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GARCH Models

18.1 Introduction

As seen in earlier chapters, financial markets data often exhibit volatility
clustering, where time series show periods of high volatility and periods of low
volatility; see, for example, Figure 18.1. In fact, with economic and financial
data, time-varying volatility is more common than constant volatility, and
accurate modeling of time-varying volatility is of great importance in financial
engineering.

As we saw in Chapter 9, ARMA models are used to model the conditional
expectation of a process given the past, but in an ARMA model the con-
ditional variance given the past is constant. What does this mean for, say,
modeling stock returns? Suppose we have noticed that recent daily returns
have been unusually volatile. We might expect that tomorrow’s return is also
more variable than usual. However, an ARMA model cannot capture this
type of behavior because its conditional variance is constant. So we need bet-
ter time series models if we want to model the nonconstant volatility. In this
chapter we look at GARCH time series models that are becoming widely used
in econometrics and finance because they have randomly varying volatility.

ARCH is an acronym meaning AutoRegressive Conditional Heteroscedas-
ticity. In ARCH models the conditional variance has a structure very similar
to the structure of the conditional expectation in an AR model. We first study
the ARCH(1) model, which is the simplest GARCH model and similar to an
AR(1) model. Then we look at ARCH(p) models that are analogous to AR(p)
models. Finally, we look at GARCH (Generalized ARCH) models that model
conditional variances much as the conditional expectation is modeled by an
ARMA model.
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Fig. 18.1. Examples of financial markets and economic data with time-varying
volatility: (a) absolute values of S&P 500 log returns; (b) absolute values of changes
in the BP/dollar exchange rate; (c) absolute values of changes in the log of the risk-
free interest rate; (d) absolute deviations of the inflation rate from its mean. Loess
(see Section 21.2) smooths have been added.

18.2 Estimating Conditional Means and Variances

Before looking at GARCH models, we study some general principles about
modeling nonconstant conditional variance.

Consider regression modeling with a constant conditional variance, Var(Yt|
X1,t, . . . , Xp,t) = σ2. Then the general form for the regression of Yt on
X1.t, . . . , Xp,t is

Yt = f(X1,t, . . . , Xp,t) + εt, (18.1)

where εt is independent of X1,t, . . . , Xp,t and has expectation equal to 0 and a
constant conditional variance σ2

ε . The function f is the conditional expectation
of Yt given X1,t, . . . , Xp,t. Moreover, the conditional variance of Yt is σ2

ε .
Equation (18.1) can be modified to allow conditional heteroskedasticity.

Let σ2(X1,t, . . . , Xp,t) be the conditional variance of Yt given X1,t, . . . , Xp,t.
Then the model

Yt = f(X1,t, . . . , Xp,t) + σ(X1,t, . . . , Xp,t) εt, (18.2)

where εt has conditional (given X1,t, . . . , Xp,t) mean equal to 0 and conditional
variance equal to 1, gives the correct conditional mean and variance of Yt.
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The function σ(X1,t, . . . , Xp,t) should be nonnegative since it is a stan-
dard deviation. If the function σ(·) is linear, then its coefficients must be
constrained to ensure nonnegativity. Such constraints are cumbersome to im-
plement, so nonlinear nonnegative functions are usually used instead. Mod-
els for conditional variances are often called variance function models. The
GARCH models of this chapter are an important class of variance function
models.

18.3 ARCH(1) Processes

Suppose for now that ε1, ε2, . . . is Gaussian white noise with unit variance.
Later we will allow the noise to be independent white noise with a possibly
nonnormal distribution, such as, a standardized t-distribution. Then

E(εt|εt−1, . . .) = 0,

and
Var(εt|εt−1, . . .) = 1. (18.3)

Property (18.3) is called conditional homoskedasticity.
The process at is an ARCH(1) process under the model

at =
√

ω + α1a2
t−1εt, (18.4)

which is a special case of (18.2) with f equal to 0 and σ equal to
√

ω + α1a2
t−1.

We require that ω > 0 and α1 ≥ 0 so that α0 +α1a
2
t−1 > 0. It is also required

that α1 < 1 in order for at to be stationary with a finite variance. Equation
(18.4) can be written as

a2
t = (ω + α1a

2
t−1) ε2t ,

which is very much like an AR(1) but in a2
t , not at, and with multiplicative

noise with a mean of 1 rather than additive noise with a mean of 0. In fact,
the ARCH(1) model induces an ACF for a2

t that is the same as an AR(1)’s
ACF.

Define
σ2

t = Var(at|at−1, . . .)

to be the conditional variance of at given past values. Since εt is independent
of at−1 and E(ε2t ) = Var(εt) = 1,

E(at|at−1, . . .) = 0, (18.5)

and
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σ2
t = E

{
(ω + α1a

2
t−1) ε2t |at−1, at−2, . . .

}

= (ω + α1a
2
t−1)E

{
ε2t |at−1, at−2, . . .

}

= α0 + α1a
2
t−1. (18.6)

Equation (18.6) is crucial to understanding how GARCH processes work.
If at−1 has an unusually large absolute value, then σt is larger than usual and
so at is also expected to have an unusually large magnitude. This volatility
propagates since when at has a large deviation that makes σ2

t+1 large so that
at+1 tends to be large and so on. Similarly, if a2

t−1 is unusually small, then
σ2

t is small, and a2
t is also expected to be small, and so forth. Because of this

behavior, unusual volatility in at tends to persist, though not forever. The
conditional variance tends to revert to the unconditional variance provided
that α1 < 1, so that the process is stationary with a finite variance.

The unconditional, that is, marginal, variance of at denoted by γa(0) is
obtained by taking expectations in (18.6), which give us

γa(0) = ω + α1γa(0).

This equation has a positive solution if α1 < 1:

γa(0) = ω/(1− α1).

If α1 = 1, then γa(0) is infinite, but at is stationary nonetheless and is called
an integrated GARCH model (I-GARCH) process.

