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Returns

2.1 Introduction

The goal of investing is, of course, to make a profit. The revenue from investing,
or the loss in the case of a negative revenue, depends upon both the change
in prices and the amounts of the assets being held. Investors are interested in
revenues that are high relative to the size of the initial investments. Returns
measure this, because returns on an asset, e.g., a stock, a bond, a portfolio
of stocks and bonds, are changes in price expressed as a fraction of the initial
price.

2.1.1 Net Returns

Let Pt be the price of an asset at time t. Assuming no dividends, the net
return over the holding period from time t− 1 to time t is

Rt =
Pt

Pt−1
− 1 =

Pt − Pt−1

Pt−1
.

The numerator Pt − Pt−1 is the revenue or profit during the holding period,
with a negative profit meaning a loss. The denominator, Pt−1, was the initial
investment at the start of the holding period. Therefore, the net return can
be viewed as the relative revenue or profit rate.

The revenue from holding an asset is

revenue = initial investment× net return.

For example, an initial investment of $10,000 and a net return of 6% earns a
revenue of $600. Because Pt ≥ 0,

Rt ≥ −1, (2.1)

so the worst possible return is −1, that is, a 100% loss, and occurs if the asset
becomes worthless.
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2.1.2 Gross Returns

The simple gross return is

Pt

Pt−1
= 1 + Rt.

For example, if Pt = 2 and Pt+1 = 2.1, then 1 + Rt+1 = 1.05, or 105%, and
Rt+1 = 0.05, or 5%.

Returns are scale-free, meaning that they do not depend on units (dollars,
cents, etc.). Returns are not unitless. Their unit is time; they depend on the
units of t (hour, day, etc.). In the example, if t is measured in years, then,
stated more precisely, this net return is 5% per year.

The gross return over the most recent k periods is the product of the k
single-period gross returns (from time t− k to time t):

1 + Rt(k) =
Pt

Pt−k
=

(
Pt

Pt−1

)(
Pt−1

Pt−2

)
· · ·

(
Pt−k+1

Pt−k

)

= (1 + Rt) · · · (1 + Rt−k+1).

2.1.3 Log Returns
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Fig. 2.1. Comparison of functions log(1 + x) and x.

Log returns, also called continuously compounded returns, are denoted by
rt and defined as
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rt = log(1 + Rt) = log
(

Pt

Pt−1

)
= pt − pt−1,

where pt = log(Pt) is called the log price.
Log returns are approximately equal to returns because if x is small, then

log(1 + x) ≈ x, as can been seen in Figure 2.1, where log(1 + x) is plotted.
Notice in that figure that log(1 + x) is very close to x if |x| < 0.1, e.g., for
returns that are less than 10%.

For example, a 5% return equals a 4.88% log return since log(1 + 0.05) =
0.0488. Also, a −5% return equals a −5.13% log return since log(1− 0.05) =
−0.0513. In both cases, rt = log(1 + Rt) ≈ Rt. Also, log(1 + 0.01) = 0.00995
and log(1 − 0.01) = −0.01005, so log returns of ±1% are very close to the
corresponding net returns.

One advantage of using log returns is simplicity of multiperiod returns. A
k-period log return is simply the sum of the single-period log returns, rather
than the product as for gross returns. To see this, note that the k-period log
return is

rt(k) = log{1 + Rt(k)}
= log {(1 + Rt) · · · (1 + Rt−k+1)}
= log(1 + Rt) + · · ·+ log(1 + Rt−k+1)
= rt + rt−1 + · · ·+ rt−k+1.

2.1.4 Adjustment for Dividends

Many stocks, especially those of mature companies, pay dividends that must
be accounted for when computing returns. Similarly, bonds pay interest. If a
dividend (or interest) Dt is paid prior to time t, then the gross return at time
t is defined as

1 + Rt =
Pt + Dt

Pt−1
, (2.2)

and so the net return is Rt = (Pt + Dt)/Pt−1 − 1 and the log return is
rt = log(1+Rt) = log(Pt +Dt)− log(Pt−1). Multiple-period gross returns are
products of single-period gross returns so that

1 + Rt(k) =
(

Pt + Dt

Pt−1

)(
Pt−1 + Dt−1

Pt−2

)
· · ·

(
Pt−k+1 + Dt−k+1

Pt−k

)

