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1 Reading

• FRF chapter 3.
• QRM chapter 3, sections 1-3.

• FMUND chapter 6.

2 Data and Programs

Download daily adjusted closing prices on Microsoft and the S&P 500 over

the period 2000-01-03 to 2012-04-10 and compute the continuously compound

returns. You will find my R scripts on the class webpage helpful for this

assignment.

3 Univariate Filtered Historical Simulation

An interesting semi-parametric way to compute VaR and ES combines his-

torical simulation with GARCH estimates of volatility. This approach is

called filtered historical simulation. Here, filtering refers to using the esti-

mated GARCH volatility to create standardized innovations from which we

compute empirical quantiles for VaR and ES. The following exercises explain

how the method works.
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1. Fit a normal-GARCH(1,1) model

 = +   = 

2 =  + 2−1 + 2−1

to the full sample of daily cc returns on MSFT. Extract the estimated

standardized residuals ̂ = ̂̂ Show a normal-QQ plot for ̂ Does

it look normally distributed?

2. Compute the 1-day ahead 99% VaR based on the normal GARCH(1,1)

model. Recall,

[ 


+1|99 = ̂+ ̂+1| × 01 (1)

where ̂+1| is the 1-day ahead GARCH(1,1) predicted conditional
volatility

3. Compute the unconditional 1-day ahead 99% VaR based on historical

simulation. Verify, that you can also compute HS using the formula

[ 


99 = ̂+ ̂ × ̂̂01

where ̂ and ̂ are the sample mean and standard deviation and ̂̂01 is

the 1% quantile of the standardized returns ̂ = ( − ̂)̂

4. Compute the conditional 1-day ahead 99% VaR based on filtered his-

torical simulation using the equation

[ 


+1|99 = ̂+ ̂+1| × ̂̂01

where ̂+1| is the 1-day ahead GARCH(1,1) predicted conditional
volatility and ̂̂01 is the 1% quantile of the GARCH(1,1) standardized

residuals ̂ = ̂̂ This differs from the normal-GARCH(1,1) VaR

because we use the empirical quantile of ̂ and not the normal quantile.

4 Rolling Covariances and Correlations

1. Using a 20-day moving window, compute and plot rolling covariances

and correlations. Briefly comment on what you see. Hint: Use the

function rollapply() from the zoo package. Note, you will have to

coerce your data to a “zoo” object in order for rollapply to work

correctly.
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5 EWMA Covariances and Correlations

1. Let r = ( )
0 Use the covEWMA() function on the class

webpage to compute the EWMA covariance matrix estimates

Σ̂
 = (1− )εε

0
 + Σ̂

−1
ε = r − μ̂

using  = 094 (the magic number from RiskMetrics). The covEWMA()

function will return a  × 2 × 2 array of covariance matrices at each
date.

2. Extract the conditional covariance estimates ̂
12 and the condi-

tional correlation estimates 
12 = ̂

12 ̂
1 × ̂

2 and

plot them. Compare your results to the rolling estimates. Hint: To

compute the conditional correlations, use the functions lapply() and

cov2cor().

6 DCC Covariances and Correlations

1. Let r = ( )
0 Using the ddcfit() function from the

rmgarch package, Estimate the normal-DCC(1,1) model

r = μ+ ε ε = Σ
12
 z z ∼ (0 I2)

Σ = DRD

 =

µ
1 0

0 2

¶
  =

µ
1 12

12 1

¶
where 1 and 2 are univariate GARCH(1,1) volatilities and 12 is

the GARCH(1,1) conditional correlation between the univariate GARCH(1,1)

standardized residuals. Briefly comment on the estimated coefficients

and the fit of the model.

2. Plot the estimated in-sample conditional covariances and correlations.

Compare the EWMA and rolling estimates.
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7 Forecasting Correlations

1. Using the Estimated DCC(1,1) model, compute (using dccforecast()

function) and plot the first 100 h-step ahead forecasts of conditional

covariance and correlation.

2. What are the h-step ahead forecasts of conditional covariance and cor-

relation from the EWMA model?
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