Straightforward calculations using (18.5) show that the ACF of at is

ρa(h) = 0 if h 6= 0.

In fact, any process such that the conditional expectation of the present ob-
servation given the past is constant is an uncorrelated process.

In introductory statistics courses, it is often mentioned that independence
implies zero correlation but not vice versa. A process, such as the GARCH
processes, where the conditional mean is constant but the conditional variance
is nonconstant is an example of an uncorrelated but dependent process. The
dependence of the conditional variance on the past causes the process to be
dependent. The independence of the conditional mean on the past is the reason
that the process is uncorrelated.

Although at is uncorrelated, the process a2
t has a more interesting ACF:

if α1 < 1, then
ρa2(h) = α

|h|
1 , ∀ h.

If α1 ≥ 1, then a2
t either is nonstationary or has an infinite variance, so it

does not have an ACF.
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Example 18.1. A simulated ARCH(1) process

A simulated ARCH(1) process is shown in Figure 18.2. Panel (a) shows the

i.i.d. white noise process, εt, (b) shows σt =
√

1 + 0.95a2
t−1, the conditional

standard deviation process, (c) shows at = σtεt, the ARCH(1) process. As
discussed in the next section, an ARCH(1) process can be used as the noise
term of an AR(1) process. This process is shown in panel (d). The AR(1)
parameters are µ = 0.1 and φ = 0.8. The variance of at is γa(0) = 1/(1 −
0.95) = 20, so the standard deviation is

√
20 = 4.47. Panels (e)–(h) are ACF

plots of the ARCH and AR/ARCH processes and squared processes. Notice
that for the ARCH process, the process is uncorrelated but the squared process
has correlation. The processes were all started at 0 and simulated for 100
observations. The first 10 observations were treated as a burn-in period and
discarded.
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Fig. 18.2. Simulation of 100 observations from an ARCH( 1) process and an
AR( 1)/ARCH( 1) process. The parameters are ω = 1, α1 = 0.95, µ = 0.1, and
φ = 0.8.

¤

18.4 The AR(1)/ARCH(1) Model

As we have seen, an AR(1) process has a nonconstant conditional mean but a
constant conditional variance, while an ARCH(1) process is just the opposite.
If both the conditional mean and variance of the data depend on the past,
then we can combine the two models. In fact, we can combine any ARMA
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model with any of the GARCH models in Section 18.6. In this section we
combine an AR(1) model with an ARCH(1) model.

Let at be an ARCH(1) process so that at =
√

ω + α1a2
t−1εt, where εt is

i.i.d. N(0, 1), and suppose that

ut − µ = φ(ut−1 − µ) + at.

The process ut is an AR(1) process, except that the noise term (at) is not
i.i.d. white noise but rather an ARCH(1) process which is only weak white
noise.

Because at is an uncorrelated process, at has the same ACF as independent
white noise and therefore ut has the same ACF as an AR(1) process with
independent white noise:

ρu(h) = φ|h| ∀ h.

Moreover, a2
t has the ARCH(1) ACF:

ρa2(h) = α
|h|
1 ∀ h.

We need to assume that both |φ| < 1 and α1 < 1 in order for u to be stationary
with a finite variance. Of course, ω > 0 and α1 ≥ 0 are also assumed.

The process ut is such that its conditional mean and variance, given the
past, are both nonconstan, so a wide variety of time series can be modeled.

Example 18.2. Simulated AR(1)/ARCH(1) process

A simulation of an AR(1)/ARCH(1) process is shown in panel (d) of Fig-
ure 18.2 and the ACFs of the process and the squared process are in panels
(g) and (h). Notice that both ACFs show autocorrelation.

¤

18.5 ARCH(p) Models

As before, let εt be Gaussian white noise with unit variance. Then at is an
ARCH(q) process if

at = σtεt,

where

σt =

√√√√ω +
p∑

i=1

αia2
t−i

is the conditional standard deviation of at given the past values at−1, at−2, . . .
of this process. Like an ARCH(1) process, an ARCH(q) process is uncorrelated
and has a constant mean (both conditional and unconditional) and a constant
unconditional variance, but its conditional variance is nonconstant. In fact,
the ACF of a2

t is the same as the ACF of an AR(q) process; see Section 18.9.
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18.6 ARIMA(pA, d, qA)/GARCH(pG, qG) Models

A deficiency of ARCH(q) models is that the conditional standard deviation
process has high-frequency oscillations with high volatility coming in short
bursts. This behavior can be seen in Figure 18.2(b). GARCH models per-
mit a wider range of behavior, in particular, more persistent volatility. The
GARCH(p, q) model is

at = σtεt,

where

σt =

√√√√ω +
p∑

i=1

αia2
t−i +

q∑

i=1

βiσ2
t−i . (18.7)

Because past values of the σt process are fed back into the present value, the
conditional standard deviation can exhibit more persistent periods of high or
low volatility than seen in an ARCH process. The process at is uncorrelated
with a stationary mean and variance and a2

t has an ACF like an ARMA process
(see Section 18.9). GARCH models include ARCH models as a special case,
and we use the term “GARCH” to refer to both ARCH and GARCH models.

A very general time series model lets at be GARCH(pG, qG) and uses at

as the noise term in an ARIMA(pA, d, qA) model. The subscripts on p and q
distinguish between the GARCH (G) and ARIMA (A) parameters. We will
call such a model an ARIMA(pA, d, qA)/GARCH(pG, qG) model.

