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Modeling Univariate Distributions

5.1 Introduction

As seen in Chapter 4, usually the marginal distributions of financial time
series are not well fit by normal distributions. Fortunately, there are a num-
ber of suitable alternative models, such as t-distributions, generalized error
distributions, and skewed versions of t- and generalized error distributions.
All of these will be introduced in this chapter. Typically, the parameters in
these distributions are estimated by maximum likelihood. Sections 5.9 and
5.14 provide an introduction to the maximum likelihood estimator (MLE),
and Section 5.18 provides references for further study on this topic.

Software for maximum likelihood is readily available for standard models,
and a reader interested only in data analysis and modeling often need not be
greatly concerned with the technical details of maximum likelihood. However,
when performing a statistical analysis, it is always worthwhile to understand
the underlying theory, at least at a conceptual level, since doing so can prevent
misapplications. Moreover, when using a nonstandard model, often there is
no software available for automatic computation of the MLE and one needs
to understand enough theory to write a program to compute the MLE.

5.2 Parametric Models and Parsimony

In a parametric statistical model, the distribution of the data is completely
specified except for a finite number of unknown parameters. For example,
assume that Y1, . . . , Yn are i.i.d. from a t-distribution1 with mean µ, variance
σ2, and degrees of freedom ν. Then this is a parametric model provided that,
as is usually the case, one or more of µ, σ2, and ν are unknown.
1 The reader who is unfamiliar with t-distributions should look ahead to Section

5.5.2.
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80 5 Modeling Univariate Distributions

A model should have only as many parameters as needed to capture the
important features of the data. Each unknown parameter is another quantity
to estimate and another source of estimation error. Estimation error, among
other things, increases the uncertainty when one forecasts future observations.
On the other hand, a statistical model must have enough parameters to ade-
quately describe the behavior of the data. A model with too few parameters
can create biases because the model does not fit the data well.

A statistical model with little bias, but without excess parameters, is called
parsimonious and achieves a good tradeoff between bias and variance. Finding
one or a few parsimonious models is an important part of data analysis.

5.3 Location, Scale, and Shape Parameters

Parameters are often classified as location, scale, or shape parameters de-
pending upon which properties of a distribution they determine. A location
parameter is a parameter that shifts a distribution to the right or left without
changing the distribution’s shape or variability. Scale parameters quantify dis-
persion. A parameter is a scale parameter for a univariate sample if the param-
eter is increased by the amount |a| when the data are multiplied by a. Thus,
if σ(X) is a scale parameter for a random variable X, then σ(aX) = |a|σ(X).
A scale parameter is a constant multiple of the standard deviation provided
that the latter is finite. Many examples of location and scale parameters can
be found in the following sections. If λ is a scale parameter, then λ−1 is
called an inverse-scale parameter. Since scale parameters quantify dispersion,
inverse-scale parameters quantify precision.

If f(y) is any fixed density, then f(y− µ) is a family of distributions with
location parameter µ; θ−1f(y/θ), θ > 0, is a family of distributions with a
scale parameter θ; and θ−1f{θ−1(y − µ)} is a family of distributions with
location parameter µ and scale parameter θ. These facts can be derived by
noting that if Y has density f(y) and θ > 0, then, by Result A.6.1, Y + µ
has density f(y − µ), θY has density θ−1f(θ−1y), and θY + µ has density
θ−1f{θ−1(y − µ)}.

A shape parameter is defined as any parameter that is not changed by
location and scale changes. More precisely, for any f(y), µ, and θ > 0, the
value of a shape parameter for the density f(y) will equal the value of that
shape parameter for θ−1f{θ−1(y−µ)}. The degrees-of-freedom parameter for
t-distributions is a shape parameter. Other shape parameters will be encoun-
tered later in this chapter. Shape parameters are often used to specify the
skewness or tail weight of a distribution.
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Fig. 5.1. Skewed and symmetric densities. In each case, the mean is zero and is
indicated by a vertical line.

5.4 Skewness, Kurtosis, and Moments

Skewness and kurtosis help characterize the shape of a probability distribu-
tion. Skewness measures the degree of asymmetry, with symmetry implying
zero skewness, positive skewness indicating a relatively long right tail com-
pared to the left tail, and negative skewness indicating the opposite. Figure 5.1
shows three densities, all with an expectation equal to 0. The densities are
right-skewed, left-skewed, and symmetric about 0, respectively, in panels (a)–
(c).

Kurtosis indicates the extent to which probability is concentrated in the
center and especially the tails of the distribution rather than in the “shoul-
ders,” which are the regions between the center and the tails.

In Section 4.3.2, the left tail was defined as the region from −∞ to µ− 2σ
and the right tail as the region from µ + 2σ to +∞. Here µ and σ could
be the mean and standard deviation or the median and MAD. Admittedly,
these definitions are somewhat arbitrary. Reasonable definitions of center and
shoulder would be that the center is the region from µ− σ to µ + σ, the left
shoulder is from µ−2σ to µ−σ, and the right shoulder is from µ+σ to µ+2σ.
See the upper plot in Figure 5.2. Because skewness and kurtosis measure
shape, they do not depend on the values of location and scale parameters.
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Fig. 5.2. Comparison of a normal density and a t-density with 5 degrees of freedom.
Both densities have mean 0 and standard deviation 1. The upper plot also shows the
center, shoulders, and tail regions.

The skewness of a random variable Y is

Sk = E

{
Y − E(Y )

σ

}3

=
E{Y − E(Y )}3

σ3
.

To appreciate the meaning of the skewness, it is helpful to look at an example;
the binomial distribution is convenient for that purpose. The skewness of the
Binomial(n, p) distribution is

Sk(n, p) =
1− 2p√
np(1− p)

, 0 < p < 1.

Figure 5.3 shows the binomial probability distribution and its skewness
for n = 10 and four values of p. Notice that

1. the skewness is positive if p < 0.5, negative if p > 0.5, and 0 if p = 0.5;
2. the absolute skewness becomes larger as p moves closer to either 0 or 1

with n fixed;
3. the absolute skewness decreases to 0 as n increases to ∞ with p fixed;

Positive skewness is also called right skewness and negative skewness is
called left skewness. A distribution is symmetric about a point θ if P (Y >
θ + y) = P (Y < θ − y) for all y > 0. In this case, θ is a location parameter
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and equals E(Y ), provided that E(Y ) exists. The skewness of any symmetric
distribution is 0. Property 3 is not surprising in light of the central limit
theorem. We know that the binomial distribution converges to the symmetric
normal distribution as n →∞ with p fixed and not equal to 0 or 1.
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Fig. 5.3. Several binomial probability distributions with n = 10 and their skewness
determined by the shape parameter p. Sk = skewness coefficient and K = kurtosis
coefficient. The top left plot has left-skewness (Sk = −0.84). The top right plot has
no skewness (Sk = 0). The bottom left plot has moderate right-skewness (Sk = 0.47).
The bottom-left plot has strong right skewness (Sk = 2.17).

The kurtosis of a random variable Y is

Kur = E

{
Y − E(Y )

σ

}4

=
E{Y − E(Y )}4

σ4
.

The kurtosis of a normal random variable is 3. The smallest possible value of
the kurtosis is 1 and is achieved by any random variable taking exactly two
distinct values, each with probability 1/2. The kurtosis of a Binomial(n, p)
distribution is

KurBin(n, p) = 3 +
1− 6p(1− p)

np(1− p)
.
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Notice that KurBin(n, p) → 3, the value at the normal distribution, as n →∞
with p fixed, which is another sign of the central limit theorem at work. Fig-
ure 5.3 also gives the kurtosis of the distributions in that figure. KurBin(n, p)
equals 1, the minimum value of kurtosis, when n = 1 and p = 1/2.

It is difficult to interpret the kurtosis of an asymmetric distribution be-
cause, for such distributions, kurtosis may measure both asymmetry and tail
weight, so the binomial is not a particularly good example for understand-
ing kurtosis. For that purpose we will look instead at t-distributions because
they are symmetric. Figure 5.2 compares a normal density with the t5-density
rescaled to have variance equal to 1. Both have a mean of 0 and a standard
deviation of 1. The mean and standard deviation are location and scale pa-
rameters, respectively, and do not affect kurtosis. The parameter ν of the
t-distribution is a shape parameter. The kurtosis of a tν-distribution is finite
if ν > 4 and then the kurtosis is

Kurt(ν) = 3 +
6

ν − 4
. (5.1)

For example, the kurtosis is 9 for a t5-distribution. Since the densities in
Figure 5.2 have the same mean and standard deviation, they also have the
same tails, center, and shoulders, at least according to our somewhat arbitrary
definitions of these regions, and these regions are indicated on the top plot.
The bottom plot zooms in on the right tail. Notice that the t5-density has more
probability in the tails and center than the N(0, 1) density. This behavior of
t5 is typical of symmetric distributions with high kurtosis.

Every normal distribution has a skewness coefficient of 0 and a kurtosis of
3. The skewness and kurtosis must be the same for all normal distributions,
because the normal distribution has only location and scale parameters, no
shape parameters. The kurtosis of 3 agrees with formula (5.1) since a normal
distribution is a t-distribution with ν = ∞. The “excess kurtosis” of a distri-
bution is (Kur− 3) and measures the deviation of that distribution’s kurtosis
from the kurtosis of a normal distribution. From (5.1) we see that the excess
kurtosis of a tν-distribution is 6/(ν − 4).

An exponential distribution2 has a skewness equal to 2 and a kurtosis of 9.
A double-exponential distribution has skewness 0 and kurtosis 6. Since the ex-
ponential distribution has only a scale parameter and the double-exponential
has only a location and a scale parameter, their skewness and kurtosis must
be constant.

The Lognormal(µ, σ2) distribution, which is discussed in Section A.9.4,
has the log-mean µ as a scale parameter and the log-standard deviation σ as
a shape parameter—even though µ and σ are location and scale parameters
for the normal distribution itself, they are scale and shape parameters for the
lognormal. The effects of σ on lognormal shapes can be seen in Figures 4.11
and A.1. The skewness coefficient of the lognormal(µ, σ2) distribution is
2 The exponential and double-exponential distributions are defined in Section

A.9.5.
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{exp(σ2) + 2}
√

exp(σ2)− 1. (5.2)

Since µ is a scale parameter, it has no effect on the skewness. The skewness
increases from 0 to ∞ as σ increases from 0 to ∞.

Estimation of the skewness and kurtosis of a distribution is relatively
straightforward if we have a sample, Y1, . . . , Yn, from that distribution. Let the
sample mean and standard deviation be Y and s. Then the sample skewness,
denoted by Ŝk, is

Ŝk =
1
n

n∑

i=1

(
Yi − Y

s

)3

, (5.3)

and the sample kurtosis, denoted by K̂ur, is

K̂ur =
1
n

n∑

i=1

(
Yi − Y

s

)4

. (5.4)

Often the factor 1/n in (5.3) and (5.4) is replaced by 1/(n − 1). Both the
sample skewness and the excess kurtosis should be near 0 if a sample is from
a normal distribution. Deviations of the sample skewness and kurtosis from
these values are an indication of nonnormality.
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Fig. 5.4. Normal plot of a sample of 999 N(0, 1) data plus a contaminant.
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A word of caution is in order. Skewness and kurtosis are highly sensitive
to outliers. Sometimes outliers are due to contaminants, that is, bad data not
from the population being sampled. An example would be a data recording
error. A sample from a normal distribution with even a single contaminant
that is sufficiently outlying will appear highly nonnormal according to the
sample skewness and kurtosis. In such a case, a normal plot will look linear,
except that the single contaminant will stick out. See Figure 5.4, which is a
normal plot of a sample of 999 N(0, 1) data points plus a contaminant equal
to 30. This figure shows clearly that the sample is nearly normal but with
an outlier. The sample skewness and kurtosis, however, are 10.85 and 243.04,
which might give the false impression that the sample is far from normal.
Also, even if there were no contaminants, a distribution could be extremely
close to a normal distribution and yet have a skewness or excess kurtosis that
is very different from 0.

