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Exploratory Data Analysis

4.1 Introduction
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Fig. 4.1. Daily log returns on the S&P 500 index from January 1981 to April 1991.
This data set is the variable r500 in the SP500 series in the Ecdat package in R.
Notice the extreme volatility in October 1987.

This book is about the statistical analysis of financial markets data such
as equity prices, foreign exchange rates, and interest rates. These quantities
vary random thereby causing financial risk as well as the opportunity for
profit. Figures 4.1, 4.2, and 4.3 show, respectively, time series plots of daily
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42 4 Exploratory Data Analysis

log returns on the S&P 500 index, daily changes in the Deutsch Mark (DM)
to U.S. dollar exchange rate, and changes in the monthly risk-free return,
which is 1/12th the annual risk-free interest rate. A time series is a sequence
of observations of some quantity or quantities, e.g., equity prices, taken over
time, and a time series plot is a plot of a time series in chronological order.
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Fig. 4.2. Daily changes in the DM/dollar exchange rate, January 2, 1980, to May
21, 1987. The data come from the Garch series in the Ecdat package in R. The
DM/dollar exchange rate is the variable dm.

Despite the large random fluctuations in all three time series, we can see
that each series appears stationary, meaning that the nature of its random
variation is constant over time. In particular, the series fluctuate about means
that are constant, or nearly so. We also see volatility clustering, because there
are periods of higher, and of lower, variation within each series. Volatility
clustering does not indicate a lack of stationarity but rather can be viewed
as a type of dependence in the conditional variance of each series. This point
will be discussed in detail in Chapter 18.

Each of these time series will be modeled as a sequence Y1, Y2, . . . of random
variables, each with a CDF that we will call F .1 F will vary between series
1 See Section A.2.1 for definitions of CDF, PDF, and other terms in probability

theory.
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Fig. 4.3. Monthly changes in the risk-free return, January 1960 to December 2002.
The rates are the variable rf in the Capm series in the Ecdat package in R.

but, because of stationarity, is assumed to be constant within each series. F is
also called the marginal distribution function. By the marginal distribution of
a time series, we mean the distribution of Yt given no knowledge of the other
observations, that is, no knowledge of Ys for any s 6= t. Thus, when modeling
a marginal distribution, we disregard dependencies in the time series. Depen-
dencies such as autocorrelation and volatility clustering will be discussed in
later chapters.

In this chapter, we explore various methods for modeling and estimating
marginal distributions, in particular, graphical methods such as histograms,
density estimates, sample quantiles, and probability plots.

4.2 Histograms and Kernel Density Estimation

Assume that the marginal CDF F has a probability density function f . The
histogram is a simple and well-known estimator of probability density func-
tions. Panel (a) of Figure 4.4 is a histogram of the S&P 500 log returns using
30 cells (or bins). There are some outliers in this series, especially a return
near −0.23 that occurred on Black Monday, October 19, 1987. Note that a
return of this size means that the market lost 23% of its value in a single day.



44 4 Exploratory Data Analysis

(a) 30 cells, full range

return

fre
qu

en
cy

−0.20 −0.10 0.00 0.05 0.10

0
20

0
60

0
10

00

(b) 30 cells, central range

return

fre
qu

en
cy

−0.04 −0.02 0.00 0.02 0.04

0
20

0
60

0
10

00

(c) 20 cells, central range

return

fre
qu

en
cy

−0.04 −0.02 0.00 0.02 0.04

0
40

0
80

0
12

00

(d) 50 cells, central range

return

fre
qu

en
cy

−0.04 −0.02 0.00 0.02 0.04

0
20

0
40

0
60

0

Fig. 4.4. Histograms of the daily log returns on the S&P 500 index from January
1981 to April 1991. This data set is the SP500 series in the Ecdat package in R.

The outliers are difficult, or perhaps impossible, to see in the histogram, ex-
cept that they have caused the x-axis to expand. The reason that the outliers
are difficult to see is the large sample size. When the sample size is in the
thousands, a cell with a small frequency is essentially invisible. Panel (b) of
Figure 4.4 zooms in on the high-probability region. Note that only a few of
the 30 cells are in this area.

The histogram is a fairly crude density estimator. A typical histogram
looks more like a big city skyline than a density function and its appearance is
sensitive to the number and locations of its cells—see Figure 4.4, where panels
(b), (c), and (d) differ only in the number of cells. A much better estimator is
the kernel density estimator (KDE). The estimator takes its name from the
so-called kernel function, denoted here by K, which is a probability density
function that is symmetric about 0. The standard2 normal density function is
a common choice for K and will be used here. The kernel density estimator
based on Y1, . . . , Yn is

f̂(y) =
1
nb

n∑

i=1

K

(
Yi − y

b

)
,

2 “Standard” means having expectation 0 and variance 1.
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Fig. 4.5. Illustration of kernel density estimates using a sample of size 6 and two
bandwidths. The six dashed curves are the kernels centered at the data points, which
are indicated by vertical lines at the bottom. The solid curve is the kernel density
estimate created by adding together the six kernels. Although the same data are
used in the top and bottom panels, the density estimates are different because of the
different bandwidths.

where b, which is called the bandwidth, determines the resolution of the esti-
mator.

Figure 4.5 illustrates the construction of kernel density estimates using a
small simulated data set of six observations from a standard normal distribu-
tion. The small sample size is needed for visual clarity but, of course, does not
lead to an accurate estimate of the underlying normal density. The six data
points are shown at the bottom of the figure as vertical lines called a “rug.”
The bandwidth in the top plot is 0.4, and so each of the six dashed lines is
1/6 times a normal density with standard deviation equal to 0.4 and centered
at one of the data points. The solid curve is the superposition, that is, the
sum, of the six dashed curves and estimates the density of the data.

A small value of b allows the density estimator to detect fine features in
the true density, but it also permits a high degree of random variation. This
can be seen in the plot in the bottom of Figure 4.5 where the bandwidth is
only half as large as in the plot on the top. Conversely, a large value of b
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dampens random variation but obscures fine detail in the true density. Stated
differently, a small value of b causes the kernel density estimator to have high
variance and low bias, and a large value of b results in low variance and high
bias.

Choosing b requires one to make a tradeoff between bias and variance. Ap-
propriate values of b depend on both the sample size n and the true density
and, of course, the latter is unknown, though it can be estimated. Roughly
speaking, nonsmooth or “wiggly” densities require a smaller bandwidth. For-
tunately, a large amount of research has been devoted to automatic selection
of b, which, in effect, estimates the roughness of the true density.

