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abstract

Given the growing need for managing financial risk, risk prediction plays an increasing
role in banking and finance. In this study we compare the out-of-sample performance
of existing methods and some new models for predicting value-at-risk (VaR) in a
univariate context. Using more than 30 years of the daily return data on the NASDAQ
Composite Index, we find that most approaches perform inadequately, although
several models are acceptable under current regulatory assessment rules for model
adequacy. A hybrid method, combining a heavy-tailed generalized autoregressive
conditionally heteroskedastic (GARCH) filter with an extreme value theory-based
approach, performs best overall, closely followed by a variant on a filtered historical
simulation, and a new model based on heteroskedastic mixture distributions. Condi-
tional autoregressive VaR (CAViaR) models perform inadequately, though an exten-
sion to a particular CAViaR model is shown to outperform the others.
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The market crash in October 1987, recent crises in emerging markets, and disas-

terous losses resulting from trading activities of institutions—such as Orange

County, Long-Term Capital Management Fund, and Metallgesellschaft—have

increased the regulatory demand for reliable quantitative risk management
tools. See, for example, Gallati (2003:chap. 6) for a set of detailed case studies.

The value-at-risk (VaR) concept has emerged as the most prominent measure of

downside market risk. It places an upper bound on losses in the sense that these

will exceed the VaR threshold with only a small target probability, �, typically

chosen between 1% and 5%. More specifically, conditional on the information

given up to time t, the VaR for period t+h of one unit of investment is the negative

�-quantile of the conditional return distribution, that is,

VaR�
tþh :¼ �Q� rtþhjF tð Þ ¼ � inf

x
x 2 R : P rtþh � x F tjð Þ � �f g, 0 < � < 1, ð1Þ

where Q�(�) denotes the quantile function, rt is the return on an asset or portfolio

in period t, and F t represents the information available at date t. We subsequently

suppress superscript � for simplicity.

Regardless of some of its criticisms,1 regulatory requirements are heavily geared
toward VaR.2 In light of this practical relevance of the VaR concept, the need for

reliable VaR estimation and prediction strategies arises. The purpose of this article is

to compare alternative approaches for univariate VaR prediction, introduce some

new models and provide some guidance for choosing an appropriate strategy.

The work by Bao, Lee, and Saltoglu (2003, 2004) is also concerned with VaR

prediction and is a good complement to this article, as they use different data,

models, and loss functions. Moreover, their findings, where there is overlap,

agree with ours.3 Other comparison-type studies include Pritsker (1997), although

1 The appropriateness of VaR as a risk measure has been questioned. Evaluating prospects by VaR for varying

� 2 ð0; 1Þ is equivalent to checking for first-order stochastic dominance [as, e.g., implied by the results in

Bawa (1978)] and thus does not use the concept of risk aversion to rank prospects. But, by taking just one

target probability level, �, in contrast to using first-order stochastic dominance, any investment will be ranked.

Thus, for a specific �, VaR is a risk measure [cf. Pedersen and Satchell (1998)].

According to the definition in Artzner et al. (1999), VaR fails to be a coherent risk measure. It can lead to

Pareto-inferior allocations if agents are risk averse. Further, VaR can fail to appropriately account for portfolio

risk diversification [Artzner et al. (1999)].

Further accounts of the problems with VaR can be found in Dowd (2002:sect. 2.2.3) and Gallati (2003:

sect. 5.8).
2 Besides risk reporting to senior management and shareholders, VaR is applied for allocating financial

resources and risk-adjusted performance evaluation [cf. Jorion (1997:chap. 1)]. Furthermore, with the advent

of the internal model approach [Basle Committee (1995, 1996a)], banks in the main financial jurisdictions may

use their in-house VaR models for calculation of regulatory market-risk capital requirements.
3 Bao, Lee, and Saltoglu only use existing models and do not propose any extensions. One consequence of

this, for example, is their finding that the two CaViaR models they considered do not perform well under

all circumstances—which precisely agrees with our results, based on different data. However, by a

judicious choice of model extension, we demonstrate that CaViaR-based models can have attractive

performance properties. A second consequence involves their finding that EVT models applied to

Gaussian-GARCH filtered returns data only perform well at the lower quantiles—which, interestingly

enough, again agrees with our results. By relaxing the Gaussian assumption, we are able to suggest a

model that performs well across the entire quantile range between 1% and 5%.
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in that article, none of the methods considered herein, namely generalized auto-

regressive conditional heteroskedasticity (GARCH), mixed normal-GARCH

(MN-GARCH), extreme value theory (EVT), and conditional autoregressive VaR

(CAViaR), are used; and Brooks et al. (2005), who also use a variety of models (but
none of which is identical to those in our study), including variants of the

unconditional EVT approach and the regular GARCH model coupled with

resampling strategies, and also a variety of nonparametric tail estimators.4

To the extent that a commercial bank and the regulator are interested in the

aggregate VaR across different trading activities, the question arises whether first

to aggregate profit and loss data and proceed with a univariate forecast model for

the aggregate, or to start with disaggregate data. The latter approach leads to

multivariate structural portfolio VaR models. In principle, these have the advan-
tage of being suitable for sensitivity and scenario analysis and of conveying

information about the structure of risk within a portfolio. However, as Berkowitz

and O’Brien (2002) show in a recent study using actual commercial banks’ VaR

models and their profit and loss data, the aggregation and modeling problems

involved may easily render a structural attempt to aggregate VaR poor for fore-

casting purposes. While large banks and other financial institutions will ulti-

mately require a reliable multivariate approach for some purposes, there are

situations for which the univariate approach is adequate (e.g., certain growth
funds, index-tracking funds, or when the focus is on forecasting aggregate VaR

only). In their sample, for instance, Berkowitz and O’Brien (2002) illustrate that

the complicated structural models were not able to outperform a simple univari-

ate normal autoregressive moving average (ARMA)-GARCH model estimated on

the aggregate profit and loss data when the aim was to forecast aggregate

portfolio VaR. In addition, the reduced-form GARCH model turned out to yield

less conservative VaR forecasts and hence would have been cheaper to imple-

ment. Univariate models therefore are at least a useful complement to large
structural models and may even be sufficient for forecasting portfolio VaR.

Finally, establishing which univariate models appear most promising (and least

so) could help in deciding which multivariate models are worth pursuing (and

which not). Consequently we restrict attention to the univariate case.

For implementing univariate VaR-based measures, one seeks a precise quan-

tile estimate relatively far out in the left tail of the return distribution for some

specified future date. Existing approaches for obtaining such an estimate may be

classified as follows: historical simulation simply utilizes empirical quantiles
based on the available (possibly prefiltered) past data; fully parametric models

describe the entire distribution of returns, including possible volatility dynamics;

extreme value theory parametrically models only the tails of the return distribu-

tion; and, finally, quantile regression directly models a specific quantile rather

than the whole return distribution.

4 Overall, the results in Brooks et al. (2005) favor the EVT and GARCH approaches, though their conclu-

sions are based only on the 5% VaR using a holdout period of only 250 days, for three daily series from

the London futures market over the period 1991 to 1997.
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Below, we provide out-of-sample performance comparisons of models aris-

ing from these alternative strategies. The assessment is based on daily return data

on the NASDAQ Composite Index, which is a typical representative of a portfolio

of volatile financial assets. We show that, with only a few exceptions, all of the
methods perform less than is desirable from a statistical viewpoint, although this

may go undetected by the current regulatory assessment rules for model ade-

quacy. In addition, we advance methodological concepts to VaR modeling by

extending the EVT framework as applied in McNeil and Frey (2000) and by

introducing a new specification for VaR quantile regressions. Both measures

lead to significant improvements in out-of-sample VaR forecasts.

The remainder of the article is organized as follows. Section 1 briefly sum-

marizes the major statistical approaches to VaR estimation. Section 2 examines
methods for testing the adequacy of VaR forecasts. In Section 3 we describe the

data and discuss the empirical results of the alternative forecasting methods. The

final section provides concluding remarks and briefly mentions some of the issues

relevant for multistep prediction. Some technical details are given in the appendix.

1 STATISTICAL APPROACHES TO VaR

In practice, VaR prediction is hampered by the fact that financial returns exhibit

‘‘nonstandard’’ statistical properties. Specifically, they are not independently and

identically distributed (iid) and, moreover, they are not normally distributed. This

is reflected by three widely reported stylized facts: (i) volatility clustering, indi-

cated by high autocorrelation of absolute and squared returns; (ii) substantial

kurtosis, that is, the density of the unconditional return distribution is more

peaked around the center and possesses much fatter tails than the normal density;
and (iii) mild skewness of the returns, possibly of a time-varying nature [see, e.g.,

Harvey and Siddique (1999), Rockinger and Jondeau (2002)]. As a consequence,

‘‘standard’’ methods, based on the assumption of iid-ness and normality, tend not

to suffice, which has led to various alternative strategies for VaR prediction. The

most prominent and/or most promising of these are outlined in the following

subsections.