5.4.1 The Jarque–Bera test

The Jarque–Bera test of normality compares the sample skewness and kurtosis
to 0 and 3, their values under normality. The test statistic is

JB = n{Ŝk
2
/6 + (K̂ur− 3)2/24},

which, of course, is 0 when Ŝk and K̂ur, respectively, have the values 0 and
3, the values expected under normality, and increases as Ŝk and K̂ur deviate
from these values. In R, the test statistic and its p-value can be computed with
the jarque.bera.test function.

A large-sample approximation is used to compute a p-value. Under the
null hypothesis, JB converges to the chi-square distribution with 2 degrees of
freedom (χ2

2) as the sample size becomes infinite, so the p-value is 1−Fχ2
2
(JB),

where Fχ2
2

is the CDF of the χ2
2-distribution.

5.4.2 Moments

The expectation, variance, skewness coefficient, and kurtosis of a random vari-
able are all special cases of moments, which will be defined in this section.

Let X be a random variable. The kth moment of X is E(Xk), so in par-
ticular the first moment is the expectation of X. The kth absolute moment is
E|X|k.

The kth central moment is

µk = E
[{X − E(X)}k

]
, (5.5)

so, for example, µ2 is the variance of X. The skewness coefficient of X is

Sk(X) =
µ3

(µ2)3/2
, (5.6)
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and the kurtosis of X is
Kur(X) =

µ4

(µ2)2
. (5.7)

5.5 Heavy-Tailed Distributions

Distributions with higher tail probabilities compared to a normal distribution
are called heavy-tailed. Because kurtosis is particularly sensitive to tail weight,
high kurtosis is nearly synonymous with having a heavy tailed distribution.
Heavy-tailed distributions are important models in finance, because equity
returns and other changes in market prices usually have heavy tails. In finance
applications, one is especially concerned when the return distribution has
heavy tails because of the possibility of an extremely large negative return,
which could, for example, entirely deplete the capital reserves of a firm. If one
sells short,3 then large positive returns are also worrisome.

5.5.1 Exponential and Polynomial Tails

Double-exponential distributions have slightly heavier tails than normal dis-
tributions. This fact can be appreciated by comparing their densities. The
density of the double-exponential with scale parameter θ is proportional to
exp(−|y/θ|) and the density of the N(0, σ2) distribution is proportional to
exp{−0.5(y/σ)2}. The term −y2 converges to −∞ much faster than −|y| as
|y| → ∞. Therefore, the normal density converges to 0 much faster than the
double-exponential density as |y| → ∞. The generalized error distributions
discussed soon in Section 5.6 have densities proportional to

exp (− |y/θ|α) , (5.8)

where α > 0 is a shape parameter and θ is a scale parameter. The special
cases of α = 1 and 2 are, of course, the double-exponential and normal den-
sities. If α < 2, then a generalized error distribution will have heavier tails
than a normal distribution, with smaller values of α implying heavier tails.
In particular, α < 1 implies a tail heavier than that of a double-exponential
distribution.

However, no density of the form (5.8) will have truly heavy tails, and, in
particular, E(|Y |k) < ∞ for all k so all moments are finite. To achieve a very
heavy right tail, the density must be such that

f(y) ∼ Ay−(a+1) as y →∞ (5.9)

for some A > 0 and a > 0, which will be called a right polynomial tail, rather
than like
3 See Section 11.5 for a discussion of short selling.
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f(y) ∼ A exp(−y/θ) as y →∞ (5.10)

for some A > 0 and θ > 0, which will be called an exponential right tail.
Polynomial and exponential left tails are defined analogously.

A polynomial tail is also called a Pareto tail after the Pareto distribution
defined in Section A.9.8. The parameter a of a polynomial tail is called the
tail index. The smaller the value of a, the heavier the tail. The value of a must
be greater than 0, because if a ≤ 0, then the density integrates to ∞, not 1.
An exponential tail as in (5.8) is lighter than any polynomial tail, since

exp(−|y/θ|α)
|y|−(a+1)

→ 0 as |y| → ∞

for all θ > 0, α > 0, and a > 0.
It is, of course, possible to have left and right tails that behave quite

differently from each other. For example, one could be polynomial and the
other exponential, or they could both be polynomial but with different indices.

A density with both tails polynomial will have a finite kth absolute moment
only if the smaller of the two tail indices is larger than k. If both tails are
exponential, then all moments are finite.

5.5.2 t-Distributions

The t-distributions have played an extremely important role in classical statis-
tics because of their use in testing and confidence intervals when the data are
modeled as having normal distributions. More recently, t-distributions have
gained added importance as models for the distribution of heavy-tailed phe-
nomena such as financial markets data.

We will start with some definitions. If Z is N(0, 1), W is chi-squared4 with
ν degrees of freedom, and Z and W are independent, then the distribution of

Z/
√

W/ν (5.11)

is called the t-distribution with ν degrees of freedom and denoted tν . The α-
upper quantile of the tν-distribution is denoted by tα,ν and is used in tests
and confidence intervals about population means, regression coefficients, and
parameters in time series models.5 In testing and interval estimation, the
parameter ν generally assumes only positive integer values, but when the
t-distribution is used as a model for data, ν is restricted only to be positive.

The density of the tν-distribution is

ft,ν(y) =
[

Γ{(ν + 1)/2}
(πν)1/2Γ (ν/2)

]
1

{1 + (y2/ν)}(ν+1)/2
. (5.12)

Here Γ is the gamma function defined by
4 Chi-squared distributions are discussed in Section A.10.1.
5 See Section A.17.1 for confidence intervals for the mean.
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Γ (t) =
∫ ∞

0

xt−1 exp(−x)dx, t > 0. (5.13)

The quantity in large square brackets in (5.12) is just a constant, though a
somewhat complicated one.

The variance of a tν is finite and equals ν/(ν − 2) if ν > 2. If 0 < ν ≤ 1,
then the expected value of the tν-distribution does not exist and the variance
is not defined. If 1 < ν ≤ 2, then the expected value is 0 and the variance is
infinite. If Y has a tν-distribution, then

µ + λY

is said to have a tν(µ, λ2) distribution, and λ will be called the scale parameter.
With this notation, the tν and tν(0, 1) distributions are the same. If ν > 1,
then the tν(µ, λ2) distribution has a mean equal to µ, and if ν > 2, then it
has a variance equal to λ2ν/(ν − 2).

The t-distribution will also be called the classical t-distribution to distin-
guish it from the standardized t-distribution defined in the next section.

Standardized t-Distributions

Instead of the classical t-distribution just discussed, some software uses a
“standardized” version of the t-distribution. The difference between the two
versions is merely notational, but it is important to be aware of this difference.

The tν{0, (ν − 2)/ν} distribution with ν > 2 has a mean equal to 0 and
variance equal to 1 and is called a standardized t-distribution, and will be de-
noted by tstdν (0, 1). More generally, for ν > 2, define the tstdν (µ, σ2) distribution
to be equal to the tν [ µ, {(ν − 2)/ν}σ2] distribution, so that µ and σ2 are the
mean and variance of the tstdν (µ, σ2) distribution. For ν ≤ 2, tstdν (µ, σ2) cannot
be defined since the t-distribution does not have a finite variance in this case.
The advantage in using the tstdν (µ, σ2) distribution is that σ2 is the variance,
whereas for the tν(µ, λ2) distribution, λ2 is not the variance but instead λ2 is
the variance times (ν − 2)/ν.

Some software uses the standardized t-distribution while other software
uses the classical t-distribution. It is, of course, important to understand which
t-distribution is being used in any specific application. However, estimates
from one model can be translated easily into the estimates one would obtain
from the other model; see Section 5.14 for an example.

t-Distributions Have Polynomial Tails

The t-distributions are a class of heavy-tailed distributions and can be used
to model heavy-tail returns data. For t-distributions, both the kurtosis and
the weight of the tails increase as ν gets smaller. When ν ≤ 4, the tail weight
is so high that the kurtosis is infinite. For ν > 4, the kurtosis is given by (5.1).
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By (5.12), the t-distribution’s density is proportional to

1
{1 + (y2/ν)}(ν+1)/2

which for large values of |y| is approximately

1
(y2/ν)(ν+1)/2

∝ |y|−(ν+1).

Therefore, the t-distribution has polynomial tails with tail index a = ν. The
smaller the value of ν, the heavier the tails.

5.5.3 Mixture Models

Discrete Mixtures

Another class of models containing heavy-tailed distributions is the set of mix-
ture models. Consider a distribution that is 90% N(0, 1) and 10% N(0, 25).
A random variable Y with this distribution can be obtained by generating a
normal random variable X with mean 0 and variance 1 and a uniform(0,1) ran-
dom variable U that is independent of X. If U < 0.9, then Y = X. If U ≥ 0.9,
then Y = 5X. If an independent sample from this distribution is generated,
then the expected percentage of observations from the N(0, 1) component is
90%. The actual percentage is random; in fact, it has a Binomial(n, 0.9) dis-
tribution, where n is a sample size. By the law of large numbers, the actual
percentage converges to 90% as n → ∞. This distribution could be used to
model a market that has two regimes, the first being “normal volatility” and
second “high volatility,” with the first regime occurring 90% of the time.

This is an example of a finite or discrete normal mixture distribution,
since it is a mixture of a finite number, here two, different normal distribu-
tions called the components. A random variable with this distribution has a
variance equal to 1 with 90% probability and equal to 25 with 10% probabil-
ity. Therefore, the variance of this distribution is (0.9)(1)+(0.1)(25) = 3.4, so
its standard deviation is

√
3.4 = 1.84. This distribution is much different than

an N(0, 3.4) distribution, even though the two distributions have the same
mean and variance. To appreciate this, look at Figure 5.5.

You can see in Figure 5.5(a) that the two densities look quite different.
The normal density looks much more dispersed than the normal mixture,
but they actually have the same variances. What is happening? Look at the
detail of the right tails in panel (b). The normal mixture density is much
higher than the normal density when x is greater than 6. This is the “outlier”
region (along with x < −6).6 The normal mixture has far more outliers than
6 There is nothing special about “6” to define the boundary of the outlier range,

but a specific number was needed to make numerical comparisons. Clearly, |x| > 7
or |x| > 8, say, would have been just as appropriate as outlier ranges.
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Fig. 5.5. Comparison of N(0, 3.4) distribution and heavy-tailed normal mixture dis-
tributions. Both distributions have the same mean and variance. The normal mixture
distribution is 90% N(0, 1) and 10% N(0, 25). In (c) and (d) the sample size is 200.

the normal distribution and the outliers come from the 10% of the population
with a variance of 25. Remember that ±6 is only 6/5 standard deviations from
the mean, using the standard deviation 5 of the component from which they
come. Thus, these observations are not outlying relative to their component’s
standard deviation of 5, only relative to the population standard deviation of√

3.4 = 1.84 since 6/1.84 = 3.25 and three or more standard deviations from
the mean is generally considered rather outlying.

Outliers have a powerful effect on the variance and this small fraction of
outliers inflates the variance from 1.0 (the variance of 90% of the population)
to 3.4.