0 20 40 60 80

−2
0

2

(a) white noise

t

ε

0 20 40 60 80

3.
25

3.
35

(b) conditional std dev

t

σ t

0 20 40 60 80

−5
0

5

(c) ARCH

t

a

0 20 40 60 80

−1
5

−5
5

(d) AR/ARCH

t

u

0 5 10 15 20

−0
.2

0.
4

1.
0

Lag

A
C

F

(e) GARCH

0 5 10 15 20

−0
.2

0.
4

1.
0

Lag

A
C

F

(f) GARCH squared

0 5 10 15 20

−0
.4

0.
2

0.
8

Lag

A
C

F

(g) AR/GARCH

0 5 10 15 20

−0
.2

0.
4

1.
0

Lag

A
C

F

(h) AR/GARCH squared

Fig. 18.3. Simulation of GARCH( 1, 1) and AR( 1)/GARCH( 1, 1) processes. The
parameters are ω = 1, α1 = 0.08, β1 = 0.9, and φ = 0.8.
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Figure 18.3 is a simulation of 100 observations from a GARCH(1,1) process
and from a AR(1)/GARCH(1,1) process. The GARCH parameters are ω =
1, α1 = 0.08, and β1 = 0.9. The large value of β1 causes σt to be highly
correlated with σt−1 and gives the conditional standard deviation process a
relatively long-term persistence, at least compared to its behavior under an
ARCH model. In particular, notice that the conditional standard deviation is
less “bursty” than for the ARCH(1) process in Figure 18.2.

18.6.1 Residuals for ARIMA(pA, d, qA)/GARCH(pG, qG) Models

When one fits an ARIMA(pA, d, qA)/GARCH(pG, qG) model to a time series
Yt, there are two types of residuals. The ordinary residual, denoted ât, is the
difference between Yt and its conditional expectation. As the notation implies,
ât estimates at. A standardized residual, denoted ε̂t, is an ordinary residual
divided by its conditional standard deviation, σ̂t. A standardized residual
estimates εt. The standardized residuals should be used for model checking.
If the model fits well, then neither ε̂t nor ε̂ 2

t should exhibit serial correlation.
Moreover, if εt has been assumed to have a normal distribution, then this
assumption can be checked by a normal plot of the standardized residuals.

The ât are the residuals of the ARIMA process and are used when fore-
casting by the methods in Section 9.12.

18.7 GARCH Processes Have Heavy Tails

Researchers have long noticed that stock returns have “heavy-tailed” or
“outlier-prone” probability distributions, and we have seen this ourselves in
earlier chapters. One reason for outliers may be that the conditional variance
is not constant, and the outliers occur when the variance is large, as in the nor-
mal mixture example of Section 5.5. In fact, GARCH processes exhibit heavy
tails even if {εt} is Gaussian. Therefore, when we use GARCH models, we can
model both the conditional heteroskedasticity and the heavy-tailed distribu-
tions of financial markets data. Nonetheless, many financial time series have
tails that are heavier than implied by a GARCH process with Gaussian {εt}.
To handle such data, one can assume that, instead of being Gaussian white
noise, {εt} is an i.i.d. white noise process with a heavy-tailed distribution.

18.8 Fitting ARMA/GARCH Models

Example 18.3. AR(1)/GARCH(1,1) model fit to BMW returns

This example uses the BMW daily log returns. An AR(1)/GARCH(1,1)
model was fit to these returns using R’s garchFit function in the fGarch
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package. Although garchFit allows the white noise to have a nonGaussian
distribution, in this example we specified Gaussian white noise (the default).
The results include

Call: garchFit(formula = ~arma(1, 0) + garch(1, 1), data = bmw,

cond.dist = "norm")

Mean and Variance Equation:

data ~ arma(1, 0) + garch(1, 1)

[data = bmw]

Conditional Distribution: norm

Coefficient(s):

mu ar1 omega alpha1 beta1

4.0092e-04 9.8596e-02 8.9043e-06 1.0210e-01 8.5944e-01

Std. Errors: based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 4.009e-04 1.579e-04 2.539 0.0111 *

ar1 9.860e-02 1.431e-02 6.888 5.65e-12 ***

omega 8.904e-06 1.449e-06 6.145 7.97e-10 ***

alpha1 1.021e-01 1.135e-02 8.994 < 2e-16 ***

beta1 8.594e-01 1.581e-02 54.348 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood: 17757 normalized: 2.89

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.78 -5.77 -5.78 -5.77

In the output, φ is denoted by ar1, the mean is mean, and ω is called omega.
Note that φ̂ = 0.0986 and is statistically significant, implying that this is a
small amount of positive autocorrelation. Both α1 and β1 are highly significant
and β̂1 = 0.859, which implies rather persistent volatility clustering. There
are two additional information criteria reported, SIC (Schwarz’s information
criterion) and HQIC (Hannan–Quinn information criterion). These are less
widely used compared to AIC and BIC and will not be discussed here.1

1 To make matters even more confusing, some authors use SIC as a synonym for
BIC, since BIC is due to Schwarz. Also, the term SBIC (Schwarz’s Bayesian in-
formation criterion) is used in the literature, sometimes as a synonym for BIC
and SIC and sometimes as a third criterion. Moreover, BIC does not mean the
same thing to all authors. We will not step any further into this quagmire. For-
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In the output from garchFit, the normalized log-likelihood is the log-
likelihood divided by n. The AIC and BIC values have also been normalized
by dividing by n, so these values should be multiplied by n = 6146 to have
their usual values. In particular, AIC and BIC will not be so close to each
other after multiplication by 6146.

The output also included the following tests applied to the standardized
residuals and squared residuals:

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 11378 0

Ljung-Box Test R Q(10) 15.2 0.126

Ljung-Box Test R Q(15) 20.1 0.168

Ljung-Box Test R Q(20) 30.5 0.0614

Ljung-Box Test R^2 Q(10) 5.03 0.889

Ljung-Box Test R^2 Q(15) 7.54 0.94

Ljung-Box Test R^2 Q(20) 9.28 0.98

LM Arch Test R TR^2 6.03 0.914

−10 −5 0 5

−4
−2

0
2

4

(a) normal plot

standardized residual quantiles

no
rm

al
 q

ua
nt

ile
s

−10 −5 0 5

−1
0

−5
0

5
10

(b) t plot, df=4

standardized residual quantiles

t−
qu

an
til

es

Fig. 18.4. QQ plots of standardized residuals from an AR(1)/GARCH(1,1) fit to
daily BMW log returns. The reference lines go through the first and third quartiles.

