Backtesting Risk Models

Amath 546/Econ 589
Eric Zivot
Spring 2013
Updated: May 1, 2013

© Eric Zivot 2008
Backtesting Terminology: Rolling Forecasts

Example: 10 yr sample 1999-2009 (250 trading days per year)
T = 2500 days, $W_E = 500$ days, $W_T = 2000$ days
Rolling 1-step ahead forecasts

<table>
<thead>
<tr>
<th>Start date</th>
<th>End date</th>
<th>VaR Forecast date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-01-01</td>
<td>2000-12-31</td>
<td>VaR(2001-01-01)</td>
</tr>
<tr>
<td>1999-01-02</td>
<td>2001-01-01</td>
<td>VaR(2001-01-02)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2007-12-31</td>
<td>2009-12-30</td>
<td>VaR(2009-12-31)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t</th>
<th>$t + W_E - 1$</th>
<th>VaR($t+W_E$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>VaR(501)</td>
</tr>
<tr>
<td>2</td>
<td>501</td>
<td>VaR(502)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1999</td>
<td>2499</td>
<td>VaR(2500)</td>
</tr>
</tbody>
</table>

© Eric Zivot 2008
Backtesting Unconditional VaR Models

set up estimation window and testing window
> n.obs = nrow(MSFT.ret)
> w.e = 1000 # estimation window
> w.t = n.obs - w.e # test window
> alpha = 0.99

loop over testing sample, compute VaR and record hit rates
backTestVaR <- function(x, p = 0.95) {
 normal.VaR = as.numeric(VaR(x, p=p, method="gaussian"))
 historical.VaR = as.numeric(VaR(x, p=p, method="historical"))
 modified.VaR = as.numeric(VaR(x, p=p, method="modified"))
 ans = c(normal.VaR, historical.VaR, modified.VaR)
 names(ans) = c("Normal", "HS", "Modified")
 return(ans)
}
> VaR.results = rollapply(as.zoo(MSFT.ret), width=w.e,
+ FUN = backTestVaR, p=0.99,
+ by.column = FALSE,
+ align = "right")
> VaR.results = lag(VaR.results, k=-1)
> chart.TimeSeries(merge(MSFT.ret, VaR.results),
+ legend.loc="topright")

© Eric Zivot 2012
Backtesting Unconditional VaR Models

Notice how risk drops slowly as window rolls through W_T.

Date

Value

W_E W_T
Summarize VaR violations

```r
> violations.mat = matrix(0, 3, 5)
> rownames(violations.mat) = c("Normal", "HS", "Modified")
> colnames(violations.mat) = c("En1", "nl", "1-alpha",
+                              "Percent", "VR")
> violations.mat[, "En1"] = (1-alpha)*w.t
> violations.mat[, "1-alpha"] = 1 - alpha

> for(i in colnames(VaR.results)) {
+   VaR.violations = as.zoo(MSFT.ret[index(VaR.results), ])
+   < VaR.results[, i]
+   violations.mat[i, "nl"] = sum(VaR.violations)
+   violations.mat[i, "Percent"] = sum(VaR.violations)/w.t
+   violations.mat[i, "VR"]
+     = violations.mat[i,"nl"]/violations.mat[i, "En1"]
+ }
```
Summary of VaR Violations

> violations.mat

<table>
<thead>
<tr>
<th>Enl</th>
<th>n1</th>
<th>l-alpha</th>
<th>Percent</th>
<th>VR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>20.82</td>
<td>0.01</td>
<td>0.018252</td>
<td>1.8252</td>
</tr>
<tr>
<td>HS</td>
<td>20.82</td>
<td>0.01</td>
<td>0.015370</td>
<td>1.5370</td>
</tr>
<tr>
<td>Modified</td>
<td>20.82</td>
<td>0.01</td>
<td>0.001921</td>
<td>0.1921</td>
</tr>
</tbody>
</table>

Results:

Normal VaR and HS underforecast risk

Modified (Cornish-Fisher) VaR overforecasts risk
Normal VaR Violations
Rolling VaR estimates $W_E=1000$

$A = 1\%$
$E[n_1] = 20.82$ with $W_T = 2082$
$N_1 = 38$
Percent $= 38/2082 = 1.8\%$
Backtesting Unconditional VaR

Use rugarch VaRTest() function

> VaR.test = VaRTest(1-alpha,
+ actual=coredata(MSFT.ret[index(VaR.results),]),
+ VaR=coredata(VaR.results[,"Normal"]))

> names(VaR.test)
[1] "expected.exceed" "actual.exceed" "uc.H0" "uc.LRstat" "uc.critical"
[6] "uc.LRp" "uc.Decision" "cc.H0" "cc.LRstat" "cc.critical"

LR test for correct # of exceedances (Kupiec Test)

> VaR.test[1:6]
$expected.exceed
[1] 20
$actual.exceed
[1] 38
$uc.H0
[1] "Correct Exceedances"
$uc.LRstat
[1] 11.51
$uc.critical
[1] 3.841
$uc.LRp
[1] 0.000692
$uc.Decision
[1] "Reject H0"

Reject H0: VaR model produces the correct number of exceedances at the 1% level
Backtesting Unconditional VaR

LR tests for independence of exceedances
> VaR.test[8:12]
$cc.H0
[1] "Correct Exceedances & Independent"

$cc.LRstat
[1] 23.69

$cc.critical
[1] 5.991

$cc.LRp
[1] 7.17e-06

$cc.Decision
[1] "Reject H0"
Backtesting Conditional VaR: Rolling GARCH

> MSFT.garch11.roll = ugarchroll(garch11.spec, MSFT.ret, n.ahead=1,
+ forecast.length = w.t,
+ refit.every=20, refit.window="moving",
+ calculate.VaR=TRUE, VaR.alpha=0.01)

Warning messages:
1: In .makefitmodel(garchmodel = "sGARCH", f = .sgarchLLH, T = T, m = m, : NaNs produced
2: In .makefitmodel(garchmodel = "sGARCH", f = .sgarchLLH, T = T, m = m, : NaNs produced
3: In .makefitmodel(garchmodel = "sGARCH", f = .sgarchLLH, T = T, m = m, : NaNs produced
4: In .makefitmodel(garchmodel = "sGARCH", f = .sgarchLLH, T = T, m = m, : NaNs produced
6: In .makefitmodel(garchmodel = "sGARCH", f = .sgarchLLH, T = T, m = m, : NaNs produced

Out-of-sample forecast period

© Eric Zivot 2012
GARCH VaR Forecasts

> plot(MSFT.garch11.roll)

Make a plot selection (or 0 to exit):

1: Density Forecast
2: Sigma Forecast
3: Series Forecast
4: VaR Forecast
5: Fit Coefficients (with s.e. bands)

> plot(MSFT.garch11.roll, which=4)
Normal GARCH VaR Forecasts
Rolling GARCH Coefficients

sGARCH fit coefficients (across 105 refits) with robust s.e. bands

© Eric Zivot 2008
Evaluating GARCH VaR Forecasts

> report(MSFT.garch11.roll, type="VaR")

VaR Backtest Report
===
Model: sGARCH-norm
Backtest Length: 2082
Data:

alpha: 1%
Expected Exceed: 20.8
Actual VaR Exceed: 35
Actual %: 1.7%

Unconditional Coverage (Kupiec)
Null-Hypothesis: Correct Exceedances
LR.uc Statistic: 8.098
LR.uc Critical: 3.841
LR.uc p-value: 0.004
Reject Null: YES

Conditional Coverage (Christoffersen)
Null-Hypothesis: Correct Exceedances and Independence of Failures
LR.cc Statistic: 9.296
LR.cc Critical: 5.991
LR.cc p-value: 0.01
Reject Null: YES

GARCH(1,1) VaR estimates are not much better than unconditional estimates based on statistical tests