Let’s see how much more probability the normal mixture distribution has
in the outlier range |x| > 6 compared to the normal distribution. For an
N(0, σ2) random variable Y ,

P{|Y | > y} = 2{1− Φ(y/σ)}.
Therefore, for the normal distribution with variance 3.4,
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P{|Y | > 6} = 2{1− Φ(6/
√

3.4)} = 0.0011.

For the normal mixture population that has variance 1 with probability 0.9
and variance 25 with probability 0.1, we have that

P{|Y | > 6} = 2
[
0.9{1− Φ(6)}+ 0.1{1− Φ(6/5)}

]

= 2{(0.9)(0) + (0.1)(0.115)} = 0.023.

Since 0.023/0.0011 ≈ 21, the normal mixture distribution is 21 times more
likely to be in this outlier range than the N(0, 3.4) population, even though
both have a variance of 3.4. In summary, the normal mixture is much more
prone to outliers than a normal distribution with the same mean and standard
deviation. So, we should be much more concerned about very large negative
returns if the return distribution is more like the normal mixture distribution
than like a normal distribution. Large positive returns are also likely under a
normal mixture distribution and would be of concern when an asset was sold
short.

It is not difficult to compute the kurtosis of this normal mixture. Because a
normal distribution has kurtosis equal to 3, if Z is N(µ, σ2), then E(Z−µ)4 =
3σ4. Therefore, if Y has this normal mixture distribution, then

E(Y 4) = 3{0.9 + (0.1)252} = 190.2

and the kurtosis of X is 190.2/3.42 = 16.45.
Normal probability plots of samples of size 200 from the normal and normal

mixture distributions are shown in panels (c) and (d) of Figure 5.5. Notice
how the outliers in the normal mixture sample give the probability plot a
convex-concave pattern typical of heavy-tailed data. The deviation of the plot
of the normal sample from linearity is small and is due entirely to randomness.

In this example, the conditional variance of any observations is 1 with
probability 0.9 and 25 with probability 0.1. Because there are only two com-
ponents, the conditional variance is discrete, in fact, with only two possible
values, and the example was easy to analyze. This example is a normal scale
mixture because only the scale parameter σ varies between components. It is
also a discrete mixture because there are only a finite number of components.

Continuous Mixtures

The marginal distributions of the GARCH processes studied in Chapter 18 are
also normal scale mixtures, but with infinitely many components and a contin-
uous distribution of the conditional variance. Although GARCH processes are
more complex than the simple mixture model in this section, the same theme
applies—a nonconstant conditional variance of a mixture distribution induces
heavy-tailed marginal distributions even though the conditional distributions
are normal distributions and have relatively light tails.
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The general definition of a normal scale mixture is that it is the distribution
of the random variable

µ +
√

UZ (5.14)

where µ is a constant equal to the mean, Z is N(0, 1), U is a positive random
variable giving the variance of each component, and Z and U are independent.
If U can assume only a finite number of values, then (5.14) is a discrete (or
finite) scale mixture distribution. If U is continuously distributed, then we
have a continuous scale mixture distribution. The distribution of U is called
the mixing distribution. By (5.11), a tν-distribution is a continuous normal
scale mixture with µ = 0 and U = ν/W , where ν and W are as defined above
equation (5.11).

Despite the apparent heavy tails of a finite normal mixture, the tails are
exponential, not polynomial. A continuous normal mixture can have a poly-
nomial tail if the mixture distribution’s tail is heavy enough, e.g., as in t-
distributions.

5.6 Generalized Error Distributions

Generalized error distributions mentioned briefly in Section 5.5.1 have expo-
nential tails. This section provides more detailed information about them. The
standardized generalized error distribution, or GED, with shape parameter ν
has density

f std
ged (y|ν) = κ(ν) exp

{
−1

2

∣∣∣∣
y

λν

∣∣∣∣
ν}

, −∞ < y < ∞,

where κ(ν) and λν are constants given by

λν =
{

2−2/νΓ (ν−1)
Γ (3/ν)

}1/2

and κ(ν) =
ν

λν21+1/νΓ (ν−1)

and were chosen so that the function integrates to 1, as it must to be a
density, and the variance is 1. The latter property is not necessary but is
often convenient.

The shape parameter ν > 0 determines the tail weight, with smaller values
of ν giving greater tail weight. When ν = 2, a GED is a normal distribution,
and when ν = 1, it is a double-exponential distribution. The generalized
error distributions can give tail weights intermediate between the normal and
double-exponential distributions by having 1 < ν < 2. They can also give
tail weights more extreme than the double-exponential distribution by having
ν < 1.
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Fig. 5.6. A comparison of the tails of several generalized error (thin curves) and
t-distributions (thick curves).

Figure 5.6 shows the right tails of several t- and generalized error densities
with mean 0 and variance 1.7 Since they are standardized, the argument
y is the number of standard deviations from the median of 0. Because t-
distributions have polynomial tails, any t-distribution is heavier-tailed than
any generalized error distribution. However, this is only an asymptotic result
as y → ∞. In the more practical range of y, tail weight depends as much on
the tail weight parameter as it does on the choice between a t-distribution or
a generalized error distribution.

The t-distributions and generalized error densities also differ in their
shapes at the median. This can be seen in Figure 5.7, where the generalized
error densities have sharp peaks at the median with the sharpness increasing
as ν decreases. In comparison, a t-density is smooth and rounded near the
median, even with ν small. If a sample is better fit by a t-distribution than
by a generalized error distribution, this may be due more to the sharp central
peaks of generalized error densities than to differences between the tails of the
two types of distributions.

The f std
ged (y|ν) density is symmetric about 0, which is its mean, median,

and mode, and has a variance equal to 1. However, it can be shifted and
rescaled to create a location-scale family. The GED distribution with mean
µ, variance σ2, and shape parameter ν has density
7 This plot and Figure 5.7 used the R functions dged and dstd in the fGarch

package.
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Fig. 5.7. A comparison of the centers of several generalized error (thin) and t-
densities (thick) with mean 0 and variance 1.

f std
ged (y|µ, σ2, ν) := f std

ged {(y − µ)/σ|ν}/σ.

5.7 Creating Skewed from Symmetric Distributions

Returns and other financial markets data typically have no natural lower or
upper bounds, so one would like to use models with support equal to (−∞,∞).
This is fine if the data are symmetric since then one can use, for example,
normal, t, or generalized error distributions as models. What if the data are
skewed? Unfortunately, many of the well-known skewed distributions, such
as, gamma and log-normal distributions, have support [0,∞) and so are not
suitable for many types of financial markets data. This section describes a
remedy to this problem.

Fernandez and Steel (1998) have devised a clever way for inducing skewness
in symmetric distributions such as normal and t-distributions. The fGarch
package in R implements their idea. Let ξ be a positive constant and f a
density that is symmetric about 0. Define

f∗(y|ξ) =
{

f(yξ) if y < 0,
f(y/ξ) if y ≥ 0.

(5.15)

Since f∗(y|ξ) integrates to (ξ + ξ−1)/2, f∗(y|ξ) is divided by this constant to
create a probability density. After this normalization, the density is given a
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Fig. 5.8. Symmetric (solid) and skewed (dashed) t-densities, both with mean 0,
standard deviation 1, and ν = 10. ξ = 2 in the skewed density. Notice that the mode
of the skewed density lies to the left of its mean, a typical behavior of right-skewed
densities.

location shift and scale change to induce a mean equal to 0 and variance of 1.
The final result is denoted by f(y|ξ).

If ξ > 1, then the right half of f(y|ξ) is elongated relative to the left
hand, which induces right skewness. Similarly, ξ < 1 induces left skewness.
Figure 5.8 shows standardized symmetric and skewed t-distributions8 with
ν = 10 in both cases and ξ = 2 for the skewed distribution.

If f is a t-distribution, then f(y|ξ) is called a skewed t-distribution. Skewed
t-distributions include symmetric t-distributions as special cases where ξ = 1.
In the same way, skewed generalized error distributions are created when f is
a generalized error distribution. The skewed distributions just described will
be called Fernandez–Steel or F-N skewed distributions.

Fernandez and Steel’s technique is not the only method for creating skewed
versions of the normal and t-distributions. Azzalini and Capitanio (2003) have
created somewhat different skewed normal and t-distributions.9 These distri-
butions have a shape parameter α that determines the skewness; the dis-
8 R’s dstd (for symmetric t) and dsstd (for skewed t) functions in the fGarch

package were used for to create this plot.
9 Programs for fitting these distributions, computing their densities, quantile, and

distribution functions, and generating random samples are available in R’s sn

package.



5.8 Quantile-Based Location, Scale, and Shape Parameters 97

tributed is left-skewed, symmetric, or right-skewed according to whether α is
negative, zero, or positive.

An example is given in Section 5.14 and multivariate versions are discussed
in Section 7.9. We will refer to these as Azzalini–Capitanio or A-C skewed
distributions.

5.8 Quantile-Based Location, Scale, and Shape
Parameters

As has been seen, the mean, standard deviation, skewness coefficient, and
kurtosis are moments-based location, scale, and shape parameters. Although
they are widely used, they have the drawbacks that they are sensitive to
outliers and may be undefined or infinite for distributions with heavy tails.
An alternative is to use parameters based on quantiles.

Any quantile F−1(p), 0 < p < 1, is a location parameter. A positive
weighted average of quantiles, that is,

∑L
`=1 w` F−1(p`), where w` > 0 for

all ` and
∑L

`=1 w` = 1, is also a location parameter. A simple example is
{F−1(1 − p) + F−1(p)}/2 where 0 < p < 1/2, which equals the mean and
median if F is symmetric.

A scale parameter can be obtained from the difference between two quan-
tiles:

s(p1, p2) =
F−1(p2)− F−1(p1)

a

where 0 < p1 < p2 < 1 and a is a positive constant. An obvious choice is
p1 < 1/2 and p2 = 1 − p1. If a = Φ−1(p2) − Φ−1(p1), then s(p1, p2) is equal
to the standard deviation when F is a normal distribution. If a = 1, then
s(1/4, 3/4) is called the interquartile range or IQR.

A quantile-based shape parameter that quantifies skewness is a ratio with
the numerator the difference between two scale parameters and the denomi-
nator a scale parameter:

s(1/2, p2)− s(1/2, p1)
s(p3, p4)

. (5.16)

where p1 < 1/2, p2 > 1/2, and 0 < p3 < p4 < 1. For example, one could use
p2 = 1− p1, p4 = p2, and p3 = p1.

A quantile-based shape parameter that quantifies tail weight is the ratio
of two scale parameters:

s(p1, 1− p1)
s(p2, 1− p2)

, (5.17)

where 0 < p1 < p2 < 1/2. For example, one might have p1 = 0.01 or 0.05 and
p2 = 0.25.
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5.9 Maximum Likelihood Estimation

Maximum likelihood is the most important and widespread method of esti-
mation. Many well-known estimators such as the sample mean, and the least-
squares estimator in regression are maximum likelihood estimators if the data
have a normal distribution. Maximum likelihood estimation generally provides
more efficient (less variable) estimators than other techniques of estimation.
As an example, for a t-distribution, the maximum likelihood estimator of the
mean is more efficient than the sample mean.

Let Y = (Y1, . . . , Yn)T be a vector of data and let θ = (θ1, . . . , θp)T be a
vector of parameters. Let f(Y |θ) be the density of Y , which depends on the
parameters.