The solid curve in Figure 4.6 has the default bandwidth from the density()
function in R. The dashed and dotted curves have the default bandwidth mul-
tiplied by 1/3 and 3, respectively. The tuning parameter adjust in R is the
multiplier of the default bandwidth, so that adjust is 1, 1/3, and 3 in the
three curves. The solid curve with adjust equal to 1 appears to have a proper
amount of smoothness. The dashed curve corresponding to adjust = 1/3 is
wiggly, indicating too much random variability; such a curve is called under-
smoothed and overfit. The dotted curve is very smooth but underestimates
the peak near 0, a sign of bias. Such a curve is called oversmoothed or un-
derfit. Here overfit means that the density estimate adheres too closely to the
data and so is unduly influenced by random variation. Conversely, underfitted
means that the density estimate does not adhere closely enough to the data
and misses features in the true density. Stated differently, over- and underfit-
ting means a poor bias–variance tradeoff with an overfitted curve having too
much variance and an underfitted curve having too much bias.

Automatic bandwidth selectors are very useful, but there is nothing mag-
ical about them, and often one will use an automatic selector as a starting
point and then “fine-tune” the bandwidth; this is the point of the adjust
parameter. Generally, adjust will be much closer to 1 than the values, 1/3
and 3, used above. The reason for using 1/3 and 3 before was to emphasize
the effects of under- and oversmoothing.

Often a kernel density estimate is used to suggest a parametric statistical
model. The density estimates in Figure 4.6 are bell-shaped, suggesting that
a normal distribution might be a suitable model. To further investigate the
suitability of the normal model, Figure 4.7 compares the kernel density esti-
mate with adjust = 1 with normal densities. In panel (a), the normal density
has mean and standard deviation equal to the sample mean and standard de-
viation of the returns. We see that the kernel estimate and the normal density
are somewhat dissimilar. The reason is that the outlying returns inflate the
sample standard deviation and cause the normal density to be too dispersed
in the middle of the data. Panel (b) shows a normal density that is much closer
to the kernel estimator. This normal density uses robust estimators which are
less sensitive to outliers—the mean is estimated by the sample median and
the MAD estimator is used for the standard deviation. The MAD estimator
is the median absolute deviation from the median scaled so that it estimates
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Fig. 4.6. Kernel density estimates of the daily log returns on the S&P 500 index
using three bandwidths. Each bandwidth is the default bandwidth times adjust and
adjust is 1/3, 1, and 3. This data set is the SP500 series in the Ecdat package in R.
The KDE is plotted only for a limited range of returns to show detail in the middle
of the distribution.

the standard deviation of a normal population.3 The sample standard devi-
ation is 0.011, but the MAD is smaller, 0.0079; these values were computed
using the R commands sd and mad. Even the normal density in panel (b)
shows some deviation from the kernel estimator, and, as we will soon see,
the t-distribution provides a better model for the return distribution than
does the normal distribution. The need for robust estimators is itself a sign
of nonnormality.

We have just seen a problem with using a KDE to suggest a good model
for the distribution of the data in a sample—the parameters in the model
must be estimated properly. Normal probability plots and, more generally,
quantile–quantile plots, which will be discussed in Sections 4.3.2 and 4.3.4,
are better methods for comparing a sample with a theoretical distribution.

Though simple to compute, the KDE has some problems. In particular, it
is often too bumpy in the tails. An improvement to the KDE is discussed in
Section 4.8.
3 See Section 5.16 for more discussion of robust estimation and the precise definition

of MAD.
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Fig. 4.7. Kernel density estimates (solid) of the daily log returns on the S&P 500
index compared with normal densities (dashed). (a) The normal density uses the
sample mean and standard deviation. (b) The normal density uses the sample median
and MAD estimate of standard deviation. This data set is the SP500 series in the
Ecdat package in R.

4.3 Order Statistics, the Sample CDF, and Sample
Quantiles

Suppose that Y1, . . . , Yn is a random sample from a probability distribution
with CDF F . In this section we estimate F and its quantiles. The sample or
empirical CDF Fn(y) is defined to be the proportion of the sample that is less
than or equal to y. For example, if 10 out of 40 (= n) elements of a sample
are 3 or less, then Fn(3) = 0.25. More generally,

Fn(y) =
∑n

i=1 I{Yi ≤ y}
n

, (4.1)

where I{·} is the indicator function so that I{Yi ≤ y} is 1 if Yi ≤ y and
is 0 otherwise. Figure 4.8 shows Fn for a sample of size 150 from an N(0, 1)
distribution. The true CDF (Φ) is shown as well. The sample CDF differs from
the true CDF because of random variation. The sample CDF is also called
the empirical distribution function, or EDF.
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Fig. 4.8. The EDF Fn (solid) and the true CDF (dashed) for a simulated random
sample from an N(0, 1) population. The sample size is 150.

The order statistics Y(1), Y(2), . . . , Y(n) are the values Y1, . . . , Yn ordered
from smallest to largest. The subscripts of the order statistics are in paren-
theses to distinguish them from the unordered sample. For example, Y1 is
simply the first observation in the original sample while Y(1) is the smallest
observation in that sample. The sample quantiles are defined in slightly dif-
ferent ways by different authors, but roughly the q-sample quantile is Y(k),
where k is qn rounded to an integer. Some authors round up, others round
to the nearest integer, and still others interpolate. The function quantile
in R has nine different types of sample quantiles, the three used by SASTM,
S-PLUSTM, and SPSSTMand MinitabTM, plus six others. With the large sam-
ple sizes typical of financial markets data, the different choices lead to nearly
identical estimates, but for small samples they can be considerably different.

The qth quantile is also called the 100qth percentile. Certain quantiles
have special names. The 0.5 sample quantile is the 50th percentile and is
called the median. The 0.25 and 0.75 sample quantiles are called the first and
third quartiles, and the median is also called the second quartile. The 0.2, 0.4,
0.6, and 0.8 quantiles are the quintiles since they divide the data into five
equal-size subsets, and the 0.1, 0.2, . . ., 0.9 quantiles are the deciles.

4.3.1 The Central Limit Theorem for Sample Quantiles

Many estimators have an approximate normal distribution if the sample size
is sufficiently large. This is true of sample quantiles by the following central
limit theorem.
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Theorem 4.1. Let Y1, . . . , Yn be an i.i.d. sample with a CDF F . Suppose that
F has a density f that is continuous and positive at F−1(q), 0 < q < 1. Then
for large n, the qth sample quantile is approximately normally distributed with
mean equal to the population quantile F−1(q) and variance equal to

q(1− q)
n [f{F−1(q)}]2 . (4.2)

This result is not immediately applicable, for example, for constructing
a confidence interval for a population quantile, because

[
f{F−1(q)}]2 is un-

known. However, f can be estimated by kernel density estimation (Section
4.2) and F−1(q) can be estimated by the qth sample quantile. Alternatively,
a confidence interval can be constructed by resampling. Resampling is intro-
duced in Chapter 6.