The Jarque–Bera test of normality strongly rejects the null hypothesis that
the white noise innovation process {εt} is Gaussian. Figure 18.4 shows two
QQ plots of the standardized residuals, a normal plot and a t-plot with 4 df.

tunately, the various versions of BIC, SIC, and SBIC are similar. In this book,
BIC is always defined by (5.30) and garchFit uses this definition of BIC as well.
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The latter plot is nearly a straight line except for four outliers in the left tail.
The sample size is 6146, so the outliers are a very small fraction of the data.
Thus, it seems like a t-model would be suitable for the white noise.

The Ljung–Box tests with an R in the second column are applied to the
residuals (here R = residuals, not the R software), while the Ljung–Box tests
with R^2 are applied to the squared residuals. None of the tests is significant,
which indicates that the model fits the data well, except for the nonnormality
of the {εt} noted earlier. The nonsignificant LM Arch Test indicates the same.

A t-distribution was fit to the standardized residuals by maximum likeli-
hood using R’s fitdistr function. The MLE of the degrees-of-freedom param-
eter was 4.1. This confirms the good fit by this distribution seen in Figure 18.4.
The AR(1)/GARCH(1,1) model was refit assuming t-distributed errors, so
cond.dist = "std", with the following results:

Call:

garchFit(formula = ~arma(1, 1) + garch(1, 1), data = bmw,

cond.dist = "std")

Mean and Variance Equation:

data ~ arma(1, 1) + garch(1, 1) [data = bmw]

Conditional Distribution: std

Coefficient(s):

mu ar1 ma1 omega alpha1

1.7358e-04 -2.9869e-01 3.6896e-01 6.0525e-06 9.2924e-02

beta1 shape

8.8688e-01 4.0461e+00

Std. Errors: based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 1.736e-04 1.855e-04 0.936 0.34929

ar1 -2.987e-01 1.370e-01 -2.180 0.02924 *

ma1 3.690e-01 1.345e-01 2.743 0.00608 **

omega 6.052e-06 1.344e-06 4.502 6.72e-06 ***

alpha1 9.292e-02 1.312e-02 7.080 1.44e-12 ***

beta1 8.869e-01 1.542e-02 57.529 < 2e-16 ***

shape 4.046e+00 2.315e-01 17.480 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

18159 normalized: 2.9547

Standardised Residuals Tests:

Statistic p-Value
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Jarque-Bera Test R Chi^2 13355 0

Shapiro-Wilk Test R W NA NA

Ljung-Box Test R Q(10) 21.933 0.015452

Ljung-Box Test R Q(15) 26.501 0.033077

Ljung-Box Test R Q(20) 36.79 0.012400

Ljung-Box Test R^2 Q(10) 5.8285 0.82946

Ljung-Box Test R^2 Q(15) 8.0907 0.9201

Ljung-Box Test R^2 Q(20) 10.733 0.95285

LM Arch Test R TR^2 7.009 0.85701

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.9071 -5.8994 -5.9071 -5.9044

The Ljung–Box tests for the residuals have small p-values. These are due to
small autocorrelations that should not be of practical importance. The sample
size here is 6146 so, not surprisingly, small autocorrelations are statistically
significant.

¤

18.9 GARCH Models as ARMA Models

The similarities seen in this chapter between GARCH and ARMA models are
not a coincidence. If at is a GARCH process, then a2

t is an ARMA process but
with weak white noise, not i.i.d. white noise. To show this, we will start with
the GARCH(1,1) model, where at = σtεt. Here εt is i.i.d. white noise and

Et−1(a2
t ) = σ2

t = ω + α1a
2
t−1 + β1σ

2
t−1, (18.8)

where Et−1 is the conditional expectation given the information set at time
t−1. Define ηt = a2

t −σ2
t . Since Et−1(ηt) = Et−1(a2

t )−σ2
t = 0, by (A.33) ηt is

an uncorrelated process, that is, a weak white noise process. The conditional
heteroskedasticity of at is inherited by ηt, so ηt is not i.i.d. white noise.

Simple algebra shows that

σ2
t = ω + (α1 + β1)a2

t−1 − β1ηt−1 (18.9)

and therefore

a2
t = σ2

t + ηt = ω + (α1 + β1)a2
t−1 − β1ηt−1 + ηt. (18.10)

Assume that α1 + β1 < 1. If µ = ω/{1− (α1 + β1)}, then

a2
t − µ = (α1 + β1)(a2

t−1 − µ) + β1ηt−1 + ηt. (18.11)



18.10 GARCH(1,1) Processes 489

From (18.11) one sees that a2
t is an ARMA(1,1) process with mean µ. Using

the notation of (9.25), the AR(1) coefficient is φ1 = α1 + β1 and the MA(1)
coefficient is θ1 = −β1.

For the general case, assume that σt follows (18.7) so that

σ2
t = ω +

p∑

i=1

αia
2
t−i +

q∑

i=1

βiσ
2
t−i . (18.12)

Assume also that p ≤ q—this assumption causes no loss of generality because,
if q > p, then we can increase p to equal q by defining αi = 0 for i = p+1, . . . , q.
Define µ = ω/{1 − ∑p

i=1(αi + βi)}. Straightforward algebra similar to the
GARCH(1,1) case shows that

a2
t − µ =

p∑

i=1

(αi + βi)(a2
t−i − µ)−

q∑

i=1

βiηt−i + ηt, (18.13)

so that a2
t is an ARMA(p, q) process with mean µ. As a byproduct of these

calculations, we obtain a necessary condition for at to be stationary:

p∑

i=1

(αi + βi) < 1. (18.14)