The function L(θ) = f(Y |θ) viewed as a function of θ with Y fixed at the
observed data is called the likelihood function. It tells us the likelihood of the
sample that was actually observed. The maximum likelihood estimator (MLE)
is the value of θ that maximizes the likelihood function. In other words, the
MLE is the value of θ at which the likelihood of the observed data is largest.
We denote the MLE by θ̂ML. Often it is mathematically easier to maximize
log{L(θ)}. If the data are independent, then the likelihood is the product of
the marginal densities and products are cumbersome to differentiate. Also,
in numerical computations, using the log-likelihood reduces the possibility
of underflow or overflow. Taking the logarithm converts the product into an
easily differentiated sum. Since the log function is increasing, maximizing
log{L(θ)} is equivalent to maximizing L(θ).

In examples found in introductory statistics textbooks, it is possible to find
an explicit formula for the MLE. With more complex models such as the ones
we will mostly be using, there is no explicit formula for the MLE. Instead,
one must write a program that computes log{L(θ)} for any θ and then use
optimization software to maximize this function numerically; see Example 5.8.
However, for many important models, such as, the examples in the Section
5.14 and the ARIMA and GARCH time series models discussed in Chapter 9,
R and other software packages contain functions to find the MLE for these
models.

5.10 Fisher Information and the Central Limit Theorem
for the MLE

Standard errors are essential for gauging the accuracy of estimators. We have
formulas for the standard errors of simple estimators such as Y , but what
about standard errors for other estimators? Fortunately, there is a simple
method for calculating the standard error of a maximum likelihood estimator.
We assume for now that θ is one-dimensional. The Fisher information is
defined to be minus the expected second derivative of the log-likelihood, so if
I(θ) denotes the Fisher information, then
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I(θ) = −E

[
d2

d θ2
log{L(θ)}

]
. (5.18)

The standard error of θ̂ is simply the inverse square root of the Fisher infor-
mation, with the unknown θ replaced by θ̂:

sbθ =
1√
I(θ̂)

. (5.19)

Example 5.1. Fisher information for a normal model mean

Suppose that Y1, . . . , Yn are i.i.d. N(µ, σ2) with σ2 known. The log-
likelihood for the unknown parameter µ is

log{L(µ)} = −n

2
{log(σ2) + log(2π)} − 1

2σ2

n∑

i=1

(Yi − µ)2.

Therefore,
d

dµ
log{L(µ)} =

1
σ2

n∑

i=1

(Yi − µ),

and
d2

dµ2
log{L(µ)} = −

∑n
i=1 1
σ2

= − n

σ2
.

It follows that I(µ̂) = n/σ2 and sbµ = σ/
√

n. Since the MLE is µ̂ = Y , this
result is the familiar fact that when σ is known, then sY = σ/

√
n and when

σ is unknown, then sY = s/
√

n.
¤

The theory justifying using these standard errors is the central limit the-
orem for the maximum likelihood estimator. This theorem can be stated in a
mathematically precise manner that is difficult to understand without training
in advanced probability theory. The following less precise statement is more
easily understood:

Theorem 5.2. Under suitable assumptions, for large enough sample sizes,
the maximum likelihood estimator is approximately normally distributed with
mean equal to the true parameter and with variance equal to the inverse of the
Fisher information.

The central limit theorem for the maximum likelihood estimator justifies
the following large-sample confidence interval for the MLE of θ:



100 5 Modeling Univariate Distributions

θ̂ ± sbθ zα/2, (5.20)

where zα/2 is the α/2-upper quantile of the normal distribution and sbθ is
defined in (5.19).

The observed Fisher information is

Iobs(θ) = − d2

d θ2
, log{L(θ)}. (5.21)

which differs from (5.18) in that there is no expectation taken. In many ex-
amples, (5.21) is a sum of many independent terms and, by the law of large
numbers, will be close to (5.18). The expectation in (5.18) may be difficult to
compute and using (5.21) instead is a convenient alternative.

The standard error of θ̂ based on observed Fisher information is

sobsbθ =
1√

Iobs(θ̂)
. (5.22)

Often sobsbθ is used in place of sbθ in the confidence interval (5.20). There is
theory suggesting that using the observed Fisher information will result in a
more accurate confidence interval, that is, an interval with the true coverage
probability closer to the nominal value of 1−α, so observed Fisher information
can be justified by more than mere convenience; see Section 5.18.

So far, it has been assumed that θ is one-dimensional. In the multivari-
ate case, the second derivative in (5.18) is replaced by the Hessian matrix
of second derivatives, and the result is called the Fisher information ma-
trix. Analogously, the observed Fisher information matrix is the multivariate
analog of (5.21). Fisher information matrices are discussed in more detail in
Section 7.10.

Bias and Standard Deviation of the MLE

In many examples, the MLE has a small bias that decreases to 0 at rate n−1

as the sample size n increases to ∞. More precisely,

BIAS(θ̂ML) = E(θ̂ML)− θ ∼ A

n
, as n →∞, (5.23)

for some constant A. The bias of the MLE of a normal variance is an example
and A = −σ2 in this case.

Although this bias can be corrected is some special problems, such as,
estimation of a normal variance, usually the bias is ignored. There are two
good reasons for this. First, the log-likelihood usually is the sum of n terms
and so grows at rate n. The same is true of the Fisher information. Therefore,
the variance of the MLE decreases at rate n−1, that is,

Var(θ̂ML) ∼ B

n
, as n →∞, (5.24)
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for some B > 0. Variability should be measured by the standard deviation,
not the variance, and by (5.24),

SD(θ̂ML) ∼
√

B√
n

, as n →∞. (5.25)

The convergence rate in (5.25) can also be obtained from the CLT for the
MLE. Comparing (5.23) and (5.25), one sees that as n gets larger, the bias
of the MLE becomes negligible compared to the standard deviation. This is
especially important with financial markets data, where sample sizes tend to
be large.

Second, even if the MLE of a parameter θ is unbiased, the same is not true
for a nonlinear function of θ. For example, even if σ̂2 is unbiased for σ2, σ̂ is
biased for σ. The reason for this is that for a nonlinear function g, in general,

E{g(θ̂)} 6= g{E(θ̂)}.
Therefore, it is impossible to correct for all biases.

5.11 Likelihood Ratio Tests

Some readers may wish to review hypothesis testing by reading Section A.18
before starting this section.

Likelihood ratio tests, like maximum likelihood estimation, are based upon
the likelihood function. Both are convenient, all-purpose tools that are widely
used in practice.

Suppose that θ is a parameter vector and that the null hypothesis puts
m equality constraints on θ. More precisely, there are m functions g1, . . . , gm

and the null hypothesis is that gi(θ) = 0 for i = 1, . . . , m. It is also assumed
that none of these constraints is redundant, that is, implied by the others. To
illustrate redundancy, suppose that θ = (θ1, θ2, θ3) and the constraints are
θ1 = 0, θ2 = 0, and θ1 + θ2 = 0. Then the constraints have a redundancy and
any one of the three could be dropped. Thus, m = 2, not 3.

Of course, redundancies need not be so easy to detect. One way to check
is that the m× dim(θ) matrix



∇g1(θ)

. . .
∇gm(θ)


 (5.26)

must have rank m. Here ∇gi(θ) is the gradient of gi.
As an example, one might want to test that a population mean is zero;

then θ = (µ, σ)T and m = 1 since the null hypothesis puts one constraint on
θ, specifically that µ = 0.

Let θ̂ML be the maximum likelihood estimator without restrictions and
let θ̂0,ML be the value of θ that maximizes L(θ) subject to the restrictions of
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the null hypothesis. If H0 is true, then θ̂0,ML and θ̂ML should both be close
to θ and therefore L(θ̂0,ML) should be similar to L(θ̂). If H0 is false, then the
constraints will keep θ̂0,ML far from θ̂ML and so L(θ̂0,ML) should be noticeably
smaller that L(θ̂).

The likelihood ratio test rejects H0 if

2
[
log{L(θ̂ML)} − log{L(θ̂0,ML)}

]
≥ c, (5.27)

where c is a critical value. The left-hand side of (5.27) is twice the log of
the likelihood ratio L(θ̂ML)/L(θ̂0,ML), hence the name likelihood ratio test.
Often, an exact critical value can be found. A critical value is exact if it gives
a level that is exactly equal to α. When an exact critical value is unknown,
then the usual choice of the critical value is

c = χ2
α,m, (5.28)

where, as defined in Section A.10.1, χ2
α,m is the α-upper quantile value of

the chi-squared distribution with m degrees of freedom.10 The critical value
(5.28) is only approximate and uses the fact that under the null hypothesis,
as the sample size increases the distribution of twice the log-likelihood ratio
converges to the chi-squared distribution with m degrees of freedom if certain
assumptions hold. One of these assumptions is that the null hypothesis is not
on the boundary of the parameter space. For example, if the null hypothesis is
that a variance parameter is zero, then the null hypothesis is on the boundary
of the parameter space since a variance must be zero or greater. In this case
(5.27) should not be used; see Self and Liang (1987). Also, if the sample size
is small, then the large-sample approximation (5.27) is suspect and should be
used with caution. An alternative is to use the bootstrap to determine the
rejection region. The bootstrap is discussed in Chapter 6.

Computation of likelihood ratio tests is often very simple. In some cases,
the test is computed automatically by statistical software. In other cases,
software will compute the log-likelihood for each model and these can be
plugged into the left-hand side of (5.27).

5.12 AIC and BIC

An important practical problem is choosing between two or more statistical
models that might be appropriate for a data set. The maximized value of the
log-likelihood, denoted here by log{L(θ̂ML)}, can be used to measure how
well a model fits the data or to compare the fits of two or more models.
10 The reader should now appreciate why it is essential to calculate m correctly by

eliminating redundant constraints. The wrong value of m will cause an incorrect
critical value to be used.
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However, log{L(θ̂ML)} can be increased simply by adding parameters to the
model. The additional parameter do not necessarily mean that the model is a
better description of the data-generating mechanism, because the additional
model complexity due to added parameters may simply be fitting random
noise in the data, a problem that is called overfitting . Therefore, models should
be compared both by fit to the data and by model complexity. To find a
parsimonious model one needs a good tradeoff between maximizing fit and
minimizing model complexity.

AIC (Akaike’s information criterion) and BIC (Bayesian information cri-
terion) are two means for achieving a good tradeoff between fit and complexity.
They differ slightly and BIC seeks a somewhat simpler model than AIC. They
are defined by

AIC = −2 log{L(θ̂ML)}+ 2p (5.29)

BIC = −2 log{L(θ̂ML)}+ log(n)p, (5.30)

where p equals the number of parameters in the model and n is the sample
size. For both criteria, “smaller is better,” since small values tend to maximize
L(θ̂ML) (minimize − log{L(θ̂ML)}) and minimize p, which measures model
complexity. The terms 2p and log(n)p are called “complexity penalties” since
the penalize larger models.

The term deviance is often used for minus twice the log-likelihood, so AIC
= deviance + 2p and BIC = deviance + log(n)p. Deviance quantifies model
fit, with smaller values implying better fit.

Generally, from a group of candidate models, one selects the model that
minimizes whichever criterion, AIC or BIC, is being used. However, any model
that is within 2 or 3 of the minimum value is a good candidate and might be
selected instead, for example, because it is simpler or more convenient to use
than the model achieving the absolute minimum. Since log(n) > 2 provided,
as is typical, that n > 8, BIC penalizes model complexity more than AIC does,
and for this reason BIC tends to select simpler models than AIC. However,
it is common for both criteria to select the same, or nearly the same, model.
Of course, if several candidate models all have the same value of p, then AIC,
BIC, and −2 log{L(θ̂ML)} are minimized by the same model.