4.3.2 Normal Probability Plots

Many statistical models assume that a random sample comes from a normal
distribution. Normal probability plots are used to check this assumption, and,
if the normality assumption seems false, to investigate how the distribution
of the data differs from a normal distribution. If the normality assumption is
true, then the qth sample quantile will be approximately equal to µ+σ Φ−1(q),
which is the population quantile. Therefore, except for sampling variation, a
plot of the sample quantiles versus Φ−1 will be linear. One version of the
normal probability plot is a plot of Y(i) versus Φ−1{i/(n + 1)}. These are the
i/(n + 1) sample and population quantiles, respectively. A divisor of n + 1
rather than n is used to avoid Φ−1(1) = +∞ when i = n.

Systematic deviation of the plot from a straight line is evidence of nonnor-
mality. There are other versions of the normal plot, e.g., a plot of the order
statistics versus their expectations under normality used by R’s qqnorm, but
for large samples these will all be similar, except perhaps in the extreme tails.

Statistical software differs about whether the data are on the x-axis (hor-
izontal axis) and the theoretical quantiles on the y-axis (vertical axis) or vice
versa. R allows the data to be on either axis depending on the choice of the
parameter datax. When interpreting a normal plot with a nonlinear pattern,
it is essential to know which axis contains the data. In this book, the data will
always be plotted on the x-axis and the theoretical quantiles on the y-axis,
so in R, datax=TRUE was used to construct the plots rather than the default,
which is datax=FALSE.

If the pattern in a normal plot is nonlinear, then to interpret the pattern
one checks where the plot is convex and where it is concave. A convex curve
is one such that as one moves from left to right, the slope of the tangent line
increases; see Figure 4.9(a). Conversely, if the slope decreases as one moves
from left to right, then the curve is concave; see Figure 4.9(b). A convex-
concave curve is convex on the left and concave on the right and, similarly,
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Fig. 4.9. As one moves from (a) to (d), the curves are convex, concave, convex-
concave, and concave-convex. Normal plots with these patterns indicate left skewness,
right skewness, heavier tails than a normal distribution, and lighter tails than a
normal distribution, respectively, assuming that the data are on the x-axis and the
normal quantiles on the y-axis, as will always be the case in this textbook.

a concave-convex curve is concave on the left and convex on the right; see
Figure 4.9(c) and (d).

A convex, concave, convex-concave, or concave-convex normal plot indi-
cates, respectively, left skewness, right skewness, heavy tails (compared to the
normal distribution), or light tails (compared to the normal distribution)—
these interpretations require that the sample quantiles are on the horizontal
axis and need to be changed if the sample quantiles are plotted on the vertical
axis. By the tails of a distribution is meant the regions far from the center.
Reasonable definitions of the “tails” would be that the left tail is the region
from −∞ to µ−2σ and the right tail is the region from µ+2σ to +∞, though
the choices of µ−2σ and µ+2σ are somewhat arbitrary. Here µ and σ are the
mean and standard deviation, though they might be replaced by the medium
and MAD estimator, which are less sensitive to tail weight.

Figure 4.10 contains normal plots of samples of size 20, 150, and 1000
from a normal distribution. To show the typical amount of random variation
in normal plots, two independent samples are shown for each sample size. The
plots are only close to linear because of random variation. Even for normally
distributed data, some deviation from linearity is to be expected, especially
for smaller sample sizes. With larger sample sizes, the only deviations from
linearity are in the extreme left and right tails, where the plots are more
variable.
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Fig. 4.10. Normal probability plots of random samples of size 20, 150, and 1000 from
an N(0, 1) population. The reference lines pass through the first and third quartiles.

Often, a reference line is added to the normal plot to help the viewer
determine whether the plot is reasonably linear. One choice for the reference
line goes through the pair of first quartiles and the pair of third quartiles; this
is what R’s qqline function uses. Other possibilities would be a least-squares
fit to all of the quantiles or, to avoid the influence of outliers, some subset of
the quantiles, e.g., all between the 0.1 and 0.9-quantiles.

Figure 4.11 contains normal probability plots of samples of size 150 from
lognormal (0, σ2) distributions,4 with the log-standard deviation σ = 1, 1/2,
and 1/5. The concave shapes in Figure 4.11 indicate right skewness. The
skewness when σ = 1 is quite strong, and when σ = 1/2,the skewness is
4 See Section A.9.4 for an introduction to the lognormal distribution and the defi-

nition of the log-standard deviation.
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Fig. 4.11. Normal probability plots of random samples of sizes 150 and 1000 from
lognormal populations with µ = 0 and σ = 1, 1/2, or 1/5. The reference lines pass
through the first and third quartiles.

still very noticeable. With σ reduced to 1/5, the right skewness is much less
pronounced and might not be discernable with smaller sample sizes.

Figure 4.12 contains normal plots of samples of size 150 from t-distributions
with 4, 10, and 30 degrees of freedom. The first two distributions have heavy
tails or, stated differently, are outlier-prone, meaning that the extreme obser-
vations on both the left and right sides are significantly more extreme than
they would be for a normal distribution. One can see that the tails are heav-
ier in the sample with 4 degrees of freedom compared to the sample with
10 degrees of freedom, and the tails of the t-distribution with 30 degrees-
of-freedom are not much different from the tails of a normal distribution. It
is a general property of the t-distribution that the tails become heavier as
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the degrees-of-freedom parameter decreases and the distribution approaches
the normal distribution as the degrees of freedom approaches infinity. Any
t-distribution is symmetric,5 so none of the samples is skewed. Heavy-tailed
distributions with little or no skewness are common in finance and, as we
will see, the t-distribution is a reasonable model for stock returns and other
financial markets data.

Sometimes, a normal plot will not have any of the patterns discussed here
but instead will have more complex behavior. An example is shown in Fig-
ure 4.13, which uses a simulated sample from a trimodal density. The alter-
nation of the QQ plot between concavity and convexity indicates complex
behavior which should be investigated by a KDE. Here, the KDE reveals the
trimodality. Multimodality is somewhat rare in practice and often indicates a
mixture of several distinct groups of data.

