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Empirical Application

•Mittnik, Kuester and Paolella (2006). “Value-at-Risk 
Prediction: A Comparison of Alternative Strategies” JournalPrediction: A Comparison of Alternative Strategies , Journal 
of Financial Econometrics.

• Compares out-of-sample performance of several VaR forecasts using 30 years of daily 
data on NASDAQ composite index

• Computes VaR violations, tests for conditional and unconditional coverage based on 
rolling window predictions

• Finds GARCH model with fat-tailed distribution is best model
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Data

•Long portfolio in the NASDAQ composite index

•Compute daily continuously compounded returns from daily•Compute daily continuously compounded returns from daily 
close prices

• 2/8/1971 – 6/22/2001
• 7681 observations
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VaR Models

Unconditional Models
E i i l til (HS)

Conditional GARCH(1,1) 
Models• Empirical quantile (HS)

• Normal quantile
• Student’s t quantile
• Skewed-t quantile
• Extreme value distn

Models
• Normal
• Student’s t
• Skewed Student’s t
• Mixture normal
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quantile (EVT) • Mixture GED
• Normal + EVT
• Student’s t + EVT

Models are estimated on 1000-
day rolling windows incremented 
by 1 day
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Rolling one-step ahead VaR0.01 predictions
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VaR Prediction Performance: unconditional models
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VaR prediction performance: AR(1)-GARCH(1,1)
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Deviation probability plot for GARCH(1,1) models

100(F F)

F = empirical cdf of et
Fu = cdf of uniform distn

100(Fu – F)
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