5.13 Validation Data and Cross-Validation

When the same data are used both to estimate parameters and to assess fit,
there is a strong tendency towards overfitting. Data contain both a signal and
noise. The signal contains characteristics that are present in each sample from
the population, but the noise is random and varies from sample to sample.
Overfitting means selecting an unnecessarily complex model to fit the noise.
The obvious remedy to overfitting is to diagnose model fit using data that
are independent of the data used for parameter estimation. We will call the
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data used for estimation the training data and the data used to assess fit the
validation data or test data.

Example 5.3. Estimating the expected returns of midcap stocks

This example uses 500 daily returns on 20 midcap stocks in the midcapD.ts
data set in R’s fEcofin package. The data are from February 28, 1991, to
December 29, 1995, Suppose we need to estimate the 20 expected returns.
Consider two estimators. The first, called “separate-means,” is simply the
20 sample means. The second, “common-mean,” uses the average of the 20
sample means as the common estimator of all 20 expected returns.

The rationale behind the common-mean estimator is that midcap stocks
should have similar expected returns. The common-mean estimator pools data
and greatly reduces the variance of the estimator. The common-mean estima-
tor has some bias because the true expected returns will not be identical,
which is the requirement for unbiasedness of the common-mean estimator.
The separate-means estimator is unbiased but at the expense of a higher vari-
ance. This is a classic example of a bias–variance tradeoff.

Which estimator achieves the best tradeoff? To address this question, the
data were divided into the returns for the first 250 days (training data) and for
the last 250 days (validation data). The criterion for assessing goodness-of-fit
was the sum of squared errors, which is

20∑

k=1

(
µ̂ train

k − Y
val

k

)2

,

where µ̂ train
k is the estimator (using the training data) of the kth expected

return and Y
val

k is the validation data sample mean of the returns on the kth
stock. The sum of squared errors are 3.262 and 0.898, respectively, for the
separate-means and common-mean estimators. The conclusion, of course, is
that in this example the common-mean estimator is much more accurate that
using separate means.

Suppose we had used the training data also for validation? The goodness-
of-fit criterion would have been

20∑

k=1

(
µ̂ train

k − Y
train

k

)2

,

where Y
train

k is the training data sample mean for the kth stock and is also
the separate-means estimator for that stock. What would the results have
been? Trivially, the sum of squared errors for the separate-means estimator
would have been 0—each mean is estimated by itself with perfect accuracy!
The common-mean estimator has a sum of squared errors equal to 0.920. The
inappropriate use of the training data for validation would have led to the
erroneous conclusion that the separate-means estimator is more accurate.
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There are compromises between the two extremes of a common mean
and separate means. These compromise estimators shrink the separate means
toward the common mean. Bayesian estimation, discussed in Chapter 20, is
an effective method for selecting the amount of shrinkage; see Example 20.12,
where this set of returns is analyzed further.

¤

A common criterion for judging fit is the deviance, which is −2 times the
log-likelihood. The deviance of the validation data is

−2 log f
(
Y val|θ̂ train

)
, (5.31)

where θ̂
train

is the MLE of the training data and Y val is the validation data.
When the sample size is small, splitting the data once into training and

validation data is wasteful. A better technique is cross-validation, often called
simply CV, where each observation gets to play both roles, training and vali-
dation. K-fold cross-validation divides the data set into K subsets of roughly
equal size. Validation is done K times. In the kth validation, k = 1, . . . , K,
the kth subset is the validation data and the other K−1 subsets are combined
to form the training data. The K estimates of goodness-of-fit are combined,
for example, by averaging them. A common choice is n-fold cross-validation,
also called leave-one-out cross-validation. With leave-one-out cross-validation,
each observation takes a turn at being the validation data set, with the other
n− 1 observations as the training data.

An alternative to actually using validation data is to calculate what would
happen if new data could be obtained and used for validation. This is how
AIC was derived. AIC is an approximation to the expected deviance of a hy-
pothetical new sample that is independent of the actual data. More precisely,
AIC approximates

E
[
−2 log f

{
Y new

∣∣ θ̂(Y obs)
}]

, (5.32)

where Y obs is the observed data, θ̂(Y obs) is the MLE computed from Y obs,
and Y new is a hypothetical new data set such that Y obs and Y new are i.i.d.
Since Y new is not observed but has the same distribution as Y obs, to obtain
AIC one substitutes Y obs for Y new in (5.32) and omits the expectation in
(5.32). Then one calculates the effect of this substitution. The approximate
effect is to reduce (5.32) by twice the number of parameters. Therefore, AIC
compensates by adding 2p to the deviance, so that

AIC = −2 log f
{

Y obs
∣∣ θ̂(Y obs)

}
+ 2p, (5.33)

which is a reexpression of (5.29).
The approximation used in AIC becomes more accurate when the sample

size increases. A small-sample correction to AIC is
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AICc = AIC +
2p(p + 1)
n− p− 1

. (5.34)

Financial markets data sets are often large enough that the correction term
2p(p + 1)/(n−p−1) is small, so that AIC is adequate and AICc is not needed.
For example, if n = 200, then 2p(p + 1)/(n − p − 1) is 0.12, 0.21, 0.31, and
0.44 and for p = 3, 4, 5, and 6, respectively. Since a difference less than 1
in AIC values is usually considered as inconsequential, the correction would
have little effect when comparing models with 3 to 6 parameters when n is at
least 200. Even more dramatically, when n is 500, then the corrections for 3,
4, 5, and 6 parameters are only 0.05, 0.08, 0.12, and 0.17.

Traders usually develop trading strategies using a set of historical data
and then test the strategies on new data. This is called back-testing and is a
form of validation.

5.14 Fitting Distributions by Maximum Likelihood

Our first application of maximum likelihood will be to estimate parameters in
univariate marginal models. Suppose that Y1, . . . , Yn is an i.i.d. sample from
a t-distribution. Let

f std
t,ν (y |µ, σ) (5.35)

be the density of the standardized t-distribution with ν degrees of freedom
and with mean µ and standard deviation σ. Then the parameters ν, µ, and σ
are estimated by maximizing

n∑

i=1

log
{

f std
t,ν (Yi |µ, σ)

}
(5.36)

using any convenient optimization software. Estimation of other models is
similar.

In the following examples, t-distributions and generalized error distribu-
tions are fit.

Example 5.4. Fitting a t-distribution to changes in risk-free returns

This example uses one of the time series in Chapter 4, the changes in the
risk-free returns that has been called diffrf.

First we will fit the t-distribution to the changes in the risk-free returns
using R. There are two R functions that can be used for this purpose, stdFit
and fitdistr. They differ in their choices of the scale parameter. stdFit
fits the standardized t-distribution, tstd, and returns the estimated standard
deviation, which is called “sd” (as well as the estimated mean and estimated
df). stdFit gives the following output for the variable diffrf.
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$minimum
[1] -693.2

$estimate
mean sd nu

0.001214 0.072471 3.334112

Thus, the estimated mean is 0.001214, the estimated standard deviation is
0.07247, and the estimated value of ν is 3.334. The function stdFit minimizes
minus the log-likelihood and the minimum value is −693.2, or, equivalently,
the maximum of the log-likelihood is 693.2.

fitdistr fits the classical t-distribution and returns the standard devia-
tion times

√
(ν − 2)/ν, which is called s in the R output and is the parameter

called “the scale parameter” in Section 5.5.2 and denoted there by λ. fitdistr
gives the following output for diffrf.

m s df
0.001224 0.045855 3.336704
(0.002454) (0.002458) (0.500010)

The standard errors are in parentheses below the estimates and were computed
using observed Fisher information. The estimates of the scale parameter by
stdFit and fitdistr agree since 0.045855 =

√
1.3367/3.3367 × 0.072471.

Minor differences in the estimates of µ and ν are due to numerical error and
are small relative to the standard errors.

AIC for the t-model is (2)(−693.2) + (2)(3) = −1380.4 while BIC is
(2)(−693.2) + log(515)(3) = −1367.667 because the sample size is 515.

Because the sample size is large, by the central limit theorem for the MLE,
the estimates are approximately normally distributed and this can be used to
construct confidence intervals. Using the estimate and standard error above,
a 95% confidence interval for λ is

0.045855± (1.96)(0.002458)

since z0.025 = 1.96.
¤

Example 5.5. Fitting an F-S skewed t-distribution to changes in risk-free re-
turns

Next the F-S skewed t-distribution is fit to diffrf using the R function
sstdFit. The results are

$minimum
[1] -693.2
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$estimate
mean sd nu xi

0.001180 0.072459 3.335534 0.998708

The shape parameter ξ is nearly 1 and the maximized value of the log-
likelihood is the same as for the symmetric t-distribution, which imply that a
symmetric t-distribution provides as good a fit as a skewed t-distribution.

¤

Example 5.6. Fitting a generalized error distribution to changes in risk-free
returns

The fit of the generalized error distribution to diffrf was obtained from
the R function gedFit and is

$minimum
[1] -684.8

$estimate
[1] -3.297e-07 6.891e-02 9.978e-01

The three components of $estimate are the estimates of the mean, standard
deviation, and ν, respectively. The estimated shape parameter is ν̂ = 0.998,
which, when rounded to 1, implies a double-exponential distribution. Note
that the maximum value of the likelihood is 684.8, much smaller than the value
693.2 obtained using the t-distribution. Therefore, t-distributions appear to
be better models for these data compared to generalized error distributions.
A possible reason for this is that, like the t-distributions, the density of the
data seems to be rounded near the median; see the kernel density estimate
in Figure 5.9. QQ plots of diffrf versus the quantiles of the fitted t- and
generalized error distributions are similar, indicating that neither model has a
decidedly better fit than the other. However, the QQ plot of the t-distribution
is slightly more linear.

The fit to the skewed ged obtained from the R function sgedFit is

$minimum
[1] -684.8

$estimate
[1] -0.0004947 0.0687035 0.9997982 0.9949253

The four components of $estimate are the estimates of the mean, standard
deviation, ν, and ξ, respectively. These estimates again suggest that a skewed
model is not needed for this example since ξ̂ = 0.995 ≈ 1.

¤
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Fig. 5.9. Kernel estimate of the probability density of diffrf, the changes in the
risk-free returns.

Example 5.7. Comparing models for changes in risk-free returns

AIC and BIC for the four models fit to the risk-free returns are reported
in Table 5.1, as well as for fifth and sixth models, t-mixture and normal
mixture, to be discussed next. We will ignore the mixture models for now and
only consider the first four models in the table. Then, by either criterion, the
t-model is best. With AIC, the skewed t-distribution is a close second, but
since this model is more complex than the t-model, there is no good reason
to prefer it.

Table 5.1. AIC and BIC for six models for the marginal distribution of diffrf.
1300 was added to all AIC and BIC values to improve readability.

Distribution # Parameters AIC BIC

t 3 −80.4 −67.7
skewed t 4 −78.4 −61.4

ged 3 −75.6 −50.9
skewed ged 4 −61.6 −44.6
t mixture 5 −82.3 −61.1

normal mixture 4 −84.2 −67.2

¤
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Fig. 5.10. (a) QQ plot of diffrf versus the quantiles of a tstdν (µ, s2) distribution
with µ, s2, and ν estimated by maximum likelihood. A 45o line through the origin
has been added for reference. (b) A similar plot for the generalized error distribution.
(c) A similar plot for the normal mixture model in Example 5.8.

Example 5.8. Fitting a mixture model to the risk-free returns changes by max-
imum likelihood

The QQ plots in Figures 5.10(a) and (b) show that the risk-free returns
changes have somewhat heavier tails compared to the t- and generalized error
distributions.