18.10 GARCH(1,1) Processes

The GARCH(1,1) is the most widely used GARCH process, so it is worthwhile
to study it in some detail. If at is GARCH(1,1), then as we have just seen,
a2

t is ARMA(1,1). Therefore, the ACF of a2
t can be obtained from formulas

(9.31) and (9.32). After some algebra, one finds that

ρa2(1) =
α1(1− α1β1 − β2

1)
1− 2α1β1 − β2

1

(18.15)

and
ρa2(k) = (α1 + β1)k−1ρa2(1), k ≥ 2. (18.16)

By (18.15), there are infinitely many values of (α1, β1) with the same value
of ρa2(1). By (18.16), a higher value of α1 + β1 means a slower decay of ρa2

after the first lag. This behavior is illustrated in Figure 18.5, which contains
the ACF of a2

t for three GARCH(1,1) processes with a lag-1 autocorrelation
of 0.5. The solid curve has the highest value of α1 + β1 and the ACF decays
very slowly. The dotted curve is a pure AR(1) process and has the most rapid
decay.
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Fig. 18.6. ACF of the squared residuals from an AR(1) fit to the BMW log returns.
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In Example 18.3, an AR(1)/GARCH(1,1) model was fit to the BMW daily
log returns. The GARCH parameters were estimated to be α̂1 = 0.10 and
β̂1 = 0.86. By (18.15) the ρ̂a2(1) = 0.197 for this process and the high value
of β̂1 suggests slow decay. The sample ACF of the squared residuals [from
an AR(1) model] is plotted in Figure 18.6. In that figure, we see the lag-1
autocorrelation is slightly below 0.2 and after one lag the ACF decays slowly,
exactly as expected.

The capability of the GARCH(1,1) model to fit the lag-1 autocorrelation
and the subsequent rate of decay separately is important in practice. It appears
to be the main reason that the GARCH(1,1) model fits so many financial time
series.

18.11 APARCH Models

In some financial time series, large negative returns appear to increase volatil-
ity more than do positive returns of the same magnitude. This is called the
leverage effect. Standard GARCH models, that is, the models given by (18.7),
cannot model the leverage effect because they model σt as a function of past
values of a2

t —whether the past values of at are positive or negative is not
taken into account. The problem here is that the square function x2 is sym-
metric in x. The solution is to replace the square function with a flexible class
of nonnegative functions that include asymmetric functions. The APARCH
(asymmetric power ARCH) models do this. They also offer more flexibility
than GARCH models by modeling σδ

t , where δ > 0 is another parameter.
The APARCH(p, q) model for the conditional standard deviation is

σδ
t = ω +

p∑

i=1

αi(|at−1| − γiat−1)δ +
q∑

j=1

βjσ
δ
t−j , (18.17)

where δ > 0 and −1 < γj < 1, j = 1, . . . , p. Note that δ = 2 and γ1 = · · · =
γp = 0 give a standard GARCH model.

The effect of at−i upon σt is through the function gγi , where gγ(x) =
|x|−γx. Figure 18.7 shows gγ(x) for several values of γ. When γ > 0, gγ(−x) >
gγ(x)) for any x > 0, so there is a leverage effect. If γ < 0, then there is a
leverage effect in the opposite direction to what is expected—positive past
values of at increase volatility more than negative past values of the same
magnitude.

Example 18.4. AR(1)/APARCH(1,1) fit to BMW returns

In this example, an AR(1)/APARCH(1,1) model with t-distributed errors
is fit to the BMW log returns. The output from garchFit is below. The
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Fig. 18.7. Plots of gγ(x) for various values of γ.

estimate of δ is 1.46 with a standard error of 0.14, so there is strong evidence
that δ is not 2, the value under a standard GARCH model. Also, γ̂1 is 0.12
with a standard error of 0.0045, so there is a statistically significant leverage
effect, since we reject the null hypothesis that γ1 = 0. However, the leverage
effect is small, as can be seen in the plot in Figure 18.7 with γ = 0.12. The
leverage might not be of practical importance.

Call:

garchFit(formula = ~arma(1, 0) + aparch(1, 1), data = bmw,

cond.dist = "std", include.delta = T)

Mean and Variance Equation:

data ~ arma(1, 0) + aparch(1, 1)

[data = bmw]

Conditional Distribution:

std

Coefficient(s):

mu ar1 omega alpha1 gamma1

4.1696e-05 6.3761e-02 5.4746e-05 1.0050e-01 1.1998e-01

beta1 delta shape

8.9817e-011.4585e+00 4.0665e+00
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Std. Errors:

based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 4.170e-05 1.377e-04 0.303 0.76208

ar1 6.376e-02 1.237e-02 5.155 2.53e-07 ***

omega 5.475e-05 1.230e-05 4.452 8.50e-06 ***

alpha1 1.005e-01 1.275e-02 7.881 3.33e-15 ***

gamma1 1.200e-01 4.498e-02 2.668 0.00764 **

beta1 8.982e-01 1.357e-02 66.171 < 2e-16 ***

delta 1.459e+00 1.434e-01 10.169 < 2e-16 ***

shape 4.066e+00 2.344e-01 17.348 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

18166 normalized: 2.9557

Description:

Sat Dec 06 09:11:54 2008 by user: DavidR

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 10267 0

Shapiro-Wilk Test R W NA NA

Ljung-Box Test R Q(10) 24.076 0.0074015

Ljung-Box Test R Q(15) 28.868 0.016726

Ljung-Box Test R Q(20) 38.111 0.0085838

Ljung-Box Test R^2 Q(10) 8.083 0.62072

Ljung-Box Test R^2 Q(15) 9.8609 0.8284

Ljung-Box Test R^2 Q(20) 13.061 0.87474

LM Arch Test R TR^2 9.8951 0.62516

Information Criterion Statistics:

AIC BIC SIC HQIC

-5.9088 -5.9001 -5.9088 -5.9058

As mentioned earlier, in the output from garchFit, the normalized log-
likelihood is the log-likelihood divided by n. The AIC and BIC values have
also been normalized by dividing by n, though this is not noted in the output.