It is often rather difficult to decide whether a normal plot is close enough to
linear to conclude that the data are normally distributed, especially when the
sample size is small. For example, even though the plots in Figure 4.10 are close
to linear, there is some nonlinearity. Is this nonlinearity due to nonnormality
or just due to random variation? If one did not know that the data were
simulated from a normal distribution, then it would be difficult to tell, unless
one were very experienced with normal plots. In such situations, a test of
normality is very helpful. These tests are discussed in Section 4.4.

4.3.3 Half-Normal Plots

The half-normal plot is a variation of the normal plot that is used with positive
data. Half-normal plots are used for detecting outlying data rather than check-
ing for a normal distribution. For example, suppose one has data Y1, . . . , Yn

and wants to see whether any of the absolute deviations |Y1−Y |, . . . , |Yn−Y |
from the mean are unusual. In a half-normal plot, these deviation are plotted
against the quantiles of |Z|, where Z is N(0, 1) distributed. More precisely,
a half-normal plot is used with positive data and plots their order statistics
against Φ−1{(n+ i)/(2n+1)}. The function halfnorm in R’s faraway package
creates a half-normal plot and labels the most outlying observations.

5 However, t-distributions have been generalized in at least two different ways to
the so-called skewed-t-distributions, which need not be symmetric. See Section
5.7.
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Fig. 4.12. Normal probability plot of a random sample of size 150 and 1000 from a
t-distribution with 4, 10, and 30 degrees of freedom. The reference lines pass through
the first and third quartiles.

Example 4.2. DM/dollar exchange rate—Half-normal plot

Figure 4.14 is a half-normal plot of changes in the DM/dollar exchange
rate. The plot shows that case #1447 is the most outlying, with case #217
the next most outlying.

¤

Another application of half-normal plotting can be found in Section 13.1.3.
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Fig. 4.13. Kernel density estimate (left) and normal plot (right) of a simulated
sample from a trimodal density. The reference lines pass through the first and third
quartiles. Because of the three modes, the normal plot changes convexity three times,
concave to convex to concave to convex, going from left to right.
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Fig. 4.14. Half-normal plot of changes in DM/dollar exchange rate.
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Fig. 4.15. Normal and t probability plots of the daily returns on the S&P 500 index
from January 1981 to April 1991. This data set is the SP500 series in the Ecdat

package in R. The reference lines pass through the first and third quartiles.

4.3.4 Quantile–Quantile Plots

Normal probability plots are special cases of quantile-quantile plots, also
known as QQ plots. A QQ plot is a plot of the quantiles of one sample or
distribution against the quantiles of a second sample or distribution.

For example, suppose that we wish to model a sample using the tν(µ, σ2)
distribution defined in Section 5.5.2. The parameter ν is called the “degrees
of freedom,” or simply “df.” Suppose, initially, that we have a hypothesized
value of ν, say ν = 6 to be concrete. Then we plot the sample quantiles
against the quantiles of the t6(0, 1) distribution. If the data are from a t6(µ, σ2)
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distribution, then, apart from random variation, the plot will be linear with
intercept and slope depending on µ and σ.

Figure 4.15 contains a normal plot of the S&P 500 log returns in panel (a)
and t-plots with 1, 2, 4, 8, and 15 df in panels (b) through (f). None of the
plots looks exactly linear, but the t-plot with 4 df is rather straight through
the bulk of the data. There are approximately nine returns in the left tail and
four in the right tail that deviate from a line through the remaining data, but
these are small numbers compared to the sample size of 2783. Nonetheless, it is
worthwhile to keep in mind that the historical data have more extreme outliers
than a t-distribution. The t-model with 4 df and mean and standard deviation
estimated by maximum likelihood6 implies that a daily log return of −0.228,
the return on Black Monday, or less has probability 3.2 × 10−6. This means
approximately 3 such returns every 1,000,000 days or 40,000 years, assuming
250 trading days per year. Thus, the t-model implies that Black Monday was
extremely unlikely, and anyone using that model should be mindful that it
did happen.

There are two reasons why the t-model does not give a credible probability
of a negative return as extreme as on Black Monday. First, the t-model is
symmetric, but the return distribution appears to have some skewness in the
extreme left tail, which makes extreme negative returns more likely than under
the t-model. Second, the t-model assumes constant conditional volatility, but
volatility was usually high in October 1987. GARCH models (Chapter 18) can
accommodate this type of volatility clustering.

Quantile–quantile plots are useful not only for comparing a sample with
a theoretical model, as above, but also for comparing two samples. If the
two samples have the same sizes, then one need only plot their order statistics
against each other. Otherwise, one computes the same sets of sample quantiles
for each and plots them. This is done automatically with the R command
qqplot.

The interpretation of convex, concave, convex-concave, and concave-convex
QQ plots is similar to that with QQ plots of theoretical quantiles versus sam-
ple quantiles. A concave plot implies that the sample on the x-axis is more
right-skewed, or less left-skewed, than the sample on the y-axis. A convex
plot implies that the sample on the x-axis is less right-skewed, or more left-
skewed, than the sample on the y-axis. A convex-concave (concave-convex)
plot implies that the sample on the x-axis is more (less) heavy-tailed than
the sample on the y-axis. As before, a straight line, e.g., through the first and
third quartiles, is often added for reference.

Figure 4.16 contains sample QQ plots for all three pairs of the three time
series, S&P 500 returns, changes in the DM/dollar rate, and changes in the
risk-free return, used as examples in this chapter. One sees that the S&P 500
returns have more extreme outliers than the other two series. The changes
in DM/dollar and risk-free returns have somewhat similar shapes, but the

6 See Section 5.14.
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changes in the risk-free rate have slightly more extreme outliers in the left
tail. To avoid any possible confusion, it should be mentioned that the plots in
Figure 4.16 only compare the marginal distributions of the three time series.
They tell us nothing about dependencies between the series and, in fact, the
three series were observed on different time intervals.
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Fig. 4.16. Sample QQ plots. The straight lines pass through the first and third
sample quantiles.

4.4 Tests of Normality

When viewing a normal probability plot, it is often difficult to judge whether
any deviation from linearity is systematic or instead merely due to sampling
variation, so a statistical test of normality is useful. The null hypothesis is
that the sample comes from a normal distribution and the alternative is that
the sample is from a nonnormal distribution.
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The Shapiro–Wilk test uses the normal probability plot to test these hy-
potheses. Specifically, the Shapiro–Wilk test is based on the correlation be-
tween Y(i) and Φ−1{i/(n + 1)}, which are the i/n quantiles of the sample and
of the standard normal distribution, respectively. Correlation will be discussed
in greater detail in Chapter 7. For now, only a few facts will be mentioned.
The covariance between two random variables X and Y is

Cov(X, Y ) = σXY = E
[
{X − E(X)}{Y − E(Y )}

]
,

and the Pearson correlation coefficient between X and Y is

Corr(X,Y ) = ρXY = σXY /σX σY . (4.3)

A correlation equal to 1 indicates a perfect positive linear relationship, where
Y = β0 +β1X with β1 > 0. Under normality, the correlation between Y(i) and
Φ−1{i/(n + 1)} should be close to 1 and the null hypothesis of normality is
rejected for small values of the correlation coefficient. In R, the Shapiro–Wilk
test can be implemented using the shapiro.test function.