Now consider a mixture of t-distributions as an alternative to the t- and
GED models. Let dstd(y|µ, s2, ν) be the value at y of the tstdν (µ, s2) density.11

Then our model for the marginal density is

β5 dstd(y|β1, β2, β4) + (1− β5) dstd(y|β1, β2 + β3, β4)

with constraints

β2 > 0, (5.37)
β3 > 0, (5.38)
β4 > 2.1, (5.39)
β5 ∈ (0, 1). (5.40)

Thus, the marginal density is a mixture of two t-distributions with a common
mean of β1 and a common degrees-of-freedom parameter of β4 = ν. The
first component has a variance of β2 and the second component has a larger
variance equal to β2 + β3. The parameter β5 is the proportion of the changes
in the risk-free returns coming from the first component. Since a t-distribution
has an infinite variance if ν ≤ 2, the constraint ν = β4 > 2.1 is imposed.
11 The notation dstd was suggested by the name of an R function that computes

this density.
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A possible interpretation of this model is that the market can be in either
of two possible “regimes,” the market is more volatile under the second regime
than under the first, β5 is the probability of it being in the first regime, and β3

is the extra variance associated with the second regime. The somewhat outly-
ing points in any of the three panels of Figure 5.10 would then be interpreted
as data from the second regime.

AIC and BIC for this mixture model are found in the last row of Table 5.1.
The mixture model has the smallest AIC among the first five models, which is
evidence in its favor. However, the simpler t-model has a considerably smaller
BIC value. Because of the rather small deviation from linearity in the QQ plot
in Figure 5.10(a) and the large BIC value of the mixture model, our choice
would be to use the simpler t-model rather than the t-mixture model.

To find the MLE for the mixture model, an R function was written to
compute the log-likelihood. This function used the R function dstd to com-
pute the densities of the two components. Then minus the log-likelihood was
minimized using R’s minimization function optim, which has several differ-
ent optimization algorithms—the“L-BFGS-B” algorithm was used because
this algorithm allowed us to put lower and upper bounds on parameters to
implement constraints (5.37)–(5.40). Optimization algorithms start at user-
supplied initial values and then iteratively improve these starting values to
locate a function’s minimum. The algorithm stops when some convergence
criterion is met. The optim function was used 15 times starting at randomly
chosen values—the starting values were uniformly distributed over ranges,
(−0.01, 0.01), (0.001, 0.05), (0.001, 0.05), (2.1, 60), and (0, 1) for β1, . . . , β5,
respectively. The values of AIC, BIC, and the parameter estimates at the 15
final values are:

iter AIC BIC beta[1] beta[2] beta[3] beta[4] beta[5] beta[4]start
[1,] -1382.3 -1361.1 0.0018379 0.048386 0.10908 37.218 0.88010 37.218
[2,] -1381.5 -1360.3 0.0016881 0.051003 0.11491 10.950 0.89835 10.954
[3,] -1382.3 -1361.1 0.0018038 0.048847 0.10994 24.791 0.88343 24.791
[4,] -1382.2 -1361.0 0.0017831 0.049163 0.11055 20.550 0.88574 20.552
[5,] -1382.3 -1361.1 0.0018538 0.048117 0.10873 54.093 0.87815 54.093
[6,] -1382.3 -1361.1 0.0018257 0.048531 0.10934 32.153 0.88116 32.153
[7,] -1382.3 -1361.1 0.0018567 0.048077 0.10868 58.141 0.87787 58.141
[8,] -1382.3 -1361.1 0.0018414 0.048307 0.10894 40.751 0.87956 40.751
[9,] -1382.3 -1361.1 0.0018272 0.048447 0.10919 34.958 0.88054 34.963

[10,] -1382.3 -1361.1 0.0018421 0.048259 0.10888 42.918 0.87909 42.920
[11,] -1382.3 -1361.1 0.0018491 0.048108 0.10868 54.481 0.87809 54.481
[12,] -1382.3 -1361.1 0.0018303 0.048403 0.10914 36.640 0.88029 36.641
[13,] -1382.2 -1361.0 0.0017822 0.049174 0.11056 20.399 0.88581 20.410
[14,] -1233.4 -1212.2 0.0044000 0.045578 0.00010 13.641 0.89385 13.643
[15,] -1382.3 -1361.1 0.0018399 0.048152 0.10877 50.468 0.87843 50.468

The last column gives the randomly chosen starting value of β4. Note that only
11 of the 15 final AIC values achieve the minimum12 of −1382.3 though two
more come close at −1382.2. The degrees-of-freedom parameter (beta[4]) is
very poorly determined and rarely moves much from its starting value. If this
12 Since the number of parameters is fixed, minimizing AIC is equivalent to maxi-

mizing the likelihood.
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parameter starts at too low a value, as in cases 2 and 14, then the global
minimum of AIC may not be reached. The problem is due to having three
parameters, β4 = ν, β3 and β5, to determine tail weight, in contrast to the
t-distribution with only a single tail -eight parameter ν.

Thus, three tail-weight parameters seem to be too many. The question then
is whether one tail-weight parameter (as with the simple t-model) is enough.
To address this question, one can fit a two-component normal mixture model
similar to the two-component t-mixture model just fit. In fact, the normal
mixture model is the t-mixture model with ν = ∞. Fixing ν reduces the
number of tail-weight parameters from three to two. The MLE was found
using optim in R and was stable—10 random starting values all reached the
same final value.13

The AIC and BIC values for the normal mixture model are in Table 5.1.
We see that the normal mixture model is best by AIC and second best by BIC,
and for both criteria it is better than the t-mixture model. Figure 5.10(c) is
a QQ plot for the two-component normal mixture model.14 Notice that it is
similar to the QQ plots for the t- and GED models shown in panels (a) and
(b).

The results of this example are essentially negative. We haven’t been able
to improve upon the simple t-model. However, the negative results are reas-
suring. A good way to test whether a model fits the data adequately is to see
if more complex models can achieve a better fit. If the more complex models
cannot achieve substantially better fits, then this is evidence that the simpler
model is adequate. Thus, there is some assurance that the simple t-model
provides an adequate fit to the changes in the risk-free returns.

This example has illustrated several important concepts. The first is that
maximum likelihood is a very general estimation method that is suitable for
a wide variety of parametric models. The reason for this is that there are
general-purpose optimization functions such as optim that can be used to find
the MLE whenever one can write a function to compute the log-likelihood.
The second is that unstable estimates whose final values depend heavily on
the starting values can occur. When, as here, very different final estimates
achieve nearly the same value of the log-likelihood, this is a sign of having too
many parameters, a problem called overparameterization.

The third concept illustrated by this example is the somewhat limited
practical value of asymptotic concepts such as polynomial versus exponen-
13 One minor computational difficulty was that, during the iteration, the standard

deviations of the components sometimes became too small and the R function
dnorm that computes the normal density returned infinite values. This problem
was solved by putting lower bounds on the standard deviations. The final esti-
mates were above these bounds, showing that the lower bounds did not affect the
final result. This problem illustrates how numerical computation of an MLE is not
fool-proof and requires some care, but this is true of many numerical methods.

14 The quantiles of the normal mixture model were obtained from the R function
qnorMix in the norMix package.
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tial tails and the index of a polynomial tail. Remember that these quantities
describe tail behavior only in the limit as |x| → ∞. It takes a long time to
get to ∞! In the range of x-values relevant in practice, a distribution with
asymptotically light tails may appear heavy-tailed. The tail weight of any
finite mixture model is no greater than the heaviest tail weight among its
components.15 Therefore, any finite normal mixture model has the very light
tail of a normal distribution. Nonetheless, in this example a light-tailed nor-
mal mixture model was quite similar to a polynomial-tailed t4 distribution
and to an exponentially tailed generalized error distribution.

¤

Example 5.9. A-C skewed t-distribution fit to pipeline flows

This example uses the daily flows in natural gas pipelines introduced in
Example 4.3. Recall that all three distributions are left-skewed. There are
many well-known parametric families of right-skewed distributions, such as,
the gamma and log-normal distributions, but there are not as many families of
left-skewed distributions. The F-S skewed t- and A-C skewed t-distributions,
which contain both right- and left-skewed distributions, are important excep-
tions. In this example, the A-C skewed t-distribution will be used, though the
F-S skewed t-distributions could have been used instead.

Figure 5.11 has one row of plots for each variable. The left plots have
two density estimates, an estimate using the Azzalini–Capitanio skewed t-
distribution (solid) and a KDE (dashed). The right plots are QQ plots using
the fitted skewed t-distributions.

The flows in pipelines 1 and 2 are fit reasonably well by the A-C skewed
t-distribution. This can be seen in the agreement between the parametric
density estimates and the KDEs and in the nearly straight patterns in the
QQ plots. The flows in pipeline 3 have a KDE with either a wide, flat mode
or, perhaps, two modes. This pattern cannot be accommodated very well
by the A-C skewed t-distributions. The result is less agreement between the
parametric and KDE fits and a curved QQ plot. Nonetheless, a skewed t-
distribution might be an adequate approximation for some purposes.

For the flows in pipeline 1, the MLEs are

location scale shape df
114.50 22.85 -9.17 15.65

and the standard errors are

location scale shape df
0.637 1.849 1.977 14.863

15 Note the assumption that there are only a finite number of components. Con-
tinuous mixtures of normal distributions include the t-distributions and other
heavy-tailed distributions.
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Fig. 5.11. Parametric (solid) and nonparametric (dashed) density estimates for
daily flows in three pipelines (left) and QQ plots for the parametric fits (right). The
reference lines go through the first and third quartiles.

Notice that the estimated shape parameter (α) of the A-C family is very
negative, with a magnitude over four times its standard error. This is strong
evidence of a highly left-skewed distribution and is in agreement with the
histograms and KDEs.

For the flows in pipeline 2, the MLEs are

location scale shape df
224.57 14.33 -6.43 6.58

and the standard errors are

location scale shape df
0.517 1.322 1.091 2.800

Thus, in comparison with pipeline 1, pipeline 2 has higher average flows, less
variability, and less skewness.
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For pipeline 3, the MLEs are

location scale shape df
45.5 18.1 -42.9 10228.0

The function st.mle in R does not return standard errors for pipeline 3 flows
because of numerical problems. The difficulty may be the very large value
of df (the MLE of the degrees-of-freedom parameter).16 This value suggests
that the skewed-normal distribution, which corresponds to df equal to ∞,
should be used instead of the skewed t-distribution. For the skewed-normal fit
to pipeline 3 flows, the MLEs are

location scale shape
45.4 17.9 -38.1

and the standard errors are

location scale shape
0.233 0.710 17.271

The estimates for skewed-normal fit are very close to those for skewed-t fit,
at least relative to the standard errors of the former.

¤

5.15 Profile Likelihood

Profile likelihood is a technique based on the likelihood ratio test introduced
in Section 5.11. Profile likelihood is used to create confidence intervals and is
often a convenient way to find a maximum likelihood estimator. Suppose the
parameter vector is θ = (θ1, θ2), where θ1 is a scalar parameter and the vector
θ2 contains the other parameters in the model. The profile log-likelihood for
θ1 is

Lmax(θ1) = max
θθθ2

L(θ1,θ2). (5.41)

The right-hand side of (5.41) means the L(θ1, θ2) is maximized over θ2 with
θ1 fixed to create a function of θ1 only. Define θ̂2(θ1) as the value of θ2 that
maximizes the right-hand side of (5.41).