1.1 Historical Simulation

Arguably the simplest way to estimate VaR is to use the sample quantile estimate

based on historic return data, which is referred to as historical simulation (HS).
There are several varieties of this method, with various advantages and disad-

vantages [see Dowd (2002:sect. 4.5), Christoffersen (2003:chap. 5), and the

references therein for detailed discussion]. We entertain the most popular way,

which we call (naive) HS, and the most successful way, which is filtered historical

simulation (FHS).

For HS, the VaR estimate for t + 1 is given by the empirical �-quantile, Q̂�ð�Þ,
of a moving window of w observations up to date t, that is, dVaRtþ1 ¼
�Q̂� rt; rt�1:::; rt�wþ1ð Þ: For example, with a moving window of length, say,
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w ¼ 1000 observations, the 5% VaR estimate is simply the negative of the 50th

sample order statistic. Notice that, besides ignoring the oftentimes blatant non-iid

nature of the data, predictions extending beyond the extreme returns observed

during the past w observations are not possible with this method. Also, the
resulting VaR estimates can exhibit predictable jumps when large negative

returns either enter into or drop out of the window.

For FHS, a location-scale model such as Equations (3) and (4) below is used

to prefilter the data. VaR forecasts are then generated by computing the VaR

from paths simulated using draws from the filtered residuals. Barone-Adesi,

Giannopoulos, and Vosper (1999, 2002) and Pritsker (2001) show that this method

performs rather well, which agrees with our findings, as detailed below.

1.2 Fully Parametric: Location-Scale

Fully parametric models in the location-scale class are based on the assumption

that returns belong to a location-scale family of probability distributions of the
form

rt ¼ �t þ �t ¼ �t þ �tzt, ð2Þ

where location �t and scale �t are F t�1-measurable parameters and zt
iid
� fzð�Þ,

where fZ is a zero-location, unit-scale probability density that can have additional

shape parameters (such as the degrees of freedom parameter in the Student’s t

distribution). The original ARCH and GARCH models took the zt to be Gaussian,

though this assumption was soon realized to be inadequate. Its replacement with

a fat-tailed, possibly skewed distribution was a natural and quite effective exten-
sion. Many candidate distributions have been entertained; see, for example, the

survey of Palm (1996) and the references therein for details.

The h-period-ahead VaR forecast based on information up to time t isdVaRtþh ¼ �ð�̂tþh þ �̂tþhQ�ðzÞÞ; where Ql(z) is the �-quantile implied by fZ.

Approaches differ with respect to specification of the conditional location, mt+h,

the conditional scale, st+h, and the density, fZ.

Unconditional parametric models set �t � � and �t � �; thereby assuming

that the returns are iid with density ��1fZð��1ðrt � �ÞÞ. Conditionally homoske-
dastic parametric models allow for a time-varying conditional mean, possibly

captured by an ARMA(p, q) process, that is,

�t ¼ a0 þ
Xp

i¼1

airt�i þ
Xq

j¼1

bj �t�j, ð3Þ

with �t � �; t ¼ 1; . . . ;T: In light of the observed volatility clustering, this model

class will be only of marginal use. Instead, conditionally heteroskedastic para-

metric models, which allow the scale parameter to be a function of past informa-

tion, are frequently used. The most popular formulation is the GARCH(r, s)

model
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�2
t ¼ c0 þ

Xr

i¼1

ci �
2
t�i þ

Xs

j¼1

dj�
2
t�j, ð4Þ

introduced by Bollerslev (1986).

In the empirical analysis below, we utilize three different assumptions for the

innovation distribution, fZ, in Equation (2): the normal; the Student’s t with � 2 Rþ
degrees of freedom (in short, t distribution); and the generalized asymmetric t (in

short, skewed t), with density

f z; d,�,�ð Þ ¼ C 1þ �z�ð Þd

�

 !��þ1
d

Iðz < 0Þ þ C 1þ ðz=�Þ
d

�

 !��þ1
d

Iðz � 0Þ, ð5Þ

where d; v; � 2 Rþ; Ið�Þ is the indicator function, C ¼ ½ð�þ ��1Þd�1�1=dBðd�1; �Þ��1;

and B (�, �) denotes the beta function. The rth raw integer moment, 0 � r < � d; for

the skewed t is

ð�1Þr��ðrþ1Þ þ �rþ1

��1 þ �
B rþ1

d ,� � r
d

� �
B 1

d ,�
� � �r=d,

from which, for example, variance, skewness, and kurtosis can be computed if

they exist. The cumulative distribution function (cdf) of the skewed t (as required

for VaR calculation) is given by

FðzÞ ¼
ILð�,1=dÞ

1þ�2 , if z � 0,

IUð1=d,�Þ
1þ��2 þ 1þ �2

� ��1
, if z > 0,:

8<:
where L ¼ �= � þ �z�ð Þd

h i
, U ¼ z=�ð Þd= � þ z=�ð Þd

h i
, and

Ixða,bÞ ¼ Bxða,bÞ
Bða,bÞ ¼

1

Bða,bÞ

Z x

0

ta�1ð1� tÞb�1dt ða,b > 0Þ

is the incomplete beta ratio. GARCH-type models coupled with the skewed t

distribution have been frequently found to-deliver excellent forecast results; see,

for example, Mittnik and Paolella (2000), Giot and Laurent (2004), and the refer-

ences therein.

1.3 Fully Parametric: Dynamic Feedback

A less obvious parametric alternative to the location-scale model discussed above

is to link a GARCH-type structure to a discrete mixture of normal distributions,

allowing for dynamic feedback between the normal components. Numerous

authors have empirically shown that a mixture of normals (with between two

and four components) can fit the unconditional distribution of asset returns
extremely well, and, more recently, several ways of using the mixed normal

distributional assumption with GARCH-type structures have been considered.

These are reviewed in Haas, Mittnik, and Paolella (2004a, b), in which a general
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model structure is proposed that nests all of these attempts, and general

stationarity conditions are derived. With one component, the model reduces to

the usual GARCH with normal innovations. The model is appealing because it

allows for an economic interpretation in terms of information flows between
groups of agents [see the discussion and references in Haas, Mittnik, and Paolella

(2004a)] and, from a practical viewpoint, was shown to deliver competitive VaR

forecasts.

Briefly, time series �tf g is generated by an n-component mixed normal

GARCH(r, s) process (denoted MixN-GARCH) if the conditional distribution of

�t is an n-component mixed normal with zero mean, that is,

�t F t�1 �MNj w,m,s2
t

� �
, ð6Þ

where w ¼ !1; . . . ; !nð Þ, m ¼ �1; . . . ; �nð Þ, s2
t ¼ �2

1t; . . . ; �2
nt

� �
, and the mixed nor-

mal density is given by

fMN y; w, m,s2
t

� �
¼
Xn

j¼1

!j� y;�j,�
2
jt

� �
,

� is the normal pdf, !j2 (0, 1) with
Pn

j¼1 !j ¼ 1 and, to ensure zero mean,

�n ¼ �
Pn�1

j¼1 !j=!n

� �
�j. The ‘‘law of motion’’ for the component variances,

denoted by �
ð2Þ
t , is given by the GARCH-like structure

s ð2Þt ¼ 	0 þ
Xr

i¼1

g i�
2
t�iþ

Xs

j¼1

Yjs
ð2Þ
t�j, ð7Þ

where g i ¼ 	i1; 	i2; . . . ; 	inð Þ0, i = 0, . . ., r, are n 	 1 vectors, and Yj, j ¼ 1, . . ., s, are
n	 n matrices. We restrict Yj to be diagonal, which, as discussed in Haas, Mittnik,

and Paolella (2004a), yields a much more parsimonious model with little loss in

the quality of in-sample fit and forecasting ability.5

It is plausible that the component of the mixture assigned to the most volatile

observations does not require a GARCH structure, that is, occasionally occurring

jumps in the level of volatility may be captured by a component with a relatively

large, but constant, variance. We denote by MixN(n, g) the model given by

Equations (6) and (7), with n component densities, but such that only g, g � n,
follow a GARCH(1,1) process (and n – g components are restricted to be constant).

In the empirical work in Section 4, we take r = s ¼ 1, and, regarding n and g,

consider the three cases MixN(2, 2), MixN(3, 2), and MixN(3, 3). As for the

location-scale models in Section 2.2, an ARMA structure can also be imposed

onto the returns; in the AR(1) case, as used below, this is rt ¼ a0 þ a1rt�1 þ �t.

5 For n > 1, the MN-GARCH model (with or without the diagonal restriction on the Yj matrices) has the

interesting property that the skewness implied by the (fitted) model is time varying. Thus the MN-

GARCH model can also account for this stylized fact, and does so in a different way than otherwise

considered in the literature.
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Anticipating our empirical results, the MixN(3, 3) and, particularly for smaller

sample sizes, the MixN(3, 2), perform reasonably well, though they are still

inferior to some of the other models entertained. Similar to replacing the normal

assumption in a standard GARCH model, one ad hoc remedy is to replace the
mixed normality assumption by a more flexible (symmetric) distribution. For

example, Haas, Mittnik, and Paolella (2004a) used a Student’s t for each compo-

nent. In this article, we consider instead the generalized exponential distribution

(GED) for which the normal is a genuine special case, instead of a limiting case.