The normalized BIC for this model (−5.9001) is very nearly the same as the
normalized BIC for the GARCH model with t-distributed errors (−5.8994),
but after multiplying by n = 6146, the difference in the BIC values is 4.30.
The difference between the two normalized AIC values, −5.9088 and −5.9071,
is even larger, 10.4, after multiplication by n. Therefore, AIC and BIC support
using the APARCH model instead of the GARCH model.
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ACF plots (not shown) for the standardized residuals and their squares
showed little correlation, so the AR(1) model for the conditional mean and
the APARCH(1,1) model for the conditional variance fit well.

shape is the estimated degrees of freedom of the t-distribution and is
4.07 with a small standard error, so there is very strong evidence that the
conditional distribution is heavy-tailed.

¤

18.12 Regression with ARMA/GARCH Errors

When using time series regression, one often observes autocorrelated residuals.
For this reason, linear regression with ARMA disturbances was introduced in
Section 14.1. The model there was

Yi = β0 + β1Xi,1 + · · ·+ βpXi,p + εi, (18.18)

where

(1− φ1 B − · · · − φp Bp)(εt − µ) = (1 + θ1 B + . . . + θq Bq)ut, (18.19)

and {ut} is i.i.d. white noise. This model is good as far as it goes, but it does
not accommodate volatility clustering, which is often found in the residuals.
Therefore, we will now assume that, instead of being i.i.d. white noise, {ut}
is a GARCH process so that

ut = σtvt, (18.20)

where

σt =

√√√√ω +
p∑

i=1

αiu2
t−i +

q∑

i=1

βiσ2
t−i, (18.21)

and {vt} is i.i.d. white noise. The model given by (18.18)–(18.21) is a linear
regression model with ARMA/GARCH disturbances.

Some software can fit the linear regression model with ARMA/GARCH
disturbances in one step. If such software is not available, then a three-step
estimation method is the following:

1. estimate the parameters in (18.18) by ordinary least-squares;
2. fit model (18.19)–(18.21) to the ordinary least-squares residuals;
3. reestimate the parameters in (18.18) by weighted least-squares with

weights equal to the reciprocals of the conditional variances from step
2.
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Fig. 18.8. (a) ACF of the externally studentized residuals from a linear model and
(b) their squared values. (c) ACF of the residuals from an MA(1)/ARCH(1) fit to
the regression residuals and (d) their squared values.

Example 18.5. Regression analysis with ARMA/GARCH errors of the Nelson–
Plosser data

In Example 12.9, we saw that a parsimonious model for the yearly log
returns on the stock index used diff(log(ip)) and diff(bnd) as predictors.
Figure 18.8 contains ACF plots of the residuals [panel (a)] and squared resid-
uals [panel (b)]. Externally studentized residuals were used, but the plots for
the raw residuals are similar. There is some autocorrelation in the residuals
and certainly a GARCH effect. R’s auto.arima selected an ARIMA(0,0,1)
model for the residuals.

Next an MA(1)/ARCH(1) model was fit to the regression model’s raw
residuals with the following results:

Call:

garchFit(formula = ~arma(0, 1) + garch(1, 0),

data = residuals(fit_lm2))

Mean and Variance Equation:

data ~ arma(0, 1) + garch(1, 0)

[data = residuals(fit_lm2)]
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Conditional Distribution: norm

Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu -2.527e-17 2.685e-02 -9.41e-16 1.00000

ma1 3.280e-01 1.602e-01 2.048 0.04059 *

omega 1.400e-02 4.403e-03 3.180 0.00147 **

alpha1 2.457e-01 2.317e-01 1.060 0.28897

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Log Likelihood:

36 normalized: 0.59

Standardised Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 0.72 0.7

Shapiro-Wilk Test R W 0.99 0.89

Ljung-Box Test R Q(10) 14 0.18

Ljung-Box Test R Q(15) 25 0.054

Ljung-Box Test R Q(20) 28 0.12

Ljung-Box Test R^2 Q(10) 11 0.35

Ljung-Box Test R^2 Q(15) 18 0.26

Ljung-Box Test R^2 Q(20) 25 0.21

LM Arch Test R TR^2 11 0.5

Information Criterion Statistics:

AIC BIC SIC HQIC

-1.0 -0.9 -1.1 -1.0

ACF plots of the standardized residuals from the MA(1)/ARCH(1) model
are in Figure 18.8(c) and (d). One sees essentially no short-term autocorrela-
tion in the ARMA/GARCH standardized residuals or squared standardized
residuals, which indicates that the ARMA/GARCH model fits the regression
residuals satisfactorily. A normal plot showed that the standardized residu-
als are close to normally distributed, which is not unexpected for yearly log
returns.

Next, the linear model was refit with the reciprocals of the conditional
variances as weights. The estimated regression coefficients are given below
along with their standard errors and p-values.

Call:

lm(formula = diff(log(sp)) ~ diff(log(ip)) + diff(bnd),

data = new_np, weights = 1/nelploss.garch@sigma.t^2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0281 0.0202 1.39 0.1685

diff(log(ip)) 0.5785 0.1672 3.46 0.0010 **

mailto:@sigma.t
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diff(bnd) -0.1172 0.0580 -2.02 0.0480 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.1 on 58 degrees of freedom

Multiple R-squared: 0.246, Adjusted R-squared: 0.22

F-statistic: 9.46 on 2 and 58 DF, p-value: 0.000278

There are no striking differences between these results and the unweighted
fit in Example 12.9. The main reason for using the GARCH model for the
residuals would be in providing more accurate prediction intervals if the model
were to be used for forecasting; see Section 18.13.

¤

18.13 Forecasting ARMA/GARCH Processes

Forecasting ARMA/GARCH processes is in one way similar to forecasting
ARMA processes—the forecasts are the same because a GARCH process
is weak white noise. What differs between forecasting ARMA/GARCH and
ARMA processes is the behavior of the prediction intervals. In times of high
volatility, prediction intervals using a ARMA/GARCH model will widen to
take into account the higher amount of uncertainty. Similarly, the prediction
intervals will narrow in times of lower volatility. Prediction intervals using
an ARMA model without conditional heteroskedasticity cannot adapt in this
way.

