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Introduction

This book is about the modeling of asset returns when the normality assump-
tion does not apply. It provides an up-to-date and step-by-step description
of the tools that are useful for the modeling of non-Gaussian asset return
distributions and for option pricing in the non-Gaussian context.

1.1 Financial markets and financial time series

For more than four decades, distributions of financial asset returns have been
known to be non-Gaussian (see Mandelbrot, 1963, and Fama, 1965). The
assumption of normality is stacked against two hard facts: First, the empirical
distributions of asset returns have tails thicker than those from a normal
distribution and appear to be negatively skewed. This means more extreme
negative values, which has a very serious implication for risk management
and portfolio selection. Second, returns are time dependent. Squared returns,
absolute returns, and all measures and proxies of volatility exhibit strong
serial correlation. This is now known as volatility clustering or conditional
heteroskedasticity (Engle, 1982).

Financial modeling is all about capturing and exploiting patterns in the
data including the two phenomena mentioned above. Chapter 2 discusses the
unique statistical properties of financial market data and several so-called
stylized facts. These stylized facts will be the basis for Part II where each
chapter will tackle some specific features of financial market returns.

Chapter 3 describes the actual functioning and the microstructure of fi-
nancial markets. Here, we present some theoretical models that may help
explaining why asset returns are non-normal and time dependent. The founda-
tion is built on Clark (1973) who postulates that non-normality and volatility
clustering could be due to intermittent information arrivals.
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1.2 Econometric modeling of asset returns

Part II is concerned with the time series aspects of asset returns. Chapters
4, 5, and 7 cover models for the second, third, and fourth moments and the
tails of return distributions. These higher moments and tail measures are the
hallmarks of non-Gaussian distributions. Chapter 6 deals with the dependence
structure when the higher moments display significant departure from normal-
ity and returns appear to be time dependent. The dependence among the tail
observations, described in Chapter 7, is very different from the dependence,
described in Chapter 6, of the central and main part of the distributions,
because of the differences in the underpinning statistical theories and the im-
portant fact that financial markets do behave very differently between normal
and crisis periods.

Specifically, Chapter 4 covers models for volatility that include the better
known GARCH (Generalized Autoregressive and Conditional Heteroskedas-
ticity) class of models and some new extensions such as GARCH models with
jumps and realized volatility models. With high-frequency data becoming
more common these days, realized volatility is expected to remain an area
of active research. This chapter also describes the lesser known or lesser dis-
cussed issues on GARCH aggregation and the relationship between stochastic
volatility model in continuous time and the discrete time GARCH model.

Although time-varying volatility and volatility asymmetry may produce
thick-tail and asymmetric distributions in asset return, volatility alone can-
not explain away all the non-normality. To fully capture return distributions,
we also need models for skewness and kurtosis. Chapter 5 does exactly that
by fitting time-varying higher-moment conditional models to returns. It also
describes tests for the adequacy of these conditional high moment models.

Chapters 4 and 5 are concerned with univariate time series characteris-
tics. Chapter 6 shifts the focus to the relationships between and among the
asset return series. This involves two main tasks. First, we have to extend the
GARCH family to a (possibly large) number of assets in order to reproduce
the joint dynamic of volatility. Second, we have to capture in this multivariate
framework the non-normality of returns. Here, we move from a multivariate
GARCH model with normal distribution to one with skewed Student ¢ dis-
tribution that is designed to capture both fat-tailedness and asymmetry. We
also examine an alternative approach that circumvents some difficulties in de-
signing a multivariate distribution. The so-called copula approach is a tool
that is able to join any type of marginal distribution. It has many theoretical
appeals. But in many finance applications in practice, integration of the joint
distribution is needed. This cannot be done analytically in the copula ap-
proach and will become more and more cumbersome as the number of assets
or the dimension of the problem increases.

Chapter 7 presents an approach that is very different from all the other
chapters in this part. It deals with models for only the tails of the distribution.
We describe in this chapter various approaches for characterizing the behavior
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of extreme events. In particular, we explain how to model the distribution
of maxima over subsamples and the distribution of exceedances above a high
threshold. In a multivariate context, we also highlight the important difference
between asymptotic dependence and asymptotic independence and describe
some non-parametric statistical measures for both.