The Jarque–Bera test uses the sample skewness and kurtosis coefficients
and is discussed in Section,5.4 where skewness and kurtosis are introduced.

Other tests of normality in common use are the Anderson–Darling, Cramér–
von Mises, and Kolmogorov–Smirnov tests. These tests compare the sample
CDF to the normal CDF with mean equal to Y and variance equal to s2

Y . The
Kolmogorov–Smirnov test statistic is the maximum absolute difference be-
tween these two functions, while the Anderson–Darling and Cramér–von Mises
tests are based on a weighted integral of the squared difference. The p-values of
the Shapiro–Wilk, Anderson–Darling, Cramér–von Mises, and Kolmogorov–
Smirnov tests are routinely part of the output of statistical software. A small
p-value is interpreted as evidence that the sample is not from a normal dis-
tribution.

For the S&P 500 returns, the Shapiro–Wilk test rejects the null hypoth-
esis of normality with a p-value less than 2.2 × 10−16. The Shapiro–Wilk
also strongly rejects normality for the changes in DM/dollar rate and for the
changes in risk-free return. With large sample sizes, e.g., 2783, 1866, and 515,
for the S&P 500 returns, changes in DM/dollar rate, and changes in risk-free
return, respectively, it is quite likely that normality will be rejected, since any
real data will deviate to some extent from normality and any deviation, no
matter how small, will be detected with a large enough sample. When the
sample size is large, it is important to look at normal plots to see whether
the deviation from normality is of practical importance. For financial time
series, the deviation from normality in the tails is often large enough to be of
practical significance.7

7 See Chapter 19 for a discussion on how tail weight can greatly affect risk measures
such as VaR and expected shortfall.
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Fig. 4.17. Boxplots of the S&P 500 daily log returns, daily changes in the DM/dollar
exchange rate, and monthly changes in the risk-free returns.

The boxplot is a useful graphical tool for comparing several samples. The
appearance of a boxplot depends somewhat on the specific software used. In
this section, we will describe boxplots produced by the R function boxplot.
The three boxplots in Figure 4.17 were created by boxplot with default choice
of tuning parameters. The “box” in the middle of each plot extends from the
first to the third quartiles and thus gives the range of the middle half of the
data, often called the interquartile range, or IQR. The line in the middle of the
box is at the median. The “whiskers” are the vertical dashed lines extending
from the top and bottom of each box. The whiskers extend to the smallest
and largest data points whose distance from the bottom or top of the box is at
most 1.5 times the IQR.8 The ends of the whiskers are indicated by horizontal
lines. All observations beyond the whiskers are plotted with an “o”. The most
obvious differences among the three boxplots in Figure 4.17 are differences in
scale, with the monthly risk-free return changes being the most variable and
the daily DM/dollar changes being the least variable.

8 The factor 1.5 is the default value of the range parameter and can be changed.
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Fig. 4.18. Boxplots of the standardized S&P 500 daily log returns, daily changes in
the DM/dollar exchange rate, and monthly changes in the risk-free returns.

These scale differences obscure differences in shape. To remedy this prob-
lem, in Figure 4.18 the three series have been standardized by subtracting the
median and then dividing by the MAD. Now, differences in shape are clearer.
One can see that the S&P 500 returns have heavier tails because the “o”s are
farther from the whiskers. The return of the S&P 500 on Black Monday is
quite detached from the remaining data.

When comparing several samples, boxplots and QQ plots provide different
views of the data. It is best to use both. However, if there are N samples,
then the number of QQ plots is N(N − 1)/2 or N(N − 1) if, by interchanging
axes, one includes two plots for each pair of samples. This number can get out
of hand quickly, so, for large values of N , one might use boxplots augmented
with a few selected QQ plots.

4.6 Data Transformation

There are a number of reasons why data analysts often work, not with the
original variables, but rather with transformations of the variables such as
logs, square roots, or other power transformations. Many statistical methods
work best when the data are normally distributed or at least symmetrically
distributed and have a constant variance, and the transformed data will often
exhibit less skewness and a more constant variable compared to the original
variables.
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Fig. 4.19. Changes in risk-free returns (top) and changes in the logarithm of the
risk-free returns (bottom) plotted against time and against lagged rate. The risk-free
returns are the variable rf of the Capm data set in R’s Ecdat package.

The logarithm transformation is probably the most widely used transfor-
mation in data analysis, though the square root is a close second. The log
stabilizes the variance of a variable whose conditional standard deviation is
proportional to its conditional mean. This is illustrated in Figure 4.19, which
plots monthly changes in the risk-free rate (top row) and changes in the log of
the rate (bottom row) against the lagged risk-free rate (left column) or year
(right column). Notice that the changes in the rate are more variable when
the rate is higher. This behavior is called nonconstant conditional variance or
conditional heteroskedasticity. We see in the bottom row that the changes in
the log rate have relatively constant variability, at least compared to changes
in the rate.

The log transformation is sometimes embedded into the power transfor-
mation family by using the so-called Box–Cox power transformation
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y(α) =
{

yα−1
α , α 6= 0

log(y), α = 0.
(4.4)

In (4.4), the subtraction of 1 from yα and the division by α are not essential,
but they make the transformation continuous in α at 0 since

lim
α→ 0

yα − 1
α

= log(y).

Note that division by α ensures that the transformation is increasing even
when α < 0. This is convenient though not essential. For the purposes of in-
ducing symmetry and a constant variance, yα and y(α) work equally well and
can be used interchangeably, especially if, when α < 0, yα replaced by −yα

to ensure that the transformation is monotonically increasing for all values of
α. The use of a monotonically decreasing, rather than increasing, transforma-
tion is inconvenient since decreasing transformations reverse ordering and, for
example, transform the pth quantile to the (1− p)th quantile.

It is commonly the case that the response is right-skewed and the condi-
tional response variance is an increasing function of the conditional response
mean. In such case, a concave transformation, e.g., a Box–Cox transforma-
tion with α < 1, will remove skewness and stabilize the variance. If a Box–Cox
transformation with α < 1 is used, then the smaller the value of α, the greater
the effect of the transformation. One can go too far—if the transformed re-
sponse is left-skewed or has a conditional variance that is decreasing as a
function of the conditional mean, then α has been chosen too small. Instances
of this type of overtransformation are given in Examples 4.3, 4.5, and 10.2.