The MLE of θ1 is the value, θ̂1, that maximizes Lmax(θ1) and the MLE of
θ2 is θ̂2(θ̂1). Let θ0,1 be a hypothesized value of θ1. By the theory of likelihood
ratio tests in Section 5.11, one accepts the null hypothesis H0 : θ1 = θ0,1 if

Lmax(θ0,1) > Lmax(θ̂1)− 1
2
χ2

α,1. (5.42)

16 A more recent version of R does not even return an estimate when fitting the
skewed t-distribution to these data with the st.mle function.
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Here χ2
α,1 is the α-upper quantile of the chi-squared distribution with one de-

gree of freedom. The profile likelihood confidence interval (or, more properly,
confidence region since it may not be an interval) for θ1 is the set of all null
values that would be accepted, that is,

{
θ1 : Lmax(θ1) > Lmax(θ̂1)− 1

2
χ2

α,1

}
. (5.43)

The profile likelihood can be defined for a subset of the parameters, rather
than for just a single parameter, but this topic will not be pursued here.

Example 5.10. Estimating a Box–Cox transformation

An automatic method for estimating the transformation parameter for a
Box–Cox transformation assumes that for some values of α, µ, and σ, the
transformed data Y

(α)
1 , . . . , Y

(α)
n are i.i.d. N(µ, σ2)-distributed. All three pa-

rameters can be estimated by maximum likelihood. For a fixed value of α, µ̂

and σ̂ are the sample mean and variance of Y
(α)
1 , . . . , Y

(α)
n and these values

can be plugged into the log-likelihood to obtain the profile log-likelihood for
α. This can be done with the function boxcox in R’s MASS package, which
plots the profile log-likelihood with confidence intervals.

Estimating α by the use of profile likelihood will be illustrated using the
data on gas pipeline flows. Figure 5.12 shows the profile log-likelihoods and
the KDEs and normal QQ plots of the flows transformed using the MLE of
α. The KDE used adjust = 1.5 to smooth out local bumpiness seen with the
default bandwidth. For the flows in pipeline 1, the MLE is α̂ = 3.5. Recall that
in Example 4.3, we saw by trial-and-error that α between 3 and 4 was best
for symmetrizing the data. It is gratifying to see that maximum likelihood
corroborates this choice. The QQ plots show that the Box–Cox transformed
flows have light tails. Light tails are not usually considered to be a problem
and are to be expected here since the pipeline flows are bounded, below by 0
and above by the capacity of the pipeline.

¤

It is worth pointing out that we have now seen two distinct methods for
accommodating the left skewness in the pipeline flows, modeling the untrans-
formed data by a skewed t-distribution (Example 5.9) and Box–Cox transfor-
mation to a normal distribution (Example 5.10). A third method would be
to forego parametric modeling and use the kernel density estimation. This is
not an atypical situation; often data can be analyzed in several different, but
equally appropriate, ways.
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Fig. 5.12. Profile log-likelihoods and 95% confidence intervals for the parameter α of
the Box–Cox transformation (left), KDEs of the transformed data (middle column),
and normal plots of the transformed data (right).

5.16 Robust Estimation

Although maximum likelihood estimators have many attractive properties,
they have one serious drawback of which anyone using them should be aware.
Maximum likelihood estimators can be very sensitive to the assumptions of the
statistical model. For example, the MLE of the mean of a normal population
is the sample mean and the MLE of σ2 is the sample variance, except with the
minor change of a divisor of n rather than n−1. The sample mean and variance
are efficient estimators when the population is truly normally distributed, but
these estimators are very sensitive to outliers. Because these estimators are
averages of the data and the squared deviations from the mean, respectively, a
single outlier in the sample can drive the sample mean and variance to wildly
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absurd values if the outlier is far enough removed from the other data. Extreme
outliers are nearly impossible with exactly normally distributed data, but if
the data are only approximately normal with heavier tails than the normal
distribution, then outliers are more probable and, when they do occur, more
likely to be extreme. Therefore, the sample mean and variance can be very
inefficient estimators. Statisticians say that the MLE is not robust to mild
deviations from the assumed model. This is bad news and has led researchers
to find estimators that are robust.

A robust alternative to the sample mean is the trimmed mean. An α-
trimmed mean is computed by ordering the sample from smallest to largest,
removing the fraction α of the smallest and the same fraction of the largest
observations, and then taking the mean of the remaining observations. The
idea behind trimming is simple and should be obvious: The sample is trimmed
of extreme values before the mean is calculated. There is a mathematical
formulation of the α-trimmed mean. Let k = nα rounded17 to an integer; k is
the number of observations removed from both ends of the sample. Then the
α-trimmed mean is

Xα =
∑n−k

i=k+1 Y(i)

n− 2k
,

where Y(i) is the ith order statistic. Typical values of α are 0.1, 0.15, 0.2,
and 0.25. As α approaches 0.5, the α-trimmed mean approaches the sample
median, which is the 0.5-sample quantile.

Dispersion refers to the variation in a distribution or sample. The sample
standard deviation is the most common estimate of dispersion, but as stated
it is nonrobust. A robust estimator of dispersion is the MAD (median absolute
deviation) estimator, defined as

σ̂MAD = 1.4826 ×median{|Yi −median(Yi)|}. (5.44)

This formula should be interpreted as follows. The expression “median(Yi)”
is the sample median, |Yi − median(Yi)| is the absolute deviation of the ob-
servations from their median, and median{|Yi − median(Yi)|} is the median
of these absolute deviations. For normally distributed data, the median{|Yi−
median(Yi)|} estimates not σ but rather Φ−1(0.75)σ = σ/1.4826, because
for normally distributed data the median{|Yi − median(Yi)|} will converge
to σ/1.4826 as the sample size increases. Thus, the factor 1.4826 in equa-
tion (5.44) calibrates σ̂MAD so that it estimates σ when applied to normally
distributed data.

σ̂MAD does not estimate σ for a nonnormal population. It does measure
dispersion, but not dispersion as measured by the standard deviation. But
this is just the point. For nonnormal populations the standard deviation is
very sensitive to the tails of the distribution and does not tell us much about
the dispersion in the central range of the distribution, just in the tails.
17 Definitions vary and the rounding could be either upward or to the nearest integer.
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In R, mad(x) computes (5.44). Some authors define MAD to be median{|Yi−
median(Yi)|}, that is, without 1.4826. Here the notation σ̂MAD is used to em-
phasize the standardization by 1.4826 in order to estimate a normal standard
deviation.

An alternative to using robust estimators is to assume a model where out-
liers are more probable. Then the MLE will automatically downweight out-
liers. For example, the MLE of the parameters of a t-distribution is much more
robust to outliers than the MLE of the parameters of a normal distribution.

Parametric Transformation

We saw in Section 4.8 that the transformation kernel density estimator
(TKDE) can avoid the bumps seen when the ordinary KDE is applied to
skewed data. The KDE also can exhibit bumps in the tails when both tails
are long, as is common with financial markets data. An example is the vari-
able diffrf whose KDE is in Figure 5.9. For such data, the TKDE needs a
transformation that is convex to the right of the mode and concave to the
left of the mode. There are many such transformations, and in this section
we will use some facts from probability theory, as well as maximum likelihood
estimation, to select a suitable one.

The key ideas used here are that (1) normally distributed data have light
tails and are suitable for estimation with the KDE, (2) it is easy to transform
data to normality if one knows the CDF, and (3) the CDF can be estimated
by maximum likelihood. If a random variable has a continuous distribution
F , then F (X) has a uniform distribution and Φ−1{F (X)} has an N(0, 1)
distribution; here Φ is the standard normal CDF. Of course, in practice F is
unknown, but one can estimate F parametrically, assuming, for example, that
F is some t-distribution. It is not necessary that F actually be a t-distribution,
only that a t-distribution can provide a reasonable enough fit to F in the tails
so that an appropriate transformation is selected. If it was known that F was
a t-distribution, then, of course, there would be no need to use a KDE or
TKDE to estimate its density. The transformation to use in the TKDE is
g(y) = Φ−1{F (y)}, which has inverse g−1(x) = F−1{Φ(x)}. The derivative of
g is needed to compute the TKDE and is

g′(y) =
f(y)

φ[Φ−1{F (y)}] .

Example 5.11. TKDE for risk-free returns

This example use the changes in the risk-free returns in Figure 4.3. We
saw in Section 5.14 that these data are reasonably well fit by a t-distribution
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Transformation Kernel Density Estimation with a Parametric Transformation
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Fig. 5.13. Kernel density and transformation kernel density estimates of monthly
changes in the risk-free returns, January 1960 to December 2002. The data are in
the Capm series in the Ecdat package in R.

with mean, standard deviation, and ν equal to 0.00121, 0.0724, and 3.33,
respectively. This distribution will be used as F . Figure 5.13 compares the
ordinary KDE to the TKDE for this example. Notice that the TKDE is much
smoother in the tails; this can be seen better in Figure 5.14, which gives detail
on the left tail.
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Fig. 5.14. Kernel density and transformation kernel density estimates of monthly
changes in the risk-free returns, January 1960 to December 2002, zooming in on left
tail.
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The transformation used in this example is shown in Figure 5.15. Notice
the concave-convex shape that brings the left and right tails closer to the
center and results in transformed data without the heavy tails seen in the
original data. The removal of the heavy tails can be seen in Figure 5.16,
which is a normal plot of the transformed data.
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Fig. 5.15. Plot of the transformation used in Example 5.11.
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Fig. 5.16. Normal plot of the transformed data used in Example 5.11.

Transformation Kernel Density Estimation with a Parametric Transformation
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5.18 Bibliographic Notes

Maximum likelihood estimation and likelihood ratio tests are discussed in all
textbooks on mathematical statistics, including Casella and Berger (2002) and
Wasserman (2004).

Burnham and Anderson (2002) is a comprehensive introduction to model
selection and is highly recommended for further reading. They also cover
multimodel inference, a more advanced topic that includes model averaging
where estimators or predictions are averaged across several models. Chap-
ter 7 of Burnham and Anderson provides the statistical theory behind AIC as
an approximate deviation of hypothetical validation data. The small-sample
corrected AIC is due to Hurvich and Tsai (1989).

Buch-Larsen, Nielsen, Guillén, and Bolance (2005) and Ruppert and Wand
(1992) discuss other methods for choosing the transformation when the TKDE
is applied to heavy-tailed data.

The central limit theorem for the MLE is stated precisely and proved in
textbooks on asymptotic theory such as Serfling (1980), van der Vaart (1998),
and Lehmann (1999).

Observed and expected Fisher information are compared by Efron and
Hinkley (1978), who argue that the observed Fisher information gives superior
standard errors.

Box–Cox transformations were introduced by Box and Cox (1964)
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5.20 R Lab

5.20.1 Earnings Data

Run the following R code to find a symmetrizing transformation for 1998 earn-
ings data from the Current Population Survey. The code looks at the untrans-
formed data and the square-root and log-transformed data. The transformed
data are compared by normal plots, boxplots, and kernel density estimates.

library("Ecdat")

?CPSch3

data(CPSch3)

dimnames(CPSch3)[[2]]

male.earnings = CPSch3[CPSch3[,3]=="male",2]

sqrt.male.earnings = sqrt(male.earnings)

log.male.earnings = log(male.earnings)

par(mfrow=c(2,2))

qqnorm(male.earnings,datax=T,main="untransformed")

qqnorm(sqrt.male.earnings,datax=T,main="square-root transformed")

qqnorm(log.male.earnings,datax=T,main="log-transformed")

par(mfrow=c(2,2))

boxplot(male.earnings,main="untransformed")

boxplot(sqrt.male.earnings,main="square-root transformed")

boxplot(log.male.earnings,main="log-transformed")
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par(mfrow=c(2,2))

plot(density(male.earnings),main="untransformed")

plot(density(sqrt.male.earnings),main="square-root transformed")

plot(density(log.male.earnings),main="log-transformed")

Problem 1 Which of the three transformation provides the most symmetric
distribution? Try other powers beside the square root. Which power do you
think is best for symmetrization? You may include plots with your work if you
find it helpful to do that.