To illustrate, we will compare the prediction of a Gaussian white noise pro-
cess and the prediction of a GARCH(1,1) process with Gaussian innovations.
Both have an ARMA(0,0) model for the conditional mean so their forecasts
are equal to the marginal mean, which will be called µ. For Gaussian white
noise, the prediction limits are µ±zα/2σ, where σ is the marginal standard de-
viation. For a GARCH(1,1) process {Yt}, the prediction limits at time origin
n for k-steps ahead forecasting are µ± zα/2σn+k|n where σn+k|n is the condi-
tional standard deviation of Yn+k given the information available at time n.
As k increases, σn+k|n converges to σ, so for long lead times the prediction
intervals for the two models are similar. For shorter lead times, however, the
prediction limits can be quite different.

Example 18.6. Forecasting BMW log returns

In this example, we will return to the BMW log returns used in several
earlier examples. We have seen in Example 18.3 that an AR(1)/GARCH(1,1)
model fits the returns well. Also, the estimated AR(1) coefficient is small,
less than 0.1. Therefore, it is reasonable to use a GARCH(1,1) model for
forecasting.
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Fig. 18.9. Prediction limits for forecasting BMW log returns at two time origins.

Figure 18.9 plots the returns from 1986 until 1992. Forecast limits are also
shown for two time origins, November 15, 1987 and September 18, 1988. At
the first time origin, which is soon after Black Monday, the markets were very
volatile. The forecast limits are wide initially but narrow as the conditional
standard deviation converges downward to the marginal standard deviation.
At the second time origin, the markets were less volatile than usual and the
prediction intervals are narrow initially but then widen. In theory, both sets
of prediction limits should converge to the same values, µ± zα/2σ where σ is
the marginal standard deviation. In this example, they do not quite converge
to each other because the estimates of σ differ between the two time origins.

¤

18.14 Bibliographic Notes

Modeling nonconstant conditional variances in regression is treated in depth
in the book by Carroll and Ruppert (1988).

There is a vast literature on GARCH processes beginning with En-
gle (1982), where ARCH models were introduced. Hamilton (1994), Enders
(2004), Pindyck and Rubinfeld (1998), Gourieroux and Jasiak (2001), Alexan-
der (2001), and Tsay (2005) have chapters on GARCH models. There are
many review articles, including Bollerslev (1986), Bera and Higgins (1993),
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Bollerslev, Engle, and Nelson (1994), and Bollerslev, Chou, and Kroner (1992).
Jarrow (1998) and Rossi (1996) contain a number of papers on volatility in fi-
nancial markets. Duan (1995), Ritchken and Trevor (1999), Heston and Nandi
(2000), Hsieh and Ritchken (2000), Duan and Simonato (2001), and many
other authors study the effects of GARCH errors on options pricing, and
Bollerslev, Engle, and Wooldridge (1988) use GARCH models in the CAPM.
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18.16 R Lab

18.16.1 Fitting GARCH Models

Run the following code to load the data set Tbrate, which has three variables:
the 91-day T-bill rate, the log of real GDP, and the inflation rate. In this lab
you will use only the T-bill rate.

data(Tbrate,package="Ecdat")

library(tseries)

library(fGarch)

# r = the 91-day treasury bill rate

# y = the log of real GDP

# pi = the inflation rate

Tbill = Tbrate[,1]

Del.Tbill = diff(Tbill)

Problem 1 Plot both Tbill and Del.Tbill. Use both time series and ACF
plots. Also, perform ADF and KPSS tests on both series. Which series do you
think are stationary? Why? What types of heteroskedasticity can you see in
the Del.Tbill series?

In the following code, the variable Tbill can be used if you believe that series
is stationary. Otherwise, replace Tbill by Del.Tbill. This code will fit an
ARMA/GARCH model to the series.

garch.model.Tbill = garchFit(formula= ~arma(1,0) + garch(1,0),Tbill)

summary(garch.model.Tbill)

garch.model.Tbill@fit$matcoef
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Problem 2 (a) Which ARMA/GARCH model is being fit? Write down the
model using the same parameter names as in the R output.

(b) What are the estimates of each of the parameters in the model?

Next, plot the residuals (ordinary or raw) and standardized residuals in various
ways using the code below. The standardized residuals are best for checking
the model, but the residuals are useful to see if there are GARCH effects in
the series.

res = residuals(garch.model.Tbill)
res_std = res / garch.model.Tbill@sigma.t
par(mfrow=c(2,3))
plot(res)
acf(res)
acf(res^2)
plot(res_std)
acf(res_std)
acf(res_std^2)

Problem 3 (a) Describe what is plotted by acf(res). What, if anything,
does the plot tell you about the fit of the model?

(b) Describe what is plotted by acf(res^2). What, if anything, does the plot
tell you about the fit of the model?

(c) Describe what is plotted by acf(res_std^2). What, if anything, does the
plot tell you about the fit of the model?

(d) What is contained in the the variable garch.model.Tbill@sigma.t?
(e) Is there anything noteworthy in the plot produced by the code plot(res

_std)?

Problem 4 Now find an ARMA/GARCH model for the series del.log.-
tbill, which we will define as diff(log(Tbill)). Do you see any advantages
of working with the differences of the logarithms of the T-bill rate, rather than
with the difference of Tbill as was done earlier?

18.17 Exercises

1. Let Z have an N(0, 1) distribution. Show that

E(|Z|) =
∫ ∞

−∞

1√
2π
|z|e−z2/2dz = 2

∫ ∞

0

1√
2π

ze−z2/2dz =

√
2
π

.