In addition to fatter tails, it also allows for thinner tails, which we will see below

may be beneficial in some circumstances.

The location-zero, scale-one GED density with exponent p is given by

f x; pð Þ ¼ p

2� p�1ð Þ exp � xj jpf g, p 2 Rþ: ð8Þ

For p > 2, the tails are thinner than those of the normal. After rescaling, the

normal and Laplace distributions arise as special cases for p ¼ 2 and p ¼ 1,

respectively. As p ! 1, the GED approaches a uniform distribution. The cdf is

required for VaR calculations; straightforward calculation shows that the cdf for

x � 0 is given by

F x; pð Þ ¼ 1

2
1� �� �xð Þp p�1

� �� �
, x � 0, ð9Þ

where �� is the incomplete gamma ratio. The symmetry of the density implies that

FðxÞ ¼ 1� Fð�xÞ, from which F(x) for x > 0 can be computed using Equation (9).

We denote by MixGED(n, g) the described GARCH(1,1) mixture with n GED

components, each with shape parameter pi, i ¼ 1, . . .,n. These additional n para-

meters are (as usual) not prespecified, but jointly estimated along with the

remaining ones.

1.4 Extreme Value Theory

Extreme value theory is concerned with the distribution of the smallest- and
largest-order statistics and focuses only on the tails of the return distribution. A

comprehensive overview of the subject is provided by Embrechts, Klüppelberg,

and Mikosch (1997), while Christoffersen (2003) gives a highly accessible and

streamlined account. We follow convention and restrict attention to the right tail,

an implication of which is that, if the left tail of the data is of interest (as is more

often the case in a financial risk context), then the EVT analysis should be applied

to the absolute value of the negative returns.

To briefly review the concepts that will be required in the subsequent
analysis, let Xtf gT

t¼1 be a sequence of iid random variables, and

MT ¼ max X1;X2; . . . ;XTð Þ. If there exist norming constants cT > 0 and dT 2 R

and some nondegenerate distribution function H such that

MT � dT

cT
�!d H, ð10Þ
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then, for 1 + 
x > 0,

H
ðxÞ ¼ exp � 1þ 
xð Þ�
1



n o
, if 
 6¼ 0,

exp � exp �xf gf g, if 
 ¼ 0,

(

where H
 is called the generalized extreme value (GEV) distribution

[cf. Embrechts, Klüppelberg, and Mikosch (1997: 121, 152)]. In other words,

there is one, and only one, possible family of limiting distributions for sample
maxima. The random variable X, with distribution function F, is then said to

belong to the maximum domain of attraction of an extreme value distribution; in

short, F2MDA(H
).

Parameter 
 is crucial because it governs the tail behavior of F(x). Distribu-

tions F2MDA(H
) are heavy tailed for 
 > 0, which includes inter alia the Pareto

distribution and the stable Paretian distributions. For 
 ¼ 0, the tail decreases at an

exponential rate, as is the case for the normal distribution, while distributions

with 
 < 0 have a finite right end point. Indeed, MDA(H
) includes essentially all
the common continuous distributions occurring in applied statistics.

Consider now the distribution function of excesses, Y ¼ X – u, of the iid

random variable X over a high, fixed threshold u, that is,

FuðyÞ ¼ PðX � u � y X > uÞ, y � 0:j

For excesses over thresholds, a key result, due to Pickands (1975), is that the

generalized Pareto distribution (in short, GPD)

G
,�ðyÞ ¼ 1� 1þ 
y
�

� ��1



, if 
 6¼ 0,

1� e�
y
�, if 
 6¼ 0,

8<: ð11Þ

with support

y � 0, if 
 � 0,

0 � y � ��=
, if 
 < 0,

and scale parameter �, arises naturally as the limit distribution of scaled excesses

of iid random variables over high thresholds.

Two main strands of the current literature exist. The first assumes fat-tailed

data and makes use of an estimator for the tail index [see, e.g., Danielsson and de

Vries (2000)]. Below, we focus on the second and more general strand of litera-

ture, which makes use of the limit result for peaks over thresholds (POT) in

Equation (11) and is not confined to fat-tailed data. Suppose that the Xt are iid

with distribution function F2MDA(H
). Then, for a chosen threshold u ¼ Xk+1,T

given by the (k + 1)st descending order statistic, define

FuðyÞ ¼ P X � u � y jX > uð Þ ¼ Fðuþ yÞ � FðuÞ
1� FðuÞ , y � 0,

which can be rewritten as
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�Fðuþ yÞ ¼ �FðuÞ�FuðyÞ: ð12Þ

In Equation (12), �FðuÞ can be estimated by its empirical counterpart, �FTðuÞ ¼ k=T,

with FT(u) being the empirical distribution function of X. For a high enough

threshold,

�FuðyÞ 
 1� G
,�ðuÞðyÞ, ð13Þ

so that, given estimates 
̂ and �̂, 1� G
̂;�̂ðyÞ provides an estimate for �FuðyÞ. Thus

the tail probability for X > u can be estimated by

d�FðxÞ ¼ k

T
1þ 
̂ x� u

�̂

� ��1=
̂

: ð14Þ

A quantile estimator, F xp

� �
> 1� k=T, is obtained by inverting Equation (14),

that is,

x̂p,k ¼ Xkþ1,T þ
�̂


̂

1� p

k=T

� ��
̂
�1

 !
, ð15Þ

recalling u ¼ Xk+1,T. Here the choice of k suffers from similar problems as for the

Hill estimator. Choosing u too high leads to very few exceedances, and thus a

high variance for the estimator, while low threshold values induce bias, as

Equation (13) works well only in the tail.6

Although EVT is a natural candidate for VaR modeling, in light of the

aforementioned stylized facts, EVT’s iid assumption is inappropriate for most
asset return data. While extensions that relax the independence assumption exist

[cf. Embrechts, Klüppelberg, and Mikosch (1997: 209ff)], one may alternatively

apply the EVT analysis to appropriately filtered data. Diebold, Schuermann, and

Stroughair (1998) propose fitting a time-varying volatility model to the data and

then estimating the tail of the filtered or standardized residuals, zt ¼ rt � �tð Þ=�t,

by an EVT model. This yields an estimate for the standardized quantile, Q�(z), as

defined by Equation (1), and thus for the VaR,

VaRt ¼ � �t þ �tQ�ðzÞð Þ: ð16Þ

With a correct model specification of the location and scale dynamics and use of

consistent parameter estimates, the filtered model residuals will be approxi-

mately iid, as assumed in EVT modeling.

The Gaussian AR(1)-GARCH(1,1) filter, as applied by McNeil and Frey (2000)

in this context, is just a special case that, while capable of removing the majority of

volatility clustering and rendering the data approximately iid, will almost always

be a misspecified model for financial return data of daily or higher frequency.

6 However, simulation evidence in McNeil and Frey (2000) for Student’s t data suggests that the mean-

squared error for quantile estimates based on POT is far less sensitive to the choice of the threshold than

for the Hill estimator.
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Much of the misspecification can be accommodated for by using a fat-tailed and

asymmetric distribution such as the skewed t for fz, given in Equation (5). As

such, its use would be expected to result in more accurate AR and GARCH

parameter estimates, as well as filtered (estimated) �t values, which in turn lead
to improved scale forecasts, �̂tþh.

On the other hand, Bollerslev and Wooldridge (1992) show that if the condi-

tional mean and volatility dynamics are properly specified, then the conditional

mean and volatility are consistently estimated by pseudo-maximum likelihood—

that is, maximum-likelihood estimation under normality assumptions, even when

innovations are not normally distributed.7 Because the proper specification of the

volatility dynamics is clearly an unattainable goal for actual return series, it is far

from obvious which specification will be optimal, and rather, the decision should
be based on out-of-sample VaR forecasting performance.

