

Kendall’s tau is given by

T(Cg)zlfé.

Figure 6.19 represents the density of the Gumbel copula for § = 1.5,
corresponding to a Kendall’s tau equal to 0.333. As for the Clayton copula, it
is possible to define a rotated Gumbel copula with

Cf (u,v) =u+v—1+Co(1 —u,1—v),

with density
el (u,v) = co (1 —u, 1 —v).

Plackett copula

The Plackett copula, proposed by Plackett (1965), is defined by

|
200-1) ~

[1 (0= 1)(u+0) — [+ (0 — D)+ o)) — 4uvb(0 — 1),}

Co(u,v) =

and
011 + (u — 2uv +v)(0 — 1)]

([1 + (0 — 1) (u+v)]? — 4uvd(0 — 1))
The copula is defined for § € [0;00). Note that the Spearman’s rho of the
Plackett copula is simply derived from the dependence parameter 6 as
0+1 20log(0)
Po = 0—1 - 2
01

co(u,v) =

N[

(6.22)

Figure 6.20 represents the density of the Plackett copula for § = 3, corre-
sponding to a Spearman’s rho equal to 0.352.
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N(©,1) Student t(3)

Fig. 6.19. Contour plot of the density of the Gumbel copula.

&

2 0 2 -2 0 2
N(0,1) Student t(3)

Fig. 6.20. Contour plot of the density of the Plackett copula.
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Marshall-Olkin copula
The Marshall-Olkin copula is defined by the function

- : a B
. 1—a 1-8y _ Ju "% ifu® >0f,
Co.5 (4,v) = min (u U, UV ) = {uvlﬁ if u < 08,
with 4 = F(x) and v = G (y), where F(z) = Pr[X >z] and G (y) =
Pr[Y > y] denote the marginal survival functions. The domain of definition
of the parameters a and S is: 0 < o, 8 < 1.

The density of the copula is defined by

Cap (U,0) = 9?Cap(u,v) _ {uo‘ if u® > 0P,
@B = T dudw v B ifu® < 0B,
so that the Marshall-Olkin copulas have a singular component, with a mass
concentrated on the curve u=* = v~

Kendall’s tau and Spearman’s rho are obtained, applying the results of the
previous section (Embrechts, Lindskog, and McNeil, 2003)

(Cop) :4/ O aC Y 1= ﬁ,

3af
Cop) =12 uwvdC (u,v
2 //01]2 )~ 2@+26—aﬁ

All values in the interval [0, 1] can be obtained for both the Kendall’s tau and
the Spearman’s rho.

Figure 6.21 represents the density of the Marshall-Olkin copula for A\; =
0.5, Ao = 0.1 and A5 = 1, so that o = 0.667 and 8 = 0.909. These values
correspond to a Kendall’s tau equal to 0.375.

6.3.5 Estimation

Several approaches have been proposed to estimate the parameters of a copula
function. In addition to the standard ML estimation, a two-step estimation
procedure is readily available, because the log-likelihood of the model can
be written as the sum of two components, the margins and the dependence
structure. Therefore, it is natural to estimate the parameters of the margins
and the parameters of the copula function separately (Shih and Louis, 1995,
Joe and Xu, 1996). The copula parameters can also be semi-parametrically
estimated, using the marginal empirical distribution to compute the copula
(Genest, Ghoudi, and Rivest, 1995).

Other alternative estimation procedures may be considered as well. For
instance, as it has been shown in Section 6.3.4, the parameters of the copula
function are in general related to one of the concordance measures (Kendall’s
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Fig. 6.21. Contour plot of the density of the Marshall-Olkin copula.

tau or Spearman’s rho). It is therefore possible to estimate the unknown pa-
rameters using the method of moments, in such a way that the Kendall’s
tau (say) of the theoretical copula fits the empirical Kendall’s tau. Gen-
est and Rivest (1993) have developed an estimation procedure adapted for
Archimedean copula functions.