= (1 + Rt)(1 + Rt−1) · · · (1 + Rt−k+1), (2.3)

where, for any time s, Ds = 0 if there is no dividend between s − 1 and s.
Similarly, a k-period log return is

rt(k) = log{1 + Rt(k)} = log(1 + Rt) + · · ·+ log(1 + Rt−k+1)

= log
(

Pt + Dt

Pt−1

)
+ · · ·+ log

(
Pt−k+1 + Dt−k+1

Pt−k

)
.
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2.2 The Random Walk Model

The random walk hypothesis states that the single-period log returns, rt =
log(1 + Rt), are independent. Because

1 + Rt(k) = (1 + Rt) · · · (1 + Rt−k+1)
= exp(rt) · · · exp(rt−k+1)
= exp(rt + · · ·+ rt−k+1),

we have
log{1 + Rt(k)} = rt + · · ·+ rt−k+1. (2.4)

It is sometimes assumed further that the log returns are N(µ, σ2) for some
constant mean and variance. Since sums of normal random variables are
themselves normal, normality of single-period log returns implies normality
of multiple-period log returns. Under these assumptions, log{1 + Rt(k)} is
N(kµ, kσ2).

2.2.1 Random Walks

Model (2.4) is an example of a random walk model. Let Z1, Z2, . . . be i.i.d.
with mean µ and standard deviation σ. Let S0 be an arbitrary starting point
and

St = S0 + Z1 + · · ·+ Zt, t ≥ 1. (2.5)

The process S0, S1, . . . is called a random walk and Z1, Z2, . . . are its steps.
If the steps are normally distributed, then the process is called a normal
random walk. The expectation and variance of St, conditional given S0, are
E(St|S0) = S0 + µt and Var(St|S0) = σ2t. The parameter µ is called the drift
and determines the general direction of the random walk. The parameter σ is
the volatility and determines how much the random walk fluctuates about the
conditional mean S0 +µt. Since the standard deviation of St given S0 is σ

√
t,

(S0 +µt)±σ
√

t gives the mean plus and minus one standard deviation, which,
for a normal random walk, gives a range containing 68% probability. The
width of this range grows proportionally to

√
t, as is illustrated in Figure 2.2,

showing that at time t = 0 we know far less about where the random walk
will be in the distant future compared to where it will be in the immediate
future.

2.2.2 Geometric Random Walks

Recall that log{1 + Rt(k)} = rt + · · ·+ rt−k+1. Therefore,

Pt

Pt−k
= 1 + Rt(k) = exp(rt + · · ·+ rt−k+1), (2.6)
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Fig. 2.2. Mean and bounds (mean plus and minus one standard deviation) on a
random walk with S0 = 0, µ = 0.5, and σ = 1. At any given time, the probability of
being between the bounds (dashed curves) is 68% if the distribution of the steps is
normal.

so taking k = t, we have

Pt = P0 exp(rt + rt−1 + · · ·+ r1). (2.7)

We call such a process whose logarithm is a random walk a geometric random
walk or an exponential random walk. If r1, r2, . . . are i.i.d. N(µ, σ2), then Pt

is lognormal for all t and the process is called a lognormal geometric random
walk with parameters (µ, σ2).

2.2.3 Are Log Prices a Lognormal Geometric Random Walk?

Much work in mathematical finance assumes that prices follow a lognormal
geometric random walk or its continuous-time analog, geometric Brownian
motion. So a natural question is whether this assumption is usually true.
The quick answer is “no.” The lognormal geometric random walk makes two
assumptions: (1) the log returns are normally distributed and (2) the log
returns are mutually independent.

In Chapters 4 and 5, we will investigate the marginal distributions of sev-
eral series of log returns. The conclusion will be that, though the return density
has a bell shape somewhat like that of normal densities, the tails of the log
return distributions are generally much heavier than normal tails. Typically, a
t-distribution with a small degrees-of-freedom parameter, say 4–6, is a much
better fit than the normal model. However, the log-return distributions do
appear to be symmetric, or at least nearly so.
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The independence assumption is also violated. First, there is some corre-
lation between returns. The correlations, however, are generally small. More
seriously, returns exhibit volatility clustering, which means that if we see high
volatility in current returns then we can expect this higher volatility to con-
tinue, at least for a while.

Before discarding the assumption that the prices of an asset are a lognor-
mal geometric random walk, it is worth remembering that “all models are
false, but some models are useful.” This assumption is sometimes useful, e.g.,
for deriving the famous Black–Scholes formula.