Hint : d
dz e−z2/2 = −ze−z2/2.

mailto:@sigma.t
mailto:@sigma.t?
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2. Suppose that fX(x) = 1/4 if |x| < 1 and fX(x) = 1/(4x2) if |x| ≥ 1. Show
that ∫ ∞

−∞
fX(x)dx = 1,

so that fX really is a density, but that
∫ 0

−∞
xfX(x)dx = −∞

and ∫ ∞

0

xfX(x)dx = ∞,

so that a random variable with this density does not have an expected
value.

3. Suppose that εt is a WN(0, 1) process, that

at = εt

√
1 + 0.35a2

t−1,

and that
ut = 3 + 0.72ut−1 + at.

(a) Find the mean of ut.
(b) Find the variance of ut.
(c) Find the autocorrelation function of ut.
(d) Find the autocorrelation function of a2

t .
4. Let ut be the AR(1)/ARCH(1) model

at = εt

√
ω + α1 a2

t−1,

(ut − µ) = φ(ut−1 − µ) + at,

where εt is WN(0,1). Suppose that µ = 0.4, φ = 0.45, ω = 1, and α1 = 0.3.
(a) Find E(u2|u1 = 1, u0 = 0.2).
(b) Find Var(u2|u1 = 1, u0 = 0.2).

5. Suppose that εt is white noise with mean 0 and variance 1, that at =
εt

√
7 + a2

t−1/2, and that Yt = 2 + 0.67Yt−1 + at.
(a) What is the mean of Yt?
(b) What is the ACF of Yt?
(c) What is the ACF of at?
(d) What is the ACF of a2

t ?
6. Let Yt be a stock’s return in time period t and let Xt be the inflation rate

during this time period. Assume the model

Yt = β0 + β1Xt + δσt + at, (18.22)

where
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at = εt

√
1 + 0.5a2

t−1. (18.23)

Here the εt are independent N(0, 1) random variables. Model (18.22)–
(18.23) is called a GARCH-in-mean model or a GARCH-M model.
Assume that β0 = 0.06, β1 = 0.35, and δ = 0.22.
(a) What is E(Yt|Xt = 0.1 and at−1 = 0.6)?
(b) What is Var(Yt|Xt = 0.1 and at−1 = 0.6)?
(c) Is the conditional distribution of Yt given Xt and at−1 normal? Why

or why not?
(d) Is the marginal distribution of Yt normal? Why or why not?

7. Suppose that ε1, ε2, . . . is a Gaussian white noise process with mean 0 and
variance 1, and at and ut are stationary processes such that

at = σtεt where σ2
t = 2 + 0.3a2

t−1,

and
ut = 2 + 0.6ut−1 + at.

(a) What type of process is at?
(b) What type of process is ut?
(c) Is at Gaussian? If not, does it have heavy or lighter tails than a Gaus-

sian distribution?
(d) What is the ACF of at?
(e) What is the ACF of a2

t ?
(f) What is the ACF of ut?

8. On Black Monday, the return on the S&P 500 was −22.8%. Ouch! This
exercise attempts to answer the question, “what was the conditional prob-
ability of a return this small or smaller on Black Monday?” “Conditional”
means given the information available the previous trading day. Run the
following R code:

library(Ecdat)

library(fGarch)

data(SP500,package="Ecdat")

returnBlMon = SP500$r500[1805]

x = SP500$r500[(1804-2*253+1):1804]

plot(c(x,returnBlMon))

results = garchFit(~arma(1,0)+garch(1,1),data=x,cond.dist="std")

dfhat = as.numeric(results@fit$par[6])

forecast = predict(results,n.ahead=1)

The S&P 500 returns are in the data set SP500 in the Ecdat package.
The returns are the variable r500. (This is the only variable in this data
set.) Black Monday is the 1805th return in this data set. This code fits
an AR(1)/GARCH(1,1) model to the last two years of data before Black
Monday, assuming 253 trading days/year. The conditional distribution
of the white noise is the t-distribution (called “std” in garchFit). The
code also plots the returns during these two years and on Black Monday.
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From the plot you can see that Black Monday was highly unusual. The
parameter estimates are in results@fit$par and the sixth parameter is
the degrees of freedom of the t-distribution. The predict function is used
to predict one-step ahead, that is, to predict the return on Black Monday;
the input variable n.ahead specifies how many days ahead to forecast, so
n.ahead=5 would forecast the next five days. The object forecast will
contain meanForecast, which is the conditional expected return on Black
Monday, meanError, which you should ignore, and standardDeviation,
which is the conditional standard deviation of the return on Black Monday.
(a) Use the information above to calculate the conditional probability of

a return less than or equal to −0.228 on Black Monday.
(b) Compute and plot the standardized residuals. Also plot the ACF

of the standardized residuals and their squares. Include all three
plots with your work. Do the standardized residuals indicate that the
AR(1)/GARCH(1,1) model fits adequately?

(c) Would an AR(1)/ARCH(1) model provide an adequate fit? (Warning:
If you apply the function summary to an fGarch object, the AIC value
reported has been normalized by division by the sample size. You need
to multiply by the sample size to get AIC.)

(d) Does an AR(1) model with a Gaussian conditional distribution provide
an adequate fit? Use the arima function to fit the AR(1) model. This
function only allows a Gaussian conditional distribution.

9. This problem uses monthly observations of the two-month yield, that is,
YT with T equal to two months, in the data set Irates in the Ecdat
package. The rates are log-transformed to stabilize the variance. To fit a
GARCH model to the changes in the log rates, run the following R code.

library(fGarch)

library(Ecdat)

data(Irates)

r = as.numeric(log(Irates[,2]))

n = length(r)

lagr = r[1:(n-1)]

diffr = r[2:n] - lagr

garchFit(~arma(1,0)+garch(1,1),data=diffr, cond.dist = "std")

(a) What model is being fit to the changes in r? Describe the model in
detail.

(b) What are the estimates of the parameters of the model?
(c) What is the estimated ACF of ∆rt?
(d) What is the estimated ACF of at?
(e) What is the estimated ACF of a2

t ?
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