ML estimator

We assume now that the unknown parameters associated with the marginal
densities f and g are denoted 6, and 6, respectively, and that the unknown
parameters associated with the copula function ¢ are denoted 6.,. We denote
the (K, 1) vector 6 = (65,0,,6,). The maximum likelihood estimate (MLE)
of a model is obtained by maximizing the conditional log-likelihood function,
which is defined as
T
LT (0@“%&) = 1Og (CG,\, (F ($t79w) 7G (yt7 Gy)) X f (xta 9%) X g (yta 05/))
t=1

I
B

10g C,gw (F (37,*,7 91) ’ G (Z’Jh HU))

o~
Il

1

+

t

(log [f (z+,05)] +1og (g (y:, 6y)]) - (6.23)

T
=1
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As previously, the ML estimator Orr is asymptotically normal with asymp-
totic distribution

VT (éML _ 00) — N (0,451,

where Aq is the information matrix of Fisher. See Section 4.3.3 for further
details on the construction and estimation of Ay. See also Section 5.1.2 for
the computation of the covariance matrix of the QML estimator.

Two-step estimator (or inference functions for margins method)

In practical applications, the ML estimation may be difficult. First, the dimen-
sion of the problem can be large, because it requires one to estimate jointly
the parameters of the margins and of the copula function. Second, the depen-
dency parameter of the copula function may be a convoluted expression of
the margin parameters. Therefore, an analytical expression of the gradient of
the likelihood might not exist. Only numerical gradients may be computable,
implying a slowing down of the numerical procedure.

In some cases, it is possible to split the vector of parameters into two
parts: those associated with the marginal distributions and those associated
with the copula function. This is the case, in particular, when there is no
cross-restriction between the marginal distributions and the copula function.

A first two-step estimator, initially proposed by Shih and Louis (1995), Joe
and Xu (1996), and Joe (1997) and used in a conditional setup by Jondeau
and Rockinger (2006b) and Patton (2006), corresponds to the case when the
parameters of the two marginal distributions can be estimated separately. The
first step is the estimation of the marginal models. In the bivariate setting,
we have

0, € arg max E log[f (x4, 0.)], 6.24
rg o, - glf(z: (6.24)
0, € E 1 .0, 6.25
arg (0 I;fleai 2 oglg(yt, 0y)]- (6.25)

Then, in a second step, the parameters 6, of the copula function can be
estimated conditionally on the margin parameters

97 € arg irlea(g( }Zlog [ca (F (Jct,ém) ,G (yt,9y>>} .

If the model is correctly specified, then under rather mild assumptions, él., éy,
and (Z),Y are consistent and asymptotically normal estimators (Patton, 2006).
Another estimator corresponds to the case when we cannot separate the
parameters of the two marginal distributions. This may be the case, for in-
stance, when the two variables are related by a multivariate GARCH model.
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Although the two variables are still assumed to be independent, parameters of
the two marginal distributions cannot be estimated separately. In this context,
the first-step estimators are obtained by solving

T

T
(0.,0,) € argmax > log[f(w1, 02,0,)] + > loglg(yes 0, 6,)];
{0:€64,0,€0,} t=1

while the estimators of the dependence parameters are obtained by solving

T
0 € arg emeag Zlog [09W (F (xt,ex) ,G (yt,Hy))] .
~ Re g

As above, estimators 6, éw and éw are shown to be consistent and asymp-
totically normal.

Semi-parametric ML

Genest, Ghoudi, and Rivest (1995) have proposed an estimation procedure
that avoids specifying the marginal distribution. Instead of using a parametric
marginal distribution, they suggest the use of the marginal empirical distrib-
ution function. The empirical distribution function of X is

T

X R 1

tr (1) = Fr(z;) = T Z Yai<o. 2}
t=1

where z17 < --- < xpr is the ordered sample of observations. In other
words, ap (7) represents the frequency of observations below or equal to z,
in the sample {xt}z;l. Genest, Ghoudi, and Rivest (1995) suggest that we
redefine ir (7) as TL-i-lﬁT (1) to avoid difficulties arising from the possible
unboundedness of the log-likelihood when some @ps tend to one.

Considering the empirical margins directly avoids assuming any theoretical
distribution for margins and therefore avoids the estimation of the parameters
of the marginal distributions. Then, the parameters 6., of the copula function
are estimated by maximizing the pseudo log-likelihood

9

T
0, e arg  max Zlog co, (FT (z¢),Gr (%)) .

0,€6,}

Genest, Ghoudi, and Rivest (1995) show that the estimator év is asymp-
totically normal, with a larger asymptotic variance than the ML estimator
(obtained assuming that the margins are known).!

14 In the case where éw is multidimensional, this implies that the difference between
the asymptotic covariance matrices of 6, and 6., a1 is semi-definite positive.
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6.3.6 Adequacy tests

One reason for the success of the copula functions is that they are able to
model almost any kind of relationship between time series. But one drawback
is that the class of copula functions is now very large, so that it is often difficult
to select the “right” one, i.e., the copula function that best fits the data at
hand. There is therefore a need for adequacy tests.