Next, you will estimate the Box–Cox transformation parameter by max-
imum likelihood. The model is that the data are N(µ, σ2)-distributed after
being transformed by some λ. The unknown parameters are λ, µ, and σ.

Run the following R code to plot the profile likelihood for λ on the grid
seq(-2, 2, 1/10) (this is the default and can be changed). The command
boxcox takes an R formula as input. The left-hand side of the formula is
the variable to be transformed. The right-hand side is a linear model (see
Chapter 12). In this application, the model has only an intercept, which is
indicated by “1.” “MASS” is an acronym for “Modern Applied Statistics with
S-PLUS,” a highly-regarded textbook whose fourth edition also covers R. The
MASS library accompanies this book.

library("MASS")

windows()

boxcox(male.earnings~1)

The default grid of λ values is large, but you can zoom in on the high-likelihood
region with the following:

boxcox(male.earnings~1,lambda = seq(.3, .45, 1/100))

To find the MLE, run this R code:

bc = boxcox(male.earnings~1,lambda = seq(.3, .45, by=1/100),interp=F)

ind = (bc$y==max(bc$y))

ind2 = (bc$y > max(bc$y) - qchisq(.95,df=1)/2)

bc$x[ind]

bc$x[ind2]

Problem 2 (a) What are ind and ind2 and what purposes do they serve?
(b) What is the effect of interp on the output from boxcox?
(c) What is the MLE of λ?
(d) What is a 95% confidence interval for λ?
(e) Modify the code to find a 99% confidence interval for λ.
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Rather than trying to transform the variable male.earnings to a Gaussian
distribution, we could fit a skewed Gaussian or skewed t-distribution. R code
that fits a skewed t is listed below:

library("fGarch")

fit = sstdFit(male.earnings,hessian=T)

Problem 3 What are the estimates of the degrees-of-freedom parameter and
of ξ?

Problem 4 Produce a plot of a kernel density estimate of the pdf of male.
earnings. Overlay a plot of the skewed t-density with MLEs of the parameters.
Make sure that the two curves are clearly labeled, say with a legend, so that it
is obvious which curve is which. Include your plot with your work. Compare
the parametric and nonparametric estimates of the pdf. Do they seem similar?
Based on the plots, do you believe that the skewed t-model provides an adequate
fit to male.earnings?

Problem 5 Fit a skewed GED model to male.earnings and repeat Problem
4 using the skewed GED model in place of the skewed t. Which parametric
model fits the variable male.earnings best, skewed t or skewed GED?

5.20.2 DAX Returns

This section uses log returns on the DAX index in the data set EuStock-
Markets. Your first task is to fit the standardized t-distribution (std) to the
log returns. This is accomplished with the following R code.

Here loglik std is an R function that is defined in the code. This function
returns minus the log-likelihood for the std model. The std density function
is computed with the function dstd in the fGarch package. Minus the log-
likelihood, which is called the objective function, is minimized by the function
optim. The L-BFGS-B method is used because it allows us to place lower and
upper bounds on the parameters. Doing this avoids the errors that would be
produced if, for example, a variance parameter were negative. When optim is
called, start is a vector of starting values. Use R’s help to learn more about
optim. In this example, optim returns an object fit std. The component
fig std$par contains the MLEs and the component fig std$value contains
the minimum value of the objective function.

data(Garch,package="Ecdat")

library("fGarch")

data(EuStockMarkets)

Y = diff(log(EuStockMarkets[,1])) # DAX
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##### std #####

loglik_std = function(x) {

f = -sum(log(dstd(Y, x[1], x[2], x[3])))

f}

start=c(mean(Y),sd(Y),4)

fit_std = optim(start,loglik_std,method="L-BFGS-B",

lower=c(-.1,.001,2.1),

upper=c(.1,1,20))

print(c("MLE =",round(fit_std$par,digits=5)))

m_logL_std = fit_std$value # minus the log-likelihood

AIC_std = 2*m_logL_std+2*length(fit_std$par)

Problem 6 What are the MLEs of the mean, standard deviation, and the
degrees-of-freedom parameter? What is the value of AIC?

Problem 7 Modify the code so that the MLEs for the skewed t-distribution
are found. Include your modified code with your work. What are the MLEs?
Which distribution is selected by AIC, the t or the skewed t-distribution?

Problem 8 Compute and plot the TKDE of the density of the log returns us-
ing the methodology in Sections 2.8 and 3.16 of the lecture notes. The transfor-
mation that you use should be g(y) = Φ−1{F (y)}, where F is the t-distribution
with parameters estimated in Problem 1. Include your code and the plot with
your work.

Problem 9 Plot the KDE, TKDE, and parametric estimator of the log-return
density, all on the same graph. Zoom in on the right tail, specifically the region
0.035 < y < 0.06. Compare the three densities for smoothness. Are the TKDE
and parametric estimates similar? Include the plot with your work.

5.21 Exercises

1. Load the CRSPday data set in the Ecdat package and get the variable
names with the commands

library(Ecdat)
data(CRSPday)
dimnames(CRSPday)[[2]]

Plot the IBM returns with the commands

r = CRSPday[,5]
plot(r)
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Learn the mode and class of the IBM returns with

mode(r)
class(r)

You will see that the class of the variable r is “ts,” which means “time
series.” Data of class ts are plotted differently than data not of this class.
To appreciate this fact, use the following commands to convert the IBM
returns to class numeric before plotting them:

r2 = as.numeric(r)
class (r2)
plot(r2)

The variable r2 contains the same data as the variable r, but r2 has class
numeric.
Find the covariance matrix, correlation matrix, and means of GE, IBM,
and Mobil with the commands

cov(CRSPday[,4:6])
cor(CRSPday[,4:6])
apply(CRSPday[,4:6],2,mean)

Use your R output to answer the following questions:
(a) What is the mean of the Mobil returns?
(b) What is the variance of the GE returns?
(c) What is the covariance between the GE and Mobil returns?
(d) What is the correlation between the GE and Mobil returns?

2. Suppose that Y1, . . . , Yn are i.i.d. N(µ, σ2), where µ is known. Show that
the MLE of σ2 is

n−1
n∑

i=1

(Yi − µ)2.

3. Show that f∗(y|ξ) given by equation (5.15) integrates to (ξ + ξ−1)/2.
4. Let X be a random variable with mean µ and standard deviation σ.

(a) Show that the kurtosis of X is equal to 1 plus the variance of {(X −
µ)/σ}2.

(b) Show that the kurtosis of any random variable is at least 1.
(c) Show that a random variable X has a kurtosis equal to 1 if and only

if P (X = a) = P (X = b) = 1/2 for some a 6= b.
5. (a) What is the kurtosis of a normal mixture distribution that is 95%

N(0, 1) and 5% N(0, 10)?
(b) Find a formula for the kurtosis of a normal mixture distribution that

is 100p% N(0, 1) and 100(1 − p)% N(0, σ2), where p and σ are pa-
rameters. Your formula should give the kurtosis as a function of p and
σ.
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(c) Show that the kurtosis of the normal mixtures in part (b) can be made
arbitrarily large by choosing p and σ appropriately. Find values of p
and σ so that the kurtosis is 10,000 or larger.

(d) Let M > 0 be arbitrarily large. Show that for any p0 < 1, no matter
how close to 1, there is a p > p0 and a σ, such that the normal mixture
with these values of p and σ has a kurtosis at least M . This shows that
there is a normal mixture arbitrarily close to a normal distribution but
with a kurtosis above any arbitrarily large value of M .

6. Fit the F-N skewed t-distribution to the gas flow data. The data set is
in the file GasFlowData.csv, which can be found on the book’s website.
The F-N skewed t-distribution can be fit using the function sstdFit in
R’s fGarch package.

7. Suppose that X1, . . . , Xn are i.i.d. exponential(θ). Show that the MLE of
θ is X.

8. The number of small businesses in a certain region defaulting on loans was
observed for each month over a 4-year period. In the R program below,
the variable y is the number of defaults in a month and x is the value
for that month of an economic variable thought to affect the default rate.
The function dpois computes the Poisson density.

start =c(1,1)

loglik = function(theta) {-sum(log(dpois(y,lambda=theta[1]+

theta[2]*x)))}

mle= optim(start,loglik,hessian=T)

invFishInfo = solve(mle$hessian)

options(digits=4)

mle$par

mle$value

mle$convergence

sqrt(diag(invFishInfo))

The output is

> mle$par

[1] 28.0834 0.6884

> mle$value

[1] 150.9

> mle$convergence

[1] 0

> sqrt(diag(invFishInfo))

[1] 1.8098 0.1638

(a) Describe the statistical model being used here.
(b) What are the parameter estimates?
(c) Find 95% confidence intervals for the parameters in the model. Use a

normal approximation.
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9. In this problem you will fit a t-distribution by maximum likelihood to the
daily log returns for BMW. The data are in the data set bmw that is part
of the evir package. Run the following code:

library(evir)
library(fGarch)
data(bmw)
start_bmw = c(mean(bmw),sd(bmw),4)
loglik_bmw = function(theta)
{
-sum(log(dstd(bmw,mean=theta[1],sd=theta[2],nu=theta[3])))
}

mle_bmw = optim(start_bmw, loglik_bmw, hessian=T)
FishInfo_bmw = solve(mle_bmw$hessian)

Note: The R code defines a function loglik bmw that is minus the log-
likelihood. See Chapter 10 of An Introduction to R for more information
about functions in R. Also, see page 59 of this manual for more about
maximum likelihood estimation in R. optim minimizes this objective func-
tion and returns the MLE (which is mle bmw$par) and other information,
including the Hessian of the objective function evaluated at the MLE
(because hessian=T—the default is not to return the Hessian).
(a) What does the function dstd, and what package is it in?
(b) What does the function solve do?
(c) What is the estimate of ν, the degrees-of-freedom parameter?
(d) What is the standard error of ν?

10. In this problem, you will fit a t-distribution to daily log returns of Siemens.
You will estimate the degrees-of-freedom parameter graphically and then
by maximum likelihood. Run the following code, which produces a 3 ×
2 matrix of probability plots. If you wish, add reference lines as done in
Section 4.11.1.

data(siemens)
n=length(siemens)
par(mfrow=c(3,2))
qqplot(siemens,qt(((1:n)-.5)/n,2),ylab="t(2) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,3),ylab="t(3) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,4),ylab="t(4) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,5),ylab="t(5) quantiles",

xlab="data quantiles")
qqplot(siemens,qt(((1:n)-.5)/n,8),ylab="t(8) quantiles",

xlab="data quantiles")



130 5 Modeling Univariate Distributions

qqplot(siemens,qt(((1:n)-.5)/n,12),ylab="t(12) quantiles",
xlab="data quantiles")

R has excellent graphics capabilities—see Chapter 12 of An Introduction
to R for more about R graphics and, in particular, pages 67 and 72 for
more information about par and mfrow, respectively.
(a) Do the returns have lighter or heavier tails than a t-distribution with

2 degrees of freedom?
(b) Based on the QQ plots, what seems like a reasonable estimate of ν?
(c) What is the MLE of ν for the Siemens log returns?
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