Typically, the value of α that is best for symmetrizing the data is not the
same value of α that is best for stabilizing the variance. Then, a compromise
is needed so that the transformation is somewhat too weak for one purpose
and somewhat too strong for the other. Often, however, the compromise is
not severe, and near symmetry and homoskedasticity can both be achieved.

Example 4.3. Gas flows in pipelines

In this example, we will use a data set of daily flows of natural gas in three
pipelines. These data are part of a larger data set used in an investigation
of the relationships between flows in the pipelines and prices. Figure 4.20
contains histograms of the daily flows. Notice that all three distributions are
left-skewed. For left-skewed data, a Box–Cox transformation should use α > 1.

Figure 4.21 shows KDEs of the flows in pipeline 1 after a Box–Cox transfor-
mation using α = 1, 2, 3, 4, 5, 6. One sees that α between 3 and 4 removes most
of the left-skewness and α = 5 or greater overtransforms to right-skewness.
Later, in Example 5.10, we will illustrate an automatic method for selecting
α and find that α = 3.5 is chosen.

¤
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Fig. 4.20. Histograms of daily flows in three pipelines.
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Fig. 4.21. Kernel density estimates for gas flows in pipeline 1 with Box–Cox trans-
formations.
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Example 4.4. t-Tests and transformations

This example show the deleterious effect of skewness and nonconstant
variance on hypothesis testing and how a proper data transformation can
remedy this problem. The boxplots on the panel (a) in Figure 4.22 are of
independent samples of size 15 from lognormal(1,4) (left) and lognormal(3,4)
distributions. Panel (b) shows boxplots of the log-transformed data.

Suppose one wants to test the null hypothesis that the two populations
have the same means against a two-sided alternative. The transformed data
satisfy the assumptions of the t-test that the two populations are normally
distributed with the same variance, but of course the original data do not
meet these assumptions. Two-sided independent-samples t-tests have p-values
of 0.105 and 0.00467 using the original data and the log-transformed data,
respectively. These two p-values lead to rather different conclusions, for the
first test that the means are not significantly different and for the second test
that the difference is highly significant. The first test reaches an incorrect
conclusion because its assumptions are not met.

¤

The previous example illustrates some general principles to keep in mind.
All statistical estimators and tests make certain assumptions about the dis-
tribution of the data. One should check these assumptions, and graphical
methods are often the most convenient way to diagnose problems. If the as-
sumptions are not met, then one needs to know how sensitive the estimator
or test is to violations of the assumptions. If the estimator or test is likely to
be seriously degraded by violations of the assumption, which is called nonro-
bustness, then there are two recourses. The first is to find a new estimator or
test that is suitable for the data. The second is to transform the data so that
the transformed data satisfy the assumptions of the original test or estimator.

4.7 The Geometry of Transformations

Response transformations induce normality of a distribution and stabilize vari-
ances because they can stretch apart data in one region and push observations
together in other regions. Figure 4.23 illustrates this behavior. On the hor-
izontal axis is a sample of data from a right-skewed lognormal distribution.
The transformation h(y) is the logarithm. The transformed data are plotted
on the vertical axis. The dashed lines show the transformation of y to h(y) as
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Fig. 4.22. Boxplots of samples from two lognormal distributions without (a) and
with (b) log transformation.
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Fig. 4.23. A symmetrizing transformation. The skewed lognormal data on the
horizontal axis are transformed to symmetry by the log transformation.

one moves from a y-value on the x-axis upward to the curve and then to h(y)
on the y-axis. Notice the near symmetry of the transformed data. This sym-
metry is achieved because the log transformation stretches apart data with
small values and shrinks together data with large values. This can be seen by
observing the derivative of the log function. The derivative of log(y) is 1/y,
which is a decreasing function of y. The derivative is, of course, the slope of
the tangent line and the tangent lines at y = 1 and y = 5 are plotted to show
the decrease in the derivative as y increases.
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Consider an arbitrary increasing transformation, h(y). If x and x′ are two
nearby data points that are transformed to h(x) and h(x′), respectively, then
the distance between transformed values is |h(x) − h(x′)| ≈ h(1)(x)|x − x′|.
Therefore, h(x) and h(x′) are stretched apart where h(1) is large and pushed
together where h(1) is small. A function h is called concave if h(1)(y) is a de-
creasing function of y. As can be seen in Figure 4.23, concave transformations
remove right skewness.
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Fig. 4.24. A variance-stabilizing transformation.

Concave transformations can also stabilize the variance when the untrans-
formed data are such that small observations are less variable than large
observations. This is illustrated in Figure 4.24. There are two groups of re-
sponses, one with a mean of 1 and a relatively small variance and another
with a mean of 5 and a relatively large variance. If the expected value of the
response Yi, conditional on Xi, followed a regression model m(Xi; β), then
two groups like these would occur if there were two possible values of Xi, one
with a small value of m(Xi; β) and the other with a large value. Because of
the concavity of the transformation h, the variance of the group with a mean
of 5 is reduced by transformation. After the transformation, the groups have
nearly the same variance.

The strength of a transformation can be measured by how much its deriva-
tive changes over some interval, say a to b. More precisely, for a < b, the
strength of an increasing transformation h is the derivative ratio h′(b)/h′(a).
If the transformation is concave, then the derivative ratio is less than 1 and the
smaller the ratio the stronger the concavity. Conversely, if the transformation
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Fig. 4.25. Derivative ratio for Box–Cox transformations.

is convex, then the derivative ratio is greater than 1 and the larger the ratio,
the greater the convexity. For a Box–Cox transformation, the derivative ratio
is (b/a)α−1 and so depends on a and b only through the ratio b/a. Figure 4.25
shows the derivative ratio of Box–Cox transformations when b/a = 2. One
can see that the Box–Cox transformation is concave when α < 1, with the
concavity becoming stronger as α decreases. Similarly, the transformation is
convex for α > 1, with increasing convexity as α increases.

Example 4.5. Risk-free returns—Strength of the Box–Cox transformation for
variance stabilization

In this example, we return to the changes in the risk-free interest returns.
In Figure 4.19, it was seen that there is noticeable conditional heteroskedastic-
ity in the changes in the untransformed rate but little or no heteroskedasticity
in the changes in the logarithms of the rate. We will see that for a Box–Cox
transformation intermediate in strength between the identity transformation
(α = 1) and the log transformation (α = 0), some but not all of the het-
eroskedasticity is removed, and that a transformation with α < 0 is too strong
for this application so that a new type of heteroskedasticity is induced.