1.5 Quantile Regression Approach

The determination of VaR naturally lends itself to the concept of quantile regres-
sion. To estimate conditional quantiles, the time series of the specified quantile is

explicitly modeled using any information deemed to be relevant. No distribu-

tional assumptions for the time series behavior of returns is needed. The basic

idea is to model the conditional �-quantile, Q� rt Xj t

� �
¼ �VaRt, as some function

of the information Xt 2 F t�1, that is,

VaRt � �g� Xt; b�ð Þ, ð17Þ

where gð�; �Þ and parameter vector b explicitly depend on �. A good choice of

relevant information and of the functional form should yield a close approxima-

tion to the population quantile [cf. Chernozhukov and Umantsev (2001)]. Koenker

and Basset (1978) generalize the common linear regression framework by shifting

the focus from the conditional mean to conditional quantiles. As shown, for

example, in Koenker and Portnoy (1997), the unconditional sample �-quantile,

�2 (0, 1), can be found as the solution to

min
�2R

X
rt��

� rt � � þjj
X
rt<�

1� �ð Þ rt � �j j
( )

: ð18Þ

Extending this to the classical linear regression freamwork, Koenker and Bassett

(1978) define the �th regression quantile estimator by

b̂ð�Þ ¼ argmin
b2R

k

X
rt�x0t b

� rt � x0t b
�� ��þ X

rt<x0t b
1� �ð Þ rt � x0t b

�� ��8<:
9=;,

7 Their proofs rest on the existence of conditional variances. This seemingly innocuous assumption would,

for example, rule out use of the (skewed) t with degrees of freedom less than two and also the asymmetric

stable Paretian distribution.
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where the xt are nonrandom vectors.8 The key assumption in the linear

quantile regression model is that rt ¼ x0tb� þ ut;�. Note that the distribution

of the error term is left unspecified. The only assumption made is that the

conditional quantile function is given by Q� rt j xtð Þ ¼ x0tb�, and thus
Q� ut;� j xt

� �
¼ 0.9

One natural extension of the objective function for the general, possibly non-

linear case of Equation (17), proposed by Engle and Manganelli (2004), is

min
b2R

k

X
rt�VaRt

� rt þ VaRtj jþ
X

rt<�VaRt

1� �ð Þ rt þ VaRtj j
( )

ð19Þ

with, according to Equation (17), VaRt � �g xt;��ð Þ or, in the linear case,

VaRt � x0tb�. Consistency and asymptotic normality of the nonlinear regression
quantiles for the time-series case are established in Engle and Manganelli (2004).

Chernozhukov and Umantsev (2001) use quantile regressions to model

VaR—without, however, examining the model performance in terms of the

sequence of VaR violations, as is done below. Taylor (1999) deals with the

estimation of multiperiod VaR in the context of exchange rates, specifying Equa-

tion (17) as linear functions of (transforms of) volatility estimates and the return

horizon. As is common in the VaR literature, Taylor (1999) judges the efficiency of

VaR estimates only on the basis of unconditional coverage (to be defined in
Section 2 below).

Because our focus is exclusively on one-step forecasting performance, we

more closely examine the conditional VaR approach formulated in Engle and

Manganelli (2004), which is amenable to our maintained assumption that return

data contain sufficient information for forecasting. In their specification of Equa-

tion (17), they link VaR to the conditional standard deviation of the returns such

that an increase in the latter leads to a more dispersed return distribution and

thus, ceteris paribus, to a higher VaR. Their CAViaR specifications include VaRt – 1

as an explanatory variable in xt, to adapt to serial dependence in volatility and

mean. A function of rt–1 is also included to link the conditional quantile to return

innovations.

As mentioned above, no explicit distributional assumptions need to be made,

guarding against this source of model misspecification. Although many specifica-

tions of Equation (17) are conceivable, we first adopt those put forth in Engle and

Manganelli (2004). The baseline CAViaR model is given by

8 Their proof of consistency and joint asymptotic normality relies on iid error terms with a continuous

distribution function and fixed regressors. Nonlinear absolute ARCH-power specifications are the subject

of Koenker and Zhao (1996). For more general asymptotic results, see Chernozhukov and Umantsev

(2001) and the references therein.
9 The well-known least absolute deviation (LAD) estimator for the regression median arises as the special

case � ¼ 0.5. It yields more efficient estimates for the population mean than least squares in the presence of

fat-tailed error distributions [see Bassett and Koenker (1978) for the iid error case with fixed regressors].
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VaRt ¼ VaRt�1 þ � I rt�1 � �VaRt�1ð Þ � �½ �:

As typically � � 0.05 for risk management purposes, we have an asymmetric

response: VaRt will jump upward when a violation occurs and will slowly

decrease otherwise—provided that the a priori conjecture � > 0 holds. In the

baseline model, the adaptive process ‘‘learns’’ nothing from the actual size of

returns (except whether or not the returns are in line with VaR), as is the case with

the symmetric absolute value CAViaR specification,

VaRt ¼ �0 þ �1VaRt�1 þ �2 rt�1j:j

It allows the autoregressive parameter, �1, to be different from one, and introduces

a direct response of the quantile to the return process, treating the effect of extreme

returns on VaR—and implicitly, on volatility—symmetrically. The symmetric

assumption is relaxed in the asymmetric slope CAViaR specification,

VaRt ¼ �0 þ �1VaRt�1 þ �2 max rt�1, 0½ � þ �3 max �rt�1, 0½ �,

which allows the VaR prediction to respond asymmetrically to positive and

negative returns, and so can accommodate the leverage effect. The indirect

GARCH(1,1) CAViaR process,

VaRt ¼ �0 þ �1VaR2
t�1 þ �2r2

t�1

� �1=2
, ð20Þ

proposed by Engle and Manganelli (2004), would be appropriate if the data were

generated by a location-scale model [Equation (2)], with a GARCH(1, 1) process

for the conditional scale, �t, and with zero location parameter, �t.
Autocorrelation in financial returns is often nonnegligible [see, e.g., Danielsson

and Morimoto (2000)]. This property can be incorporated by extending the existing

CAViaR framework by allowing the returns to have a time-varying mean of

the form

�t ¼ E rt j F t�1ð Þ, ð21Þ

which may, for example, be captured by a regression, ARMA, or ARMAX model.

An indirect GARCH specification of orders r and s with conditional mean �t can

then be written as

VaRt þ �t

z�

� �2

¼ c0 þ
Xr

i¼1

ciðrt�i � �t�iÞ2 þ
Xs

j¼1

dj

VaRt�j þ �t�j

z�

� �2

: ð22Þ

The indirect conditional mean GARCH(r, s) CAViaR model of Equations (21) and

(22) reduces to that in Engle and Manganelli (2004) for r ¼ s ¼ 1 and �t ¼ 0. In the

application below, it will be demonstrated that this more general CAViaR specifica-
tion leads to a significant improvement in performance. There, we specify an AR(1)
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model, rt ¼ art–1 + �t for Equation (21), and GARCH orders r = s ¼ 1, leading to the

indirect AR(1)-GARCH(1,1) CAViaR,10

VaRt ¼ �art�1 þ �0 þ �1 VaRt�1 þ art�2ð Þ2þ�2 rt�1 � art�2ð Þ2
� �1=2

, �i > 0: ð23Þ

1.6 Other Approaches

With respect to the paradigm outlined in Section 1.2, there have been many

proposed GARCH formulations and numerous distributional assumptions

explored in the literature. Good overviews are provided by Bao, Lee, and Saltoglu

(2003), who examine and compare the forecasting ability of 13 distributional

assumptions crossed with nine volatility structures, and Hansen and Lunde

(2004), who consider 330 such models. We also made use of such ‘‘combinations,’’

and summarize the results now. First, we entertained the popular assymetric
power ARCH (APARCH) model proposed by Ding, Granger, and Engle (1993),

which nests several well-known GARCH structures including Equation (4), and

allows for a leverage effect; and second, we entertained the use of the asymmetric

stable Paretian distributional assumption (incorporated into both the GARCH

and APARCH models). With respect to the dataset analyzed in Section 3, the

more general APARCH structure actually led to a decrease in forecast quality

compared to Equation (4), as did the absolute value GARCH model advocated by

Nelson and Foster (1994) (which is also subsumed in the APARCH model). The
stable Paretian distributional assumption, while better than both the normal and

the t [agreeing with the findings of Mittnik and Paolella (2003)], did not outper-

form the use of the skewed t, the latter of which is more straightforward to

program and much faster to estimate.

There are other model classes suitable for VaR prediction that we did not

consider. The major ones include:

1. Long memory/fractionally integrated GARCH-type (FIGARCH) models.
A summary of the major models and references to the literature

are provided by the valuable review article of Poon and Granger

(2003). Regarding their forecasting ability, there appear to be mixed

results. In their large study, Bao, Lee, and Baltoglu (2003) report that the

distributional assumption for the innovations of a GARCH model is

10 To see this, when the process generating the returns is a GARCH(1, 1) with the AR(1) mean equation

r t ¼ art–1 + "t with a0 � 0. Then �2
t ¼ c0 þ c1 rt�1 � �t�1ð Þ2 þ d1�

2
t�1, where c0, c1, d1 > 0. Substitution of

VaRt–1 ¼ –�t–1 – �t�1z� yields

�2
t ¼ c0 þ c1 rt�1 � �t�1ð Þ2 þ d1St�1, St�1 ¼

VaRt�1 þ �t�1

z�

� �2

,

and with �t ¼ a1rt�1 and VaRt ¼ �art�1 � z� c0 þ c1 rt�1 � art�2ð Þ2þd1St�1

� �1=2
. Taking z� (which is a

constant for iid innovations) into the root and noting that z� < 0 for small � (so z� ¼ �
ffiffiffiffiffi
z2
�

q
), we obtain

the desired CAViaR expression of Equation (23) after appropriately relabelling the parameters.