Several papers have recently proposed goodness-of-fit tests for copula mod-
els. Genest and Rivest (1993) propose a test for the Archimedean family. More
recent papers are by Breyman, Dias, and Embrechts (2003), Fermanian (2003),
and Malavergne and Sornette (2003). As argued by Fermanian and Scaillet
(2004), there are some difficulties in designing a statistical test for the ade-
quacy of copula functions to the data. The reason is that the initial variables
have to be transformed in their probability integral transforms through the
marginal distribution functions. Since the margins are unknown, they have to
be treated as nuisance parameters.

A natural way is to adapt the test proposed in the multivariate distribu-
tion context by Diebold, Hahn, and Tay (1999) for copula functions. Such an
adaptation has been proposed by Breymann, Dias, and Embrechts (2003). As
in Section 6.2.4, we refer to the Rosenblatt (1952) transform and define the
probability integral transform in terms of conditional distributions. Consider n
random variables X; whose joint distribution is given by Fx (x1,--+ ,z,) and
marginal distributions by Fl,(z;) = Pr[X; < x;]. We define the probability
integral transform U; = T (X;) where

T(Xl) = PI‘[Xl S 1’1] = F’X1 (Il),
T (X2) = Pr[Xo < 22| Xy = 21] = Fix, x, (z2]71),

T(Xn) = Pr[Xn < xn|X1 =x1, , Xp1 = xn—l]

= Fx,1x1, Xp_y (TnlT1, - s Tn1),

Therefore, the variables U; for i = 1,--- ,n are 4id U (0,1) individually and
jointly.

Suppose now that the copula C' is such that C (Fx,(x1), -, Fx, (2,)) =
Fx (z1, - ,2n). If we denote C; (uy, - ,u;) = C(ug,-- ,u;1,---,1) the
joint marginal distribution for the first ¢ variables (Uy, - - ,U;), then the con-
ditional distribution of U; given (Uy,--- ,U;—1) is

ai_lci (Ul, e ,’I,Li)

010y (uny -+, uim)
8u1~~3ui_1 '

Bul s 8’11,1'_1

/

Ci (wilur, -, ui—q) =

Since we have

Ci (Fx,(z)|Fx, (1), , Fx,_, (mi—1)) = Fx,|x0,0 X0 (@il@1, -+ @io1),
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we deduce that
Ui = Oi (FX’L(J:’L.)|FX1 (3:1)7 e 7FX1'71("Z“Z'—1)) 1= 25 N2

(with Uy = Cy (Fx,(z1))). Since the copula is a multivariate distribution
function, it follows that the U;s are iid U (0,1) (individually and jointly) if C
is the true distribution.

These results are used by Breymann, Dias, and Embrechts (2003) to con-
struct the following test. They propose to transform the U;s using the inverse
of the univariate normal distribution #~! (U;), i = 1,--- ,n, then the trans-
formed variables @~ (U;) should be éid N (0,1). The proposed test statistic

is
n
§=3 (@7 W),
i=1
that is asymptotically distributed, under the null, as a x? (n). This test is in
fact an Anderson-Darling test.

A strong limitation of this test is that it is based on the empirical marginal
distributions in order to transform the marginal data. Therefore, they should
be treated as infinite dimensional nuisance parameters. This obviously affects
the critical values of the test. Malevergne and Sornette (2003) suggest the use
of bootstrap to compute the empirical critical values of the Anderson-Darling
test.

Another difficulty, already mentioned for the test of Diebold, Hahn, and
Tay (1999), is that the Rosenblatt transform allows n! ways to factor the joint
distribution in terms of conditional distributions.

To deal with the fact that the empirical distribution is unknown and has to
be treated as nuisance parameters, we may adopt a nonparametric approach.
For instance, Fermanian (2003) considers a kernel estimation of the empirical
copula density to circumvent the direct use of the empirical copula process.
He proposes a goodness-of-fit test based on the difference between the kernel
estimator of the copula and the assumed copula.