2.3 Bibliographic Notes

The random walk hypothesis is related to the so-called efficient market hy-
pothesis; see Ruppert (2003) for discussion and further references. Bodie,
Kane, and Marcus (1999) and Sharpe, Alexander, and Bailey (1995) are good
introductions to the random walk hypothesis and market efficiency. A more
advanced discussion of the random walk hypothesis is found in Chapter 2 of
Campbell, Lo, and MacKinlay (1997) and Lo and MacKinlay (1999). Much
empirical evidence about the behavior of returns is reviewed by Fama (1965,
1970, 1991, 1998). Evidence against the efficient market hypothesis can be
found in the field of behavioral finance which uses the study of human be-
havior to understand market behavior; see Shefrin (2000), Shleifer (2000), and
Thaler (1993). One indication of market inefficiency is excess volatility of mar-
ket prices; see Shiller (1992) or Shiller (2000) for a less technical discussion.

Zuur, Ieno, Meesters, and Burg, D. (2009) is a good place to start learn-
ing R.
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2.5 R Lab

2.5.1 Data Analysis

Obtain the data set Stock_FX_bond.csv from the book’s website and put it
in your working directory. Start R and you should see a console window open
up. Use Change Dir in the “File” menu to change to the working directory.
Read the data with the following command:

dat = read.csv("Stock_bond.csv",header=TRUE)

The data set Stock_FX_bond.csv contains the volumes and adjusted closing
(AC) prices of stocks and the S&P 500 (columns B–W), yields on bonds
(columns X–AD).

This book does not give detailed information about R functions since this
information is readily available elsewhere. For example, you can use R’s help to
obtain more information about the read.csv function by typing “?read.csv”
in your R console and then hitting the Enter key. You should also use the
manual An Introduction to R that is available on R’s help file and also on
CRAN. Another resource for those starting to learn R is Zuur et al. (2009).

An alternative to typing commands in the console is to start a new script
from the “file” menu, put code into the editor, highlight the lines, and then
type Ctrl-R to run the code that has been highlighted. This technique is useful
for debugging. You can save the script file and then reuse or modify it.

Once a file is saved, the entire file can be run by “sourcing” it. You can
use the “file” menu in R to source a file or use the source function. If the
file is in the editor, then it can be run by hitting Ctrl-A to highlight the entire
file and then Ctrl-R.

The next lines of code print the names of the variables in the data set,
attach the data, and plot the adjusted closing prices of GM and Ford.
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names(dat)

attach(dat)

par(mfrow=c(1,2))

plot(GM_AC)

plot(F_AC)

The R function attach puts a database into the R search path. This means
that the database is searched by R when evaluating a variable, so objects in
the database can be accessed by simply giving their names. The function par
specifies plotting parameters and mfrow=c(n1,n2) specifies “make a figure,
fill by rows, n1 rows and n2 columns.” Thus, the first n1 plots fill the first
row and so forth. mfcol(n1,n2) fills by columns and so would put the first n2
plots in the first column. As mentioned before, more information about these
and other R functions can be obtained from R’s online help or the manual An
Introduction to R.

Run the code below to find the sample size (n), compute GM and Ford
returns, and plot GM returns versus the Ford returns.

n = dim(dat)[1]

GMReturn = GM_AC[2:n]/GM_AC[1:(n-1)] - 1

FReturn = F_AC[2:n]/F_AC[1:(n-1)] - 1

par(mfrow=c(1,1))

plot(GMReturn,FReturn)

Problem 1 Do the GM and Ford returns seem positively correlated? Do you
notice any outlying returns? If “yes,” do outlying GM returns seem to occur
with outlying Ford returns?

Problem 2 Compute the log returns for GM and plot the returns versus the
log returns? How highly correlated are the two types of returns? (The R func-
tion cor computes correlations.)

When you exit R, you can “Save workspace image,” which will create an R
workspace file in your working directory. Later, you can restart R from within
WindowsTM and load this workspace image into memory by right-clicking on
the R workspace file. When R starts, your working directory will be the folder
containing the R workspace that was opened.

2.5.2 Simulations

Hedge funds can earn high profits by the use of leverage, but leverage also
creates high risk. The simulations in this section explore the effects of leverage.