66 Journal of Financial Econometrics



far more influential than the GARCH specification, including

FIGARCH. Vilasuso (2002) demonstrates superior forecast perfor-

mance from a FIGARCH model for exchange rates compared to

GARCH and IGARCH. However, he allows only for normal innova-

tions, which severely diminishes the value of such findings. In their

large forecasting study, Lux and Kaizoji (2004) document ‘‘occa-

sional dramatic failures’’ of FIGARCH, but report good performance
of multifractal processes, which also exhibit long memory (see below).

2. Markov-switching GARCH models. A recent overview and discus-

sion of the many contributions in this category are given in Haas,

Mittnik, and Paolella (2004b). There, a Markov-switching GARCH
model is introduced that is straightforward to estimate and admits

tractable stationarity conditions. In a forecasting comparison, they

find that the new model performs about as well as the MixN-GARCH

model, which can be seen as a special case of this, though the latter

was generally favored.

3. Use of realized volatility. Based on intraday data, daily realized vola-

tility can be ‘‘observed’’ (i.e., independent of a model and essentially

error free) and then used for daily prediction purposes [see Mar-

tens (2001), Giot and Laurent (2004), Galbraith and Kisinbay

(2005), Koopman, Jungbacker, and Hol (2005), and the references

therein]. Giot and Laurent (2004) demonstrate with a variety of
datasets that the method does not lead to improvements in fore-

cast quality when compared to use of a skewed-t A-PARCH

model for daily returns. The comparison studies of Galbraith

and Kisinbay (2005) and Koopman, Jungbacker, and Hol (2005)

concentrate on volatility and variance prediction instead of VaR,

and, from their respective choice of models, both conclude that

realized volatility is the best choice.11

4. Markov-switching multifractal processes. This promising class of mod-

els, with its origins in fluid dynamics by Benoı̂t Mandelbrot in the

1970s, appears particularly well suited for medium- and long-

term forecasting [see Calvet and Fisher (2004), Lux (2004), and

Lux and Kaizoji (2004), for details and further references].

Three more categories are worth mentioning via their relation to volatility

prediction, though much less is known about their use for VaR forecasting:

11 As in all comparison studies, the choice of models will never be complete. For example, with respect to

GARCH-type models, in both the aforementioned articles, the authors use only the plain, normal

GARCH(1,1) model. In this article and numerous previous studies, the normal GARCH model has

been shown to be vastly inferior to simple improvements, such as the skewed-t GARCH or skewed-t

APARCH.
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5. Impliedvolatilitymodels.Adetailedaccountofvolatilitypredictionbased

on option prices is given in Poon and Granger (2003). Based on the articles

they review, there is favorable evidence that this model class produces

competitive volatility forecasts. See also Koopman, Jungbacker, and Hol

(2005) for comparisons with other model classes.

6. Stochastic volatility models. Some overview of this field is provided

by Poon and Granger (2003) and Durbin and Koopman (2001: sect.

10.6), while the forthcoming collection by Shephard (2005) should

prove most valuable.

7. Multivariate GARCH (MGARCH). It is natural to expect that mod-

eling the comovement of financial time series would enhance pre-

dictive ability. However, evidence against this is provided by Brooks

and Persand (2003), which appears to be the first comparison of

various univariate models and a MGARCH for VaR and volatility
forecasting. They conclude that the gain in using MGARCH models

is minimal and is not worth the trouble because of their complexity

and estimation difficulties. This complements the results of Berkowitz

and O’Brien (2002), as discussed in the introduction.12

2 COMPARING AND TESTING THE FIT OF VaR MODELS

To assess the predictive performance of the models under consideration, we follow

Christoffersen’s (1998) framework, which is designed for evaluating the accuracy of

out-of-sample interval forecasts. Defining Ht ¼ I rt < � VaRtð Þ, Christoffersen

(1998) terms the sequence of VaR forecasts efficient with respect to F t�1 if

E Ht j F t�1½ � ¼ �, ð24Þ

which, by applying iterated expectations, implies that Ht is uncorrelated with any

function of a variable in the information set available at t – 1. If Equation (24) holds,
then VaR violations will occur with the correct conditional and unconditional

probability, and neither the forecast for VaRt nor that for Ht could be improved.

Although a general test of Equation (24) is desirable, we follow Christoffersen

(1998) in using intermediate statistics for testing specific implications of the

general hypothesis, so that particular inadequacies of a model can be revealed.

By specifying F t�1 to include at least {H1, H2, . . ., Ht�1}, it is straightforward to

show [Christoffersen (1998: Lemma 1)] that efficiency implies

HtjF t�1
iid� Berð�Þ, t ¼ 1,2, . . . ,T, ð25Þ

12 Because Brooks and Persand (2003) used a normality assumption for VaR prediction and only considered

one MGARCH model [the diagonal VEC form from Bollerslev, Engle, and Wooldridge (1988)], their

conclusions need to be tempered.
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where Ber(�) denotes the Bernoulli distribution. Below, Equation (25) is referred to

as correct conditional coverage.

2.1 Test of Unconditional Coverage

By taking iterated expectations, Equation (24) implies correct unconditional

coverage of the interval forecasts. We test for the correct number of violations by

H0 : E Ht½ � ¼ � versus HA : E Ht½ � 6¼ �:

Under the null hypothesis, Equation (25) implies the likelihood-ratio test
statistic

LRuc ¼ 2 L �̂; H1, H2, . . . , HT

� �
� L �; H1, H2, . . . , HTð Þ

h i
~

asy
�2

1, ð26Þ

where Lð�Þ ¼ log L denotes the log binomial likelihood. The maximum-likelihood

estimation �̂, is the ratio of the number of violations, n1, to the total number of

observations, n0 + n1 ¼ T, that is, � ¼ n1/(n0 + n1).

2.2 Test of Independence

Value-at-risk forecasts that do not take temporal volatility dependence into

account may well be correct on average, but will produce violation clusters

[cf. Christoffersen (1998)], a phenomenon that is ignored when considering

unconditional coverage.

Several tests for independence have been proposed in the literature, includ-
ing the runs tests and the Ljung-Box test [Ljung and Box (1978)]. More recently, a

test based on the time between exceedances was proposed in Danielsson and

Morimoto (2000). Under the null hypothesis, a violation today has no influence on

the probability of a violation tomorrow. Christoffersen (1998) models {Ht} as a

binary first-order Markov chain with transition probability matrix

� ¼ 1� 
01 
01

1� 
11 
11


 �
, 
ij ¼ P Ht ¼ j j Ht�1 ¼ ið Þ,

as the alternative hypothesis of dependence.13 The approximate joint likelihood,

conditional on the first observation, is

L �; H2, H3, . . . , HT j H1ð Þ ¼ 1� 
01ð Þn00
n01

01 1� 
11ð Þn10
n11

11 , ð27Þ

where nij represents the number of transitions from state i to state j, that is,

nij ¼
XT

t¼2

I Ht ¼ i j Ht�1 ¼ jð Þ,

13 The runs test is uniformly most powerful against this alternative [see, e.g., Lehmann (1986)]. We opt for

the framework used here because it can be easily integrated into a test of the more general hypothesis of

Equation (25).
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and the maximum-likelihood estimators under the alternative hypothesis are


̂01 ¼
n01

n00 þ n01
and 
̂11 ¼

n11

n10 þ n11
:

Under the null hypothesis of independence, we have 
01 ¼ 
11 � 
0, from which

the conditional binomial joint likelihood follows as

L 
0; H2, . . . , HT j H1ð Þ ¼ 1� 
01ð Þn00þn10
n01þn11

01 : ð28Þ

The maximum-likelihood estimate, 
̂0, is analogous to that in the unconditional

coverage test, and the likelihood ratio (LR) test is given by

LRind ¼ 2 L �̂; H2, . . . , HT j H1

� �
� L 
̂0; H2, . . . , HT j H1ð Þ

� 
 asy
� �2

1: ð29Þ

2.3 Conditional Coverage

Because 
̂0 is unconstrained, the test in Equation (29) does not take correct coverage

into account. Christoffersen (1998) suggests combining Equations (26) and (29) to

LRcc ¼ 2 L �̂; H2, . . . , HT j H1

� �
� L �; H2, . . . , HT j H1ð Þ

� 
 asy
� �2

2 ð30Þ

in order to test correct conditional coverage [Equation (25)]. By conditioning on

the first observation in Equation (26), we have

LRcc ¼ LRuc þ LRind,

which provides a means to check in which regard the violation series {Ht} fails the

correct conditional coverage property of Equation (25).14

2.4 Dynamic Quantile Test

Equation (24) is stronger than correct conditional coverage; it suggests that any

xt�1 2 Ft�1 be uncorrelated with Ht. In particular, Engle and Manganelli (2004) remark
that conditioning violations on the VaR for the period itself is essential. To illustrate

this point, they let VaRtf gT
t¼1 be a sequence of iid random variables such that

VaRt ¼
K, with probability 1� �,
�K, with probability �:

�

14 As with all asymptotically motivated inferential procedures, the actual size of the tests for finite samples

can deviate from their nominal sizes. Lopez (1997) examines the size of unconditional and conditional

coverage tests via simulation, as well as their power against various model misspecifications. For a

sample size of 500 observations, he finds both tests to be adequately sized. Even for such a small sample,

power appears to be reasonable. For the LRuc test, for example, he reports that, for � values of 0.05 or

smaller, if the true data generating process is conditionally heteroskedastic, then power is well above

60% for wrong distributional assumptions for the innovations. In general, the tests have only moderate

power when volatility dynamics are closely matched but power increases under incorrect innovation

distributions, especially further out in the tails.
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Then, for K very large and conditioning also on VaRt, the violation sequence

exhibits correct conditional coverage, as tested by Equation (30), but, conditional

on VaRt, the probability of a violation is either almost zero or almost one. None of

the above tests has power against this form of inefficiency.
To operationalize Equation (24), one can, similar to Christoffersen (1998) and

Engle and Manganelli (2004), regress Ht on a judicious choice of explanatory

variables in F t�1, for example,

Ht ¼ �0 þ
Xp

i¼1

�iHt�i þ �pþ1
dVaRt þ �t,

where, under the null hypothesis, �0 ¼ � and �i ¼ 0, i ¼ 1, . . ., p + 1. In vector

notation, we have

H� li ¼ Xb þ u, ut ¼
��, with probability 1� �,

1� K, with probability �,

�
ð31Þ

where �0¼ �0 – � and i is a conformable vector of ones. Under the null hypothesis, of

Equation (24), the regressors should have no explanatory power, that is H0 : b ¼ 0.

Because the regressors are not correlated with the dependent variables under the null

hypothesis, invoking a suitable central limit theorem (CLT) yields15

b̂LS ¼ X0Xð Þ�1
X0 H� lið Þ asy� N 0, X0Xð Þ�1

� 1� �ð Þ
� �

,

from which Engle and Manganelli (2004) deduce the test statistic

DQ ¼ b̂ 0LSX0Xb̂ 0LS

� 1� �ð Þ �
asy

�2
pþ2: ð32Þ

In the empirical application below, we use two specifications of the dynamic

quantile (DQ) test: For the first, denoted by DQHit, regressor matrix X contains a

constant and four lagged hits, Ht�1,. . ., Ht�4; the second, DQVaR, uses, in addition,

the contemporaneous VaR estimate.

3 EMPIRICAL ANALYSIS

We examine the VaR forecasting performance for a portfolio that is long in the

NASDAQ Composite Index.16 The index itself is a market value-weighted portfolio

of more than 5000 stocks listed on the NASDAQ stock market. The data comprise

daily closing levels, pt, of the index from its inception on February 8, 1971, to June 22,

2001, yielding a total of T ¼ 7681 observations of percentage log returns,

rt : ¼ 100(lnpt�ln pt�1). Table 1 presents some relevant summary statistics. The

15 Note that for the asymptotics under the null hypothesis, it is irrelevant whether Ht�� is regressed on lags

of Ht or lags of Ht��, as proposed by Engle and Manganelli (2004).
16 The data and further information may be obtained from http://www.marketdata.nasdaq.com, main-

tained by the Economic Research Department of the National Association of Securities Dealers, Inc.
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sample skewness �̂3=�̂
3=2
2 ¼ �0:466 indicates considerable asymmetry which, taken

together with the sample kurtosis �̂4=�̂
2
2 ¼ 17:3, indicates a substantial violation of

normality.17

3.1 Window Size 1000

For all models considered, we allow the corresponding parameters to change

over time: Using moving windows initially of size w = 1000 (corresponding to

roughly four years of trading data), we update the model parameters for each

moving window with increments of one trading day. This leaves us with 6681

one-step-ahead VaR forecasts to study the predictive performance of the mod-

els. To save space, we refer to the AR(1)-GARCH(1,1) specification simply as

‘‘GARCH.’’18

In addition to the GARCH-EVT approach of Diebold, Schuermann, and

Stroughair (1998) and McNeil and Frey (2000), which relies on the normal

assumption for the GARCH filter, we consider an alternative conditional EVT

implementation that specifies the skewed t instead of the normal distribution

in order to better account for conditional asymmetry and heavy-tailedness.

In Table 3 and the subsequent discussion, these are referred to as N-EVT and

ST-EVT, respectively. We also entertain the FHS. The simulation itself is

nonparametric, using standardized historical residuals from applying the
normal and the skewed-t filter, marked as N-FHS and ST-FHS respectively,

to the data.

The results under the alternative modeling assumptions are reported in Tables 2,

3, and 5. A plot of a selection of the VaR forecasts can be found in Figure 1. With a few

exceptions, all models tend to underestimate the frequency of extreme returns.

Table 1 Summary statistics for NASDAQ returns.

Sample Size Mean Std. Dev. Skewness Kurtosis Min Max

7681 0.0392 1.1330 �0.4656 17.302 �12.048 13.255

17 The fact that heavy-tailed distributions may not possess low-order moments implies that usual signifi-

cance tests for skewness and kurtosis are most likely unreliable and are not worth reporting. See Loretan

and Phillips (1994), Adler, Feldman, and Gallagher (1998), Paolella (2001), and the references therein for

further discussion.
18 The significant autocorrelation of returns is dying out toward the end of the sample. An anonymous

referee has pointed out that the autocorrelation could be an artifact of stale quotes and suggested

prefiltering the data. The results for the unconditional models did not improve when doing so. All

other models entertained allow for autocorrelation (and hence appropriate filtering) except for the

indirect GARCH(1,1) CAViaR, for which we provide an extension. Consequently we do not bias our

results against any of the presented approaches. In addition, certain trading patterns may endogenously

alter the correlation properties in index data in more volatile times. Venetis and Peel (2005), for instance,

examine empirically whether there is an inverse volatility-correlation relationship in index returns and

conclude in favor. To us, this would suggest that autocorrelation is endogenous and should be modeled

jointly with volatility.
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Although the performance varies substantially across the modeling approaches as

well as the distributional assumptions, some clear patterns emerge. We first discuss

the performance of the unconditional models, then the GARCH-based, and finally
the CAViaR models.

As the unconditional models do not account for volatility clustering, none of

them is able to produce iid VaR violations, causing us to strongly reject indepen-

dence of the Ht sequences for all unconditional models (see Table 2).19 At the 1%

�-level, the naive historical simulation performs well with respect to violation

frequencies, along with the skewed t and the unconditional EVT. The superior

performance of the skewed-t distribution relative to the normal and t is due to the

fact that it allows for skewness, which is clearly present in the unconditional
return data (see Table 1).

Current regulatory performance assessment focuses on the unconditional

coverage property, leaving other implications of efficiency unexamined. The

three-zone framework suggested by the Basle Committee (1996b) deems a VaR

model acceptable (green zone) if the number of violations of 1% VaR remains

Table 2 VaR prediction performance: unconditional models.a

Model 100� % Viol. LRuc LRind LRcc DQHit DQVaR VaR

HS 1 1.30 0.02 0.00 0.00 0.00 0.00 2.65

2.5 3.26 0.00 0.00 0.00 0.00 0.00 1.96

5 6.00 0.00 0.00 0.00 0.00 0.00 1.43

Normal 1 2.80 0.00 0.00 0.00 0.00 0.00 2.06

2.5 4.27 0.00 0.00 0.00 0.00 0.00 1.73

5 6.18 0.00 0.00 0.00 0.00 0.00 1.44

t 1 2.10 0.00 0.00 0.00 0.00 0.00 2.30

2.5 4.52 0.00 0.00 0.00 0.00 0.00 1.66

5 7.74 0.00 0.00 0.00 0.00 0.00 1.25

Skewed t 1 1.30 0.02 0.00 0.00 0.00 0.00 2.64

2.5 3.46 0.00 0.00 0.00 0.00 0.00 1.90

5 6.17 0.00 0.00 0.00 0.00 0.00 1.41

EVT 1 1.29 0.02 0.00 0.00 0.00 0.00 2.65

2.5 3.40 0.00 0.00 0.00 0.00 0.00 1.92

5 6.03 0.00 0.00 0.00 0.00 0.00 1.43

aResults pertain to the 1000-length window size. HS is the naive historical simulation; � is the target probability.

Entries in the last five columns are the significance levels (p-values) of the respective tests. Bold type entries are not

significant at the 1% level. For DQHit, Ht – � is regressed onto a constant and four lagged violations, for DQVaR, in

addition the contemporaneous VaR estimate. The unconditional EVT model does not ‘‘prefilter’’ with an estimated

ARMA-GARCH structure and is instead directly applied to the (negative) return data. VaR denotes the average

value of the VaR estimates.