6.3.7 Modeling the conditional dependency parameter

For notational convenience, we set u; = F(x¢,w,) and vy = G(ys, wy). We
denote by p the dependency parameter. It may be for instance the correlation
parameter in the Gaussian or Student ¢ copulas. The conditioning can be
achieved by expressing p as a function of explanatory variables, for instance
lagged values of u; and v, or some other predetermined variable z;. A rather
general specification for p, is

pr=T(W_1,01,201,7, 13 Wp),

where I' is a function depending on the parameter vector w, and u,_; denotes
{Ut—la Ut—2," "+ }
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Many different specifications of the dependency parameter are possible
in this context. As a first approach, we may follow Gouriéroux and Monfort
(1992) and adopt a specification in which p, depends on the position of past
joint realizations in the unit square. This means that we decompose the unit
square of joint past realizations into a grid. The parameter p, will be constant
for each element of the grid. More precisely, our basic model is

log pt Zd 1 [(ug—1,0—1)EA;]>

where A; is the jth element of the unit-square grid. To each parameter dj,
an area A; is associated. Figure 6.22 illustrates the position of the areas djs.
In the figure, we have set equally spaced threshold levels, i.e., p1, p2, and ps3
take the values 0.25, 0.5, and 0.75. The same for ¢, ¢2, and ¢3. For instance,
Ay = [0,p1[x[0,¢1[ and Ay = [p1,p2[X[0,¢1]. The choice of 16 subintervals
is somewhat arbitrary. This choice of parameterization has the advantage to
provide an easy testing of several conjectures concerning the impact of past
joint returns on subsequent dependency while still allowing for a large number
of observations per area.

This specification does not allow the measurement of persistence in p,,
however. The difficulty is to derive an adequate model to capture the dynamic
of the dependency parameter. As alternative approaches, we may adopt a spec-
ification close to the one proposed by Tse and Tsui (2002) or Engle (2002) in
their modeling of the Pearson’s correlation in a GARCH context. For instance,
in the case of the time-varying conditional correlation model of Tse and Tsui,
the dynamic of the Spearman’s rho would be given by

pr=0—01—=02)p+01p 1+ 020 4,
1/2

where ¢, = (Zh 0 Ut—hVi— h) / (Zh o U hZh o Vi h) represents the
correlation between the margins over the recent period. We impose that 0 <
01,0o <1 and 61 + 05 < 1. The null hypothesis #; = #; = 0 can be tested
using a standard Wald statistic.

Another alternative approach may be that parameters of the Student ¢
copula, with degree-of-freedom parameter n and correlation p, are driven by
a Markov-switching model of the type

pi=pSi+p(1-5), (6.26)
ny = Qst + ﬁ(l — St) s (627)

where S; denotes the unobserved regime of the system at time ¢. .S; is assumed
to follow a two-state Markov process, with transition probability matrix given

1 q q ’
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Fig. 6.22. Unit-square grid for the dependency parameter.

with

p = PI‘ [St = O|St_1 = O] 5
q = Pr [St = ].|St71 = ].] .

Note that, in this model, we do not necessarily assume that univariate char-
acteristics of returns also shift. Quasi Maximum-Likelihood estimation of this
model can be easily obtained using the approach developed by Hamilton
(1989) and Gray (1995). For the degree-of-freedom parameter, we may in-
vestigate several hypotheses. For instance, we may test whether it is regime
independent (n = ®) or whether it is infinite, so that the Gaussian copula
would prevail for a given regime.

6.3.8 Illustration

We now consider the estimation of copula functions for our two pairs of daily
returns (SP500 and DAX on one hand and SP500 and FT-SE on the other
hand) over the period from January 1980 to August 2004. To compare the
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SP500 - DAX SP500 - FT-SE

Fig. 6.23. Scatterplot of margins.

various copula functions at hand, we adopt a relatively simple specification
for the margins. We assume that the dynamic of each daily return is given
by a constant conditional mean and a GARCH(1,1) conditional volatility.
The marginal distribution is assumed to be either the normal or the Stu-
dent ¢ distribution. The estimation is performed using the two-step procedure
described in Section 6.3.5: parameters of the marginal distributions are esti-
mated in the first step (giving 0, and éy), then the margins @; = F'(xy, (Z)z) and
0y = Gy, éy) are computed and the parameters 6., of the copula cg. (¢, 0s)

are estimated (giving 57) Parameter estimates of the marginal distributions
are not reported. They are very close to those presented in Chapter 4. We
present in Figure 6.23 scatterplots of the marginal cdfs u; and v; for the
SP500-DAX and for the SP500-FT-SE, respectively, when the margins are
supposed to be Student t. We notice that, except for the region where one
margin is large and the other small, the unit square is rather uniformly filled
with realizations. In both figures, there is a higher concentration in the cor-
ners along the diagonal. This clustering corresponds to the observation that
correlation may be higher in the tails.