Suppose a hedge fund owns $1,000,000 of stock and used $50,000 of its
own capital and $950,000 in borrowed money for the purchase. If the value of
the stock falls below $950,000 at the end of any trading day, then the hedge
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fund must sell all the stock and repay the loan. This will wipe out its $50,000
investment. The hedge fund is said to be leveraged 20:1 since its position is
20 times the amount of its own capital invested.

The daily log returns on the stock have a mean of 0.05/year and a standard
deviation of 0.23/year. These can be converted to rates per trading day by
dividing by 253 and

√
253, respectively.

Problem 3 What is the probability that the value of the stock will be below
$950,000 at the close of at least one of the next 45 trading days? To answer
this question, run the code below.

niter = 1e5 # number of iterations

below = rep(0,niter) # set up storage

set.seed(2009)

for (i in 1:niter)

{

r = rnorm(45,mean=.05/253,

sd=.23/sqrt(253)) # generate random numbers

logPrice = log(1e6) + cumsum(r)

minlogP = min(logPrice) # minimum price over next 45 days

below[i] = as.numeric(minlogP < log(950000))

}

mean(below)

If you are unfamiliar with any of the R functions used here, then use R’s help
to learn about them; e.g., type ?rnorm to learn that rnorm generates normally
distributed random numbers. You should study each line of code, understand
what it is doing, and convince yourself that the code estimates the probability
being requested. Note that anything that follows a pound sign is a comment
and is used only to annotate the code.

Suppose the hedge fund will sell the stock for a profit of at least $100,000
if the value of the stock rises to at least $1,100,000 at the end of one of the
first 100 trading days, sell it for a loss if the value falls below $950,000 at the
end of one of the first 100 trading days, or sell after 100 trading days if the
closing price has stayed between $950,000 and $1,000,000.

The following questions can be answered by simulations much like the one
above. Ignore trading costs and interest when answering these questions.

Problem 4 What is the probability that the hedge fund will make a profit of
at least $100,000?

Problem 5 What is the probability the hedge fund will suffer a loss?

Problem 6 What is the expected profit from this trading strategy?
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Problem 7 What is the expected return? When answering this question, re-
member that only $50,000 was invested. Also, the units of return are time,
e.g., one can express a return as a daily return or a weekly return. Therefore,
one must keep track of how long the hedge fund holds its position before selling.

2.6 Exercises

1. The daily log returns on a stock are independent and normally distributed
with mean 0.001 and standard deviation 0.015. Suppose you buy $1000
worth of this stock.
(a) What is the probability that after one trading day your investment is

worth less than $990? (Note: The R function pnorm will compute a
normal CDF, so, for example, pnorm(0.3,mean=0.1,sd=0.2) is the
normal CDF with mean 0.1 and standard deviation 0.2 evaluated at
0.3.)

(b) What is the probability that after five trading days your investment
is worth less than $990?

2. The yearly log returns on a stock are normally distributed with mean 0.1
and standard deviation 0.2. The stock is selling at $100 today. What is
the probability that one year from now it is selling at $110 or more?

3. Suppose the price of a stock at times 1, 2, and 3 are P1 = 95, P2 = 103,
and P3 = 98. Find r3(2).

4. The prices and dividends of a stock are given in the table below.
(a) What is R2?
(b) What is R4(3)?
(c) What is r3?

t Pt Dt

1 52 0.2
2 54 0.2
3 53 0.2
4 59 0.25

5. Let rt be a log return. Suppose that r1, r2, . . . are i.i.d. N(0.06, 0.47).
(a) What is the distribution of rt(4) = rt + rt−1 + rt−2 + rt−3?
(b) What is P{r1(4) < 2}?
(c) What is the covariance between r1(2) and r2(2)?
(d) What is the conditional distribution of rt(3) given rt−2 = 0.6?

6. Suppose that X1, X2, . . . is a lognormal geometric random walk with pa-
rameters (µ, σ2). More specifically, suppose that Xk = X0 exp(r1 + · · · +
rk), where X0 is a fixed constant and r1, r2, . . . are i.i.d. N(µ, σ2).
(a) Find P (X2 > 1.3 X0).
(b) Use (A.4) to find the density of X1.
(c) Find a formula for the 0.9 quantile of Xk for all k.
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(d) What is the expected value of X2
k for any k? (Find a formula giving

the expected value as a function of k.)
(e) Find the variance of Xk for any k.

7. The daily log returns on a stock are normally distributed with mean 0.0002
and standard deviation 0.03. The stock price is now $97. What is the
probability that it will exceed $100 after 20 trading days?
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