19 This finding contradicts Danielsson and de Vries (2000) and is instead more in line with the observations

of Danielsson and Morimoto (2000), who—for their datasets—still observe considerable (though decreas-

ing) dependence in extreme returns above (and including) the 1% �-level.
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Table 3 VaR prediction performance: AR(1)-GARCH(1,1).a

Model 100� % Viol. LRuc LRind LRcc DQHit DQVaR VaR

Normal 1.0 2.23 0.00 0.03 0.00 0.00 0.00 2.05

2.5 3.92 0.00 0.04 0.00 0.00 0.00 1.72

5.0 6.21 0.00 0.21 0.00 0.00 0.00 1.43

Student’s t 1.0 1.81 0.00 0.01 0.00 0.00 0.00 2.19

2.5 4.04 0.00 0.02 0.00 0.00 0.00 1.70

5.0 6.89 0.00 0.06 0.00 0.00 0.00 1.34

Skewed-t 1.0 1.20 0.12 0.35 0.19 0.16 0.04 2.57

2.5 2.72 0.25 0.00 0.00 0.00 0.00 2.01

5.0 5.12 0.65 0.03 0.08 0.07 0.00 1.59

MixN(2,2) 1.0 0.91 0.47 0.59 0.67 0.16 0.18 2.53

2.5 2.86 0.07 0.04 0.00 0.00 0.01 1.92

5.0 5.78 0.00 0.02 0.00 0.00 0.00 1.45

MixN(3,2) 1.0 1.29 0.02 0.13 0.02 0.00 0.00 2.39

2.5 2.86 0.07 0.01 0.00 0.00 0.00 1.88

5.0 5.66 0.02 0.06 0.01 0.00 0.00 1.48

MixN(3,3) 1.0 1.18 0.14 0.33 0.22 0.00 0.00 2.46

2.5 2.93 0.03 0.04 0.01 0.00 0.00 1.91

5.0 5.55 0.04 0.22 0.06 0.00 0.00 1.50

MixGED(2,2) 1.0 1.06 0.61 0.79 0.85 0.04 0.03 2.53

2.5 2.72 0.25 0.10 0.12 0.02 0.03 1.94

5.0 5.37 0.17 0.05 0.05 0.00 0.00 1.50

MixGED(3,2) 1.0 1.14 0.27 0.89 0.54 0.06 0.06 2.52

2.5 2.57 0.70 0.05 0.13 0.05 0.07 1.94

5.0 5.10 0.70 0.04 0.12 0.00 0.00 1.51

MixGED(3,3) 1.0 1.23 0.07 0.38 0.13 0.04 0.01 2.58

2.5 2.51 0.94 0.01 0.05 0.00 0.00 1.96

5.0 5.16 0.54 0.09 0.19 0.00 0.00 1.52

N-EVT 1.0 0.97 0.82 0.16 0.37 0.12 0.08 2.61

2.5 2.50 1.00 0.01 0.02 0.00 0.00 2.00

5.0 5.33 0.22 0.07 0.09 0.05 0.08 1.54

ST-EVT 1.0 0.97 0.82 0.17 0.37 0.09 0.02 2.70

2.5 2.47 0.87 0.00 0.00 0.00 0.00 2.07

5.0 5.06 0.82 0.02 0.06 0.08 0.00 1.61

N-FHS 1.0 1.06 0.60 0.05 0.12 0.00 0.00 2.51

2.5 2.76 0.18 0.00 0.00 0.00 0.00 1.94

5.0 5.28 0.30 0.05 0.09 0.04 0.07 1.54

ST-FHS 1.0 0.94 0.64 0.14 0.31 0.09 0.02 2.71

2.5 2.61 0.57 0.00 0.00 0.00 0.00 2.06

5.0 4.96 0.89 0.01 0.04 0.05 0.00 1.61

aResults pertain to the 1000-length window size. MixN(k, g) and MixGED(k, g) refer to the MixN(k, g)-

GARCH(1,1) and MixGED(k, g)-GARCH(1,1) models, respectively, in Section 1.3, with an AR(1) term

for the mean. N-EVT refers to the use of AR(1)-GARCH(1,1) with Gaussian innovations as the filter

used with the conditional EVT model; ST-EVT is similar, but uses the density of Equation (5) instead.

N-FHS refers to the use of AR(1)-GARCH(1,1) with Gaussian innovations as the filter used with the

conditional FHS model; ST-FHS is similar, but uses the density of Equation (5) instead. VaR denotes

the average value of the VaR estimates. See also the note in Table 2.
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below the binomial(0.01) 95% quantile. A model is disputable (yellow zone) up to

the 99.99% quantile and is deemed seriously flawed (red zone) whenever more

violations occur. Translated to our sample size, a model passes regulatory per-

formance assessment if, at most, 79 violations (1.18%) occur and is disputable

when between 80 and 98 (1.47%) violations occur. The results reported in Table 2
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Figure 1 One-step ahead VaR predictions for some of the methods for � = 0.01.
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suggest that, as far as the unconditional coverage is concerned, the normal and

Student’s t unconditional models are seriously flawed (red), while naive historical

simulation, unconditional EVT, and the unconditional skewed-t models are dis-

putable (yellow), though the latter are still inadequate in terms of clustering of
violations. As none of the unconditional models is acceptable in any of the testing

categories at both the 2.5% and 5% target probability, a conditional approach

should be preferred.

Introducing GARCH volatility dynamics almost uniformly improves VaR

prediction performance: The great majority of models do better than the uncon-

ditional approach across all �-levels and all distributions considered—as was to

be expected from the apparent volatility clustering in the return series. Regard-

ing the percentage of violations (see Table 3), among the distributional assump-
tions for the fully parametric models, the skewed t is by far the best for all three

�-levels. Both the t and normal performed quite poorly. While this is not

surprising for the normal, some empirical studies, such as Danielsson and

Morimoto (2000) and McNeil and Frey (2000), show that normal GARCH

might have some merit for larger values of �. Our findings indicate that, at

least for this dataset, the 5% quantile is still not large enough for the normal

assumption to be adequate.

To clearly illustrate this point and expedite the comparison of VaR forecast-
ing methods, we advocate use of a simple, but seemingly novel graphical depic-

tion of the quality of VaR forecasts over all the relevant probability levels. This is

shown in Figure 2, which depicts the coverage results for all VaR levels up to

� ¼ 0.1. It plots the forecast cdf against the deviation from a uniform cdf. The VaR

levels can be read off the horizontal axis, while the vertical axis depicts, for each

VaR level, the excess of percentage violations over the VaR level. Thus the relative

deviation from the correct coverage can be compared across VaR levels and

competing models. One immediately spots that the normal assumption yields
quite accurate results for � around 0.08 (corresponding to ‘‘8’’ on the horizontal

axis in the plot), in stark comparison to the Student’s t assumption, which tends to

perform worse as � increases and yields the worst result among all the condi-

tional models.

We next turn to the mixture models of Section 1.3. Their deviation plots are

shown (using a less favorable scale than that used for the aforementioned models)

in the bottom panels of Figure 2. It is apparent that the MixN(n, g) models exhibit

good unconditional coverage properties at the low quantiles. The MixN(3,3) per-
forms best overall, indicating (for this dataset and choice of window length) that

three heteroskedastic mixture components are most suitable. Turning to the

MixGED models, we see that, in terms of forecasting ability, they clearly stand

out. All three MixGED models stay quite close to their prescribed violation rates

for all VaR levels depicted, with preference going almost equally to the

MixGED(3,2) and MixGED(3,3). The third component of the mixture corresponds

to the lowest (i.e., most fat-tailed) GED density (see the discussion in the next

paragraph), so that, when compared to the MixN findings, it appears that use of a
fat-tailed component obviates use of the third heteroskedasticity structure. This
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result is intuitive, recalling that both normal GARCH or an iid fat-tailed model

exhibit excess kurtosis.

The improvement of the MixGED over the MixN obviously lies in the intro-

duction of the GED exponent parameters, pi. To get a better idea of their impact,

Figure 3 plots their estimated values through the moving window of 6681 sam-

ples (of size w = 1000). They move less erratically than might be expected, and p̂3

barely deviates from its mean of 1.65. It thus appears that enhancing the MixN

model with the flexibility to accommodate both fat- and thin-tailed innovations
significantly enhances forecasting performance. The benefit of the thin-tailed

aspect allowed for in the MixGED is limited, however. Figure 4 shows the

standard normal density (p ¼ 2) and the GED density corresponding to p ¼ 2.10,

p¼ 1.72, and p ¼ 1.66, which are the estimated values of the GED shape parameter

of the last 1000-length sample, as shown in Figure 3. One sees that the difference

between GED densities with p = 2 and p ¼ 2.10 is too slight to intuitively judge as

1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5 Normal
Stud t
Skew t
N–EVT

1 2 3 4 5 6 7 8 9

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
ST–EVT
N–FHS
ST–FHS
HS

1 2 3 4 5 6 7 8 9

–0.2

0

0.2

0.4

0.6

0.8

1

MixGED(2,2)
MixGED(3,2)
MixGED(3,3)

1 2 3 4 5 6 7 8 9

–0.2

0

0.2

0.4

0.6

0.8

1

MixN(2,2)
MixN(3,2)
MixN(3,3)

Figure 2 Deviation probability plot for the GARCH-based conditional models. Plotted values are
‘‘Deviation’’ := 100 FU � F̂

� �
(vertical axis) versus 100F̂ (horizontal axis), where FU is the cdf of a

uniform random variable; F̂ refers to the empirical cdf formed from evaluating the 6681 one-step,
out-of-sample distribution forecasts at the true, observed return. Note the different scale in the
first two plots. The upper right plot also shows the forecast density deviations for plain historical
simulation (using data prefiltered to correct for first-order autocorrelation by ordinary least
squares).
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Figure 3 The estimated values of the GED exponent parameter pi, i = 1, 2, 3, in the MixGED(3, 2)
model, through the moving window of 6681 samples of size 1000. The solid line is p̂1, dashed is
p̂2, and dash-dot is p̂3.