Tables 6.5 and 6.6 report parameter estimates corresponding to these var-
ious models. For each copula function, we report the copula component of the
log-likelihood (log co_ (F' (2¢,0.) , G (yt,0y))), as well as concordance measures
(Kendall’s tau, Spearman’s rho, and the lower-tail and upper-tail dependence
measures). We first notice that the estimates of the dependence parameters
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are rather similar whatever the marginal distribution and the copula func-
tion. The parameters 7 and pg are typically around 0.17 and 0.25 for the pair
SP500-DAX and around 0.2 and 0.3 for the pair SP500-FT-SE. We notice
that dependence is found to be more pronounced for the symmetric copulas
than for the asymmetric ones. We notice that the Student ¢ copula which
has both lower-tail and upper-tail dependence is characterized by quite large
degree-of-freedom parameters, so that no tail dependence is obtained. For this
date, this finding can be confirmed using a test based on the extreme value
theory, as illustrated in the next chapter. Finally, we may compare the log-
likelihoods obtained with the various copula functions.!® We observe that the
copula that provides the best fit of the data at hand is the Student ¢ copula.

Table 6.5. Estimation of various copula functions (SP500-DAX)

log-lik. Parameter Kendall’s Spearman’s

estimate tau rho
SP500-DAX (Gaussian margins)
Gaussian 220.9177  0.2576 0.1659 0.2467
Student ¢ 259.2342 0.2718 0.1752 0.2588
16.7154
Frank 213.7218 1.7728 0.1898 0.2876
Plackett 226.8283 2.4512 0.1971 0.2911
Clayton 109.0424 0.1704 0.0785 0.1174
Rotated Clayton 177.7902 0.2973 0.1294 0.1926
Gumbel 224.3033 1.1914 0.1607 0.2369

Rotated Gumbel 101.5494 1.1617 0.1392 0.2058
SP500-DAX (Student ¢ margins)

Gaussian 217.5797 0.2594 0.1670 0.2484
Student ¢ 249.0502 0.2592 0.1669 0.2464
9.9642
Frank 196.1103  1.5477 0.1663 0.2551
Plackett 206.1987 2.2003 0.1738 0.2575
Clayton 171.3745 0.2768 0.1216 0.1811
Rotated Clayton 182.6102 0.3185 0.1374 0.2043
Gumbel 221.9475 1.1884 0.1585 0.2338

Rotated Gumbel 203.9667 1.1725 0.1471 0.2174

!5 Since the estimation is performed using the two-step approach, the reported cop-
ula component of the log-likelihood can be compared for the various copula func-
tions. However, it is not surprising that there is no systematic pattern when we
compare the Gaussian margins with the Student ¢ margins. Inspection of the to-
tal log-likelihood (including the margins) clearly indicates that the model with
Student ¢ margins performs better than the model with Gaussian margins.
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Table 6.6. Estimation of various copula functions (SP500-FT-SE)

log-lik. Parameter Kendall’s Spearman’s

estimate tau rho
SP500-FT-SE (Gaussian margins)
Gaussian 323.1311  0.3263 0.2116 0.3129
Student ¢ 367.9556  0.3294 0.2137 0.3141
18.3911
Frank 323.3922  2.1610 0.2289 0.3421
Plackett 337.0456 2.8816 0.2317 0.3401
Clayton 223.2368 0.3027 0.1314 0.1956
Rotated Clayton 210.9462 0.3479 0.1482 0.2201
Gumbel 284.0590 1.2376 0.1920 0.2818
Rotated Gumbel 255.8926 1.2148 0.1768 0.2602
SP500-FT-SE (Student ¢ margins)
Gaussian 336.0140 0.3185 0.2063 0.3054
Student ¢ 364.5217  0.3202 0.2075 0.3044
11.4373
Frank 305.6729 1.9384 0.2067 0.3112
Plackett 317.3299 2.6161 0.2111 0.3110
Clayton 290.9546 0.3745 0.1577 0.2339
Rotated Clayton 242.3389 0.3848 0.1613 0.2392
Gumbel 303.7355  1.2374 0.1918 0.2816
Rotated Gumbel 330.7893 1.2266 0.1847 0.2714