1.3 Applications of non-Gaussian econometrics

Part III presents some examples of applications of the models described in
Part II. All these applications are important and of routine use in the fi-
nance industry. Readers should be convinced, after reading this part, that
the non-Gaussian models are not only indispensable in financial modeling,
but they can also be very rewarding. Specifically, Chapter 8 deals with risk
management and the Value-at-Risk (VaR) measure introduced by the Basel
Accords. The industry benchmark, the RiskMetrics model, is based on normal
distributions. We describe alternative techniques that are more appropriate
for non-Gaussian distributions.

Chapter 9 is concerned with portfolio construction and asset allocation.
Markowitz’s mean-variance analysis is appropriate for Gaussian distributions
or quadratic utility function only.! In the context of non-normal returns, this
approach may not hold anymore. The main idea is that the investor’s expected
utility may be approximated as a function of mean, variance, but also of
higher moments of the portfolio return. A rational investor would be averse
to negative skewness and high kurtosis and in favor of positive skewness.
We will also show in this chapter how downside risk constraint affects asset
allocation decisions.

1.4 Option pricing with non-Gaussian distributions

Part IV deals with derivative assets and considers option pricing when the
underlying asset return has a non-Gaussian distribution. The seminal contri-
butions by Black and Scholes (1973) and Merton (1973) laid the foundation of
pricing by no-arbitrage and, later, pricing by equivalent martingale measure.
This model, which essentially assumes normality and time independence of
price changes, has been shown for a long time to be unable to reproduce some
well-known stylized facts such as the volatility smile or the term structure of
volatilities. As for the modeling of asset returns, option pricing models have
to incorporate the volatility clustering and the non-normality of the condi-
tional distribution. Among these models, the most well-known is the stochas-
tic volatility model and the models with jumps. Due to the mathematical

1 Only the mean and variance terms are relevant when asset pricing is based on a
quadratic utility function.
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content of these option pricing models, we have provided five support chap-
ters in the appendices in Part V, so that Part IV is not overly cluttered by
mathematical abstraction. We have made every effort in ensuring that these
two parts are accessible to non-mathematician readers.

In Chapter 10, we go through the fundamental building blocks of the
Black-Scholes-Merton (BSM) model and use it as an example to introduce
the key mathematical concepts such as Brownian motion and stochastic cal-
culus (Chapter 13) and martingale and changing measure (Chapter 14). The
BSM model is based on the underlying asset return having a normal distri-
bution. Almost as soon as the importance of this model was recognized, the
implied volatility smile was reported, indicating that the normality assump-
tion is inconsistent with option price data. Nevertheless and despite the BSM
pricing irregularities, the popularity of the BSM model survives even today.

From the BSM model it emerges that options can be priced using risk neu-
tral densities (RND). Breeden and Litzenberger (1978) were the first to realize
that the RND can be recovered from the option prices. Not only that RND
can be used for pricing other, typically the less liquid and more exotic, deriv-
atives written on the same underlying, but also researchers have found RND
to be more informative and more responsive to news than the actual densities
obtained from the prices of the underlying asset. But, the most important fact
is that these empirically obtained RNDs are almost exclusively non-Gaussian.
Chapter 11 covers a whole range of parametric and non-parametric meth-
ods for extracting RNDs. These techniques do not assume a specific model
for the underlying asset. This is the reason why we called this chapter the
“non-structural” approach to option pricing.

In the last chapter, Chapter 12, we put extensions of the BSM model into
what we call “structural” option pricing models: structural in the sense that
we now have a specific dynamic for the underlying asset price and sometimes
a specific dynamic for the volatility also. This chapter is the most mathemati-
cally demanding and would require the support of Chapters 15, 16, and 17 for
the mathematically less inclined readers. But this chapter also truly reflects
the non-Gaussian nature of the underlying asset distributions in that jumps
of “all shapes and sizes” are permitted at both return and volatility levels. At
the time of writing, this is the cutting edge of option pricing as we know it!