The strength of a Box–Cox transformation for this example is illustrated
in Figure 4.26. In that figure, the correlations between the lagged risk-free
interest returns, rt−1, and absolute and squared changes, |r(α)

t − r
(α)
t−1| and

{r(α)
t − r

(α)
t−1}2, in the transformed rate are plotted against α. The two corre-
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Fig. 4.26. Correlations between the lagged risk-free returns and absolute (solid) and
squared (dashed) changes in the Box–Cox transformed returns. A zero correlation
indicates a constant conditional variance. Zero correlations are achieved with the
transformation parameter α equal to 0.036 and 0.076 for the absolute and squared
changes, respectively, as indicated by the vertical lines. If α = 0, then the data are
conditionally homoskedastic, or at least nearly so.

lations are similar, especially when they are near zero. Any deviations of the
correlations from zero indicate conditional heteroskedasticity where the stan-
dard deviation of the change in the transformed rate depends on the previous
value of the rate. We see that the correlations decrease as α decreases from
1 so that the concavity of the transformation increases. The correlations are
equal to zero when α is very close to 0, that is, the log transformation. If α
is much below 0, then the transformation is too strong and the overtransfor-
mation induces a negative correlation, which indicates that the conditional
standard deviation is a decreasing function of the lagged rate.

¤

4.8 Transformation Kernel Density Estimation

The kernel density estimator (KDE) discussed in Section 4.2 is popular be-
cause of its simplicity and because it is available on most software platforms.
However, the KDE has some drawbacks. One disadvantage of the KDE is
that it undersmooths densities with long tails. For example, the solid curve
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Fig. 4.27. Kernel density and transformation kernel density estimates of annual
earnings in 1988–1989 expressed in thousands of 1982 dollars. These data are the
same as in Figure 4.28.

in Figure 4.27 is a KDE of annual earnings in 1988–1989 for 1109 individuals.
The data are in the Earnings data set in R’s Ecdat package. The long right
tail of the density estimate exhibits bumps, which seem due solely to random
variation in the data, not to bumps in the true density. The problem is that
there is no single bandwidth that works well both in the center of the data
and in the right tail. The automatic bandwidth selector chose a bandwidth
that is a compromise, undersmoothing in the tails and perhaps oversmoothing
in the center. The latter problem can cause the height of the density at the
mode(s) to be underestimated.

A better density estimate can be obtained by the transformation kernel
density estimator (TKDE). The idea is to transform the data so that the
density of the transformed data is easier to estimate by the KDE. For the
earnings data, the square roots of the earnings are closer to being symmetric
and have a shorter right tail than the original data; see Figure 4.28, which
compares histograms of the original data and the data transformed by the
square root. The KDE should work well for the square roots of the earnings.

Of course, we are interested in the density of the earnings, not the density
of their square roots. However, it is easy to convert an estimate of the latter
to one of the former. To do that, one uses the change-of-variables formula
(A.4). For convenience, we repeat the result here—if X = g(Y ), where g is
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Fig. 4.28. Histograms of earnings and the square roots of earnings. The data are
from the Earnings data set in R’s Ecdat package and use only age group g1.

monotonic and fX and fY are the densities of X and Y , respectively, then

fY (y) = fX{g(y)} |g′(y)|. (4.5)

For example, if x = g(y) =
√

y, then

fY (y) = {fX(
√

y)y−1/2}/2.

Putting y = g−1(x) into equation (4.5), we obtain

fY {g−1(x)} = fX(x) |g′{g−1(x)}|. (4.6)

Equation (4.6) suggests a convenient method for computing the TKDE:

1. start with data Y1, . . . , Yn;
2. transform the data to X1 = g(Y1), . . . , Xn = g(Yn);
3. let f̂X be the usual KDE calculated on a grid x1, . . . , xm using X1, . . . , Xn;
4. plot the pairs

[
g−1(xj), f̂X(xj)

∣∣g′{g−1(xj)}
∣∣
]
, j = 1, . . . ,m.

The dashed curve in Figure 4.27 is a plot of the TKDE of the earnings
data using the square-root transformation. Notice the smoother right tail, the
faster decrease to 0 at the left boundary, and the somewhat sharper peak at
the mode compared to the KDE (solid curve).

When using a TKDE, it is important to choose a good transformation. For
positive, right-skewed variables such as the earnings data, a concave transfor-
mation is needed. A power transformation, yα, for some α < 1 is a common
choice. Although there are automatic methods for choosing α (see Section
4.9), trial-and-error is often good enough.
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4.9 Bibliographic Notes

Exploratory data analysis was popularized by Tukey (1977). Hoaglin, Mostell-
er, and Tukey (1983, 1985) are collections of articles on exploratory data anal-
ysis, data transformations, and robust estimation. Kleiber and Zeileis (2008)
is an introduction to econometric modeling with R and covers exploratory data
analysis as well as material in latter chapters of this book including regression
and time series analysis. The R package AER accompanies Kleiber and Zeileis’s
book.

The central limit theorem for sample quantiles is stated precisely and
proved in textbooks on asymptotic theory such as Serfling (1980), Lehmann
(1999), and van der Vaart (1998).

Silverman (1986) is an early book on nonparametric density estimation and
is still well worth reading. Scott (1992) covers both univariate and multivari-
ate density estimation. Wand and Jones (1995) has an excellent treatment
of kernel density estimation as well as nonparametric regression, which we
cover in Chapter 21. Wand and Jones cover more recent developments such
as transformation kernel density estimation. An alternative to the TKDE is
variable-bandwidth KDE; see Section 2.10 of Wand and Jones (1995) as well
as Abramson (1982) and Jones (1990).

Atkinson (1985) and Carroll and Ruppert (1988) are good sources of in-
formation about data transformations.

Wand, Marron, and Ruppert (1991) is a good introduction to the TKDE
and discusses methods for automatic selection of the transformation to min-
imize the expected squared error of the estimator. Applications of TKDE to
losses can be found in Bolance, Guillén, and Nielsen (2003).
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4.11 R Lab

4.11.1 European Stock Indices

This lab uses four European stock indices in R’s EuStockMarkets database.
Run the following code to access the database, learn its mode and class, and
plot the four time series. The plot function will produce a plot tailored to
the class of the object on which it is acting. Here four time series plots are
produced because the class of EuStockMarkets is mts, multivariate time series.

data(EuStockMarkets)

mode(EuStockMarkets)

class(EuStockMarkets)

plot(EuStockMarkets)

If you right-click on the plot, a menu for printing or saving will open. There
are alternative methods for printing graphs. For example,

pdf("EuStocks.pdf",width=6,height=5)

plot(EuStockMarkets)

graphics.off()

will send a pdf file to the working directory and the width and height pa-
rameters allow one to control the size and aspect ratio of the plot.
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Problem 1 Write a brief description of the time series plots of the four in-
dices. Do the series look stationary? Do the fluctuations in the series seem to
be of constant size? If not, describe how the volatility fluctuates.

Next, run the following R code to compute and plot the log returns on the
indices.

logR = diff(log(EuStockMarkets))

plot(logR)

Problem 2 Write a brief description of the time series plots of the four series
of log returns. Do the series look stationary? Do the fluctuations in the series
seem to be of constant size? If not, describe how the volatility fluctuates.

In R, data can be stored as a data frame, which does not assume that the
data are in time order and would be appropriate, for example, with cross-
sectional data. To appreciate how plot works on a data frame rather than
on a multivariate time series, run the following code. You will be plotting the
same data as before, but they will be plotted in a different way.

plot(as.data.frame(logR))

Run the code that follows to create normal plots of the four indices and to
test each for normality using the Shapiro–Wilk test. You should understand
what each line of code does.

index.names = dimnames(logR)[[2]]

par(mfrow=c(2,2))

for(i in 1:4)

{

qqnorm(logR[,i],datax=T,main=index.names[i])

qqline(logR[,i],datax=T)

print(shapiro.test(logR[,i]))

}

Problem 3 Briefly describe the shape of each of the four normal plots and
state whether the marginal distribution of each series is skewed or symmetric
and whether its tails appear normal. If the tails do not appear normal, do they
appear heavier or lighter than normal? What conclusions can be made from
the Shapiro–Wilk tests? Include the plots with your work.

The next set of R code creates t-plots with 1, 4, 6, 10, 20, and 30 degrees
of freedom and all four indices. However, for the remainder of this lab, only
the DAX index will be analyzed. Notice how the reference line is created by
the abline function, which adds lines to a plot, and the lm function, which
fits a line to the quantiles. The lm function is discussed in Chapter 12.
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n=dim(logR)[1]

q.grid = (1:n)/(n+1)

df=c(1,4,6,10,20,30)

for(i in 1:4)

{

windows()

par(mfrow=c(3,2))

for(j in 1:6)

{

qqplot(logR[,i], qt(q.grid,df=df[j]),

main=paste(index.names[i], ", df=", df[j]) )

abline(lm(qt(c(.25,.75),df=df[j])~quantile(logR[,i],c(.25,.75))))

}

}

Problem 4 What does the code q.grid = (1:n)/(n+1) do? What does
qt(q.grid,df=df[j]) do? What does paste do?

Problem 5 For the DAX index, state which choice of the degrees-of-freedom
parameter gives the best-fitting t-distribution and explain why.

Run the next set of code to create a kernel density estimate and two parametric
density estimates, t with 5 degrees of freedom and normal, for the DAX index.

library("fGarch")

x=seq(-.1,.1,by=.001)

par(mfrow=c(1,1))

plot(density(logR[,1]),lwd=2,ylim=c(0,60))

lines(x,dstd(x,mean=median(logR[,1]),sd=mad(logR[,1]),nu=5),

lty=5,lwd=2)

lines(x,dnorm(x,mean=mean(logR[,1]),sd=sd(logR[,1])),

lty=3,lwd=4)

legend("topleft",c("KDE","t: df=5","normal"),lwd=c(2,2,4),

lty=c(1,5,3))

To examine the left and right tails, plot the density estimate two more times,
once zooming in on the left tail and then zooming in on the right tail. You can
do this by using the xlim parameter of the plot function and changing ylim
appropriately. You can also use the adjust parameter in density to smooth
the tail estimate more than is done with the default value of adjust.

Problem 6 Do either of the parametric models provide a reasonably good fit
to the first index? Explain. Include your three plots with your work.

Problem 7 Which bandwidth selector is used as the default by density?
What is the default kernel?
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4.12 Exercises

1. This problem uses the data set ford.s in R’s fEcofin package. This data
set contains 2000 daily Ford returns from January 2, 1984, to December
31, 1991.
(a) Find the sample mean, sample median, and standard deviation of the

Ford returns.
(b) Create a normal plot of the Ford returns. Do the returns look normally

distributed?
(c) Test for normality using the Shapiro–Wilk test? What is the p-value?

Can you reject the null hypothesis of a normal distribution at 0.01?
(d) Create several t-plots of the Ford returns using a number of choice

of the degrees-of-freedom parameter (df). What value of df gives a
plot that is as linear as possible? The returns include the return on
Black Monday, October 19, 1987. Discuss whether or not to ignore
that return when looking for the best choice of df.

(e) Find the standard error of the sample median using formula (4.2) with
the sample median as the estimate of F−1(0.5) and a KDE to estimate
f . Is the standard error of the sample median larger or smaller than
the standard error of the sample mean?

2. This problems uses the Garch data set in R’s Ecdat package.
(a) Using a solid curve, plot a kernel density estimate of the first dif-

ferences of the variable dy, which is the U.S. dollar/Japanese yen
exchange rate. Using a dashed curve, superimpose a normal density
with the same mean and standard deviation as the sample. Do the
two estimated densities look similar? Describe how they differ.

(b) Repeat part (a), but with the mean and standard deviation equal to
the median and MAD. Do the two densities appear more or less similar
compared to the two densities in part (a)?

3. Suppose in a normal plot that the sample quantiles are plotted on the
vertical axis, rather than on the horizontal axis as in this book.
(a) What is the interpretation of a convex pattern?
(b) What is the interpretation of a concave pattern?
(c) What is the interpretation of a convex-concave pattern?
(d) What is the interpretation of a concave-convex pattern?

4. Let diffbp be the changes (that is, differences) in the variable bp, the
U.S. dollar to British pound exchange rate, which is in the Garch data set
of R’s Ecdat package.
(a) Create a 3 × 2 matrix of normal plots of diffbp and in each plot

add a reference line that goes through the p- and (1 − p)-quantiles,
where p = 0.25, 0.1, 0.05, 0.025, 0.01, and 0.0025, respectively, for the
six plots. Create a second set of six normal plots using n simulated
N(0, 1) random variables, where n is the number of changes in bp
plotted in the first figure. Discuss how the reference lines change with
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the value of p and how the set of six different reference lines can help
detect nonnormality.

(b) Create a third set of six normal plots using changes in the logarithm
of bp. Do the changes in log(bp) look closer to being normally dis-
tributed than the changes in bp?
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