Figure 4 The normal density function (thick solid line) and the GED density function for
p = 2.10, p = 1.72, and p = 1.66 (dashed), which correspond to the estimated values of the
GED shape parameter p of the last 1000-length sample, as shown in Figure 3. The GED
density is given in Equation (8), but is scaled by

ffiffiffi
2
p

so that it coincides with the standard
normal density for p = 2.
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significant.20 Perhaps the best way of confirming this is by computing all three

entertained MixGED(n, g) models, but restricting each pi to be bounded above

by 2. This was done and was found to yield very similar results to those in Figure 2

(results available upon request).
Like the mixture models, the EVT-based approaches outperform the fully

parametric conditional location-scale models, discussed in Section 1.2, with pre-

ference given to the ST-EVT. In particular, from Table 3, the N-EVT has 0.97%,

2.50%, and 5.33% violations for � = 0.01, 0.025, and 0.05, respectively, and ST-EVT

has 0.97%, 2.47%, and 5.06%. Similar results emerge for the FHS approaches. This

is also made clear in Figure 2: The two EVT formulations and the FHS approaches

are always among the best performers among all conditional models and for all

values of 0 < � < 0.1.21 Moreover, the ST-EVT delivers virtually exact results for
all 0 < � < 0.1, while N-EVT is competitive for 0 < � 0.025 and then weakens

somewhat as � increases toward 0.1.

Table 4 provides summary information for each model by averaging over all

values of � in (0,0.1). To construct a measure of fit, we computed the mean

absolute error (MAE) and mean-squared error (MSE) of the actual violation

frequencies from the corresponding theoretical VaR level (based on the first 660

of the ordered deviations shown in Figure 2). Both summary measures indicate

the same result: the ST-EVT has (with considerable margin) the lowest deviation
over the entire tail.

We now turn to the information in the sequence of violations, as reflected in

the p values of the LR and DQ test statistics in Table 3. Entries in bold type are

greater than 0.01, signifying that the hypothesis of independence cannot be

rejected at the 1% significance level. Eleven models exhibit all p values greater

than 0.01, thus hinting at efficient VaR forecasts: the fully parametric GARCH

with skewed-t innovations and the MixN (2,2) for � ¼ 0.01; the MixGED(2,2) and

MixGED(3,2) for � ¼ 0.01 and � ¼ 0.025; the N-EVT for � ¼ 0.01 and 0.05; the ST-
EVT for �¼ 0.01; the N-FHS for �¼ 0.05; and the ST-FHS for �¼ 0.01. From this list

and the other tabulated p values of the LR and DQ statistics, it is clear overall that,

with respect to independence, when the AR(1)-GARCH(1,1) filter with a skewed,

fat-tailed distributional assumption is combined with the FHS or the EVT model,

VaR violations result which contain virtually no information about the probability

of a future violation.22 The same applies to AR(1)-GARCH(1,1) models combined

20 Ideally 95% one-at-a-time confidence intervals would accompany the point estimates shown in Figure 3.

However, the error bounds we obtained based on the numerically computed Hessian matrix (as

implemented in Matlab’s optimization routines) were erratic and sometimes implausible. A bootstrap

exercise could be used to get reliable standard errors, but this would be required for each moving

window, and so would be impossible in terms of computing time.
21 The FHS forecast densities seem to oscillate. This is due to the cdf of the FHS being a step function, and is

therefore an artifact of the method.
22 Note that the violation frequencies for the AR(1)-GARCH(1,1) filter with either the normal or t innova-

tion assumption are considerably worse than for the S&P and DAX series reported in McNeil and Frey

(2000). However, none of their tests includes the high-volatility regime following the Asian and Russian

crises, as well as the beginning of the recent slump in the market.
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with flexible mixture distributions. In particular, the GED mixture class of models

is the only one that achieves passing LR tests at all three VaR levels. Of the models

that perform reasonable overall (the skewed-t, MixGED, FHS, and EVT models),

the N-FHS and MixGED models have the lowest average VaR across all VaR levels.

In other words, N-FHS and MixGED on average bring about the lowest regulatory

capital requirement—followed by skewed-t GARCH and N-EVT.

Summarizing the results for the fully parametric, FHS, and EVT models: Major
improvements in VaR predictions are achieved in all aspects when accounting for

the volatility dynamics. VaR violations are reasonably independent when using

either the fully parametric GARCH model with skewed-t innovations or a mixture

model, the FHS, or an EVT model based on a GARCH filter with either normal or

skewed-t innovations—the latter and the GED mixtures being preferred overall.

Next, we turn to the results of the CAViaR models, which deliver mixed

results (see Table 5). Only the very simple adaptive CAViaR specification per-

forms adequately at all �-levels with regard to unconditional coverage. Because
the adaptive CAViaR model increases VaR once a violation occurs and decreases

it slightly otherwise, it is not surprising that it cannot produce cluster-free viola-

tions. This also agrees with the results reported in Engle and Manganelli (2004).

The symmetric absolute value specification, which adapts VaR to the size of

returns, is only acceptable with respect to unconditional coverage at the higher

Table 4 Overall deviation measures.a

Window size

1000 500 250

GARCH model MAE MSE MAE MSE MAE MSE

Normal 0.970 1.147 0.770 0.773 0.785 0.809

Student’s t 1.474 2.504 1.309 1.966 1.376 2.099

Skewed t 0.146 0.031 0.156 0.030 0.263 0.089

MixN(2,2) 0.565 0.429 0.655 0.566 0.503 0.266

MixN(3,2) 0.470 0.244 0.243 0.080 0.196 0.045

MixN(3,3) 0.304 0.115 0.764 0.702 0.570 0.356

MixGED(2,2) 0.292 0.102 0.381 0.170 0.418 0.180

MixGED(3,2) 0.120 0.018 0.125 0.021 0.450 0.214

MixGED(3,3) 0.140 0.024 0.860 0.813 0.555 0.341

N-EVT 0.217 0.065 0.091 0.011 0.404 0.179

ST-EVT 0.050 0.004 0.188 0.050 0.197 0.049

N-FHS 0.174 0.039 0.101 0.015 0.461 0.239

ST-FHS 0.093 0.013 0.164 0.033 0.206 0.059

FHS 0.999 1.173 0.627 0.431 0.449 0.228

aThe mean of the absolute (MAE) and squared (MSE) error of the empirical from the theoretical tail probability

(‘‘Deviation’’ in Figure 2). This is computed over the first 9.9% of the sorted out-of-sample cdf values for the

GARCH-based models.
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�-levels. Otherwise it blatantly fails the independence tests, rendering its per-
formance as inadequate as that of the adaptive CAViaR. While the asymmetric

slope specification is a generalization of the symmetric absolute value CAViaR,

it exhibits quite different characteristics: It passes the independence test at all

�-levels, but it fails all the other tests at all � levels.

None of the traditional CAViaR models passes any DQ test at any �-level. The

indirect GARCH(1, 1) specification performs well at the 1% and 5% �-levels, yet

only with respect to correct unconditional coverage. This was expected, given the

first-order autocorrelation in the data. Engle and Manganelli (2004) report a
weaker CAViaR performance for index data than for individual stock returns.

The fact that our NASDAQ sample comprises two additional highly volatile

years, which presumably deteriorate overall performance, may help to reconcile

the poor out-of-sample performance of the established CAViaR models with the

more positive findings of Engle and Manganelli (2004).

The need to incorporate an explicit autoregressive link to returns is seen

when looking at the indirect CAViaR AR(1)-GARCH(1, 1) model proposed

here.23 It passes 12 out of the 15 tests, whereas the second best CAViaR specifica-
tion passes only 3 out of the 15. While resulting in too many VaR violations for the

2.5% level, the model exhibits correct unconditional coverage at the 1% and 5%

�-levels. All other CAViaR models fail in all DQ tests, yet the proposed specification

Table 5 VaR prediction performance: CAViaR.a

Model 100� % Viol. LRuc LRind LRcc DQHit DQVaR VaR

Adaptive 1 1.14 0.27 0.00 0.00 0.00 0.00 2.88

2.5 2.80 0.12 0.00 0.00 0.00 0.00 2.13

5 5.10 0.70 0.00 0.00 0.00 0.00 1.66

Symmetric abs. value 1 1.33 0.01 0.01 0.00 0.00 0.00 2.69

2.5 2.83 0.09 0.00 0.00 0.00 0.00 2.03

5 5.45 0.10 0.00 0.00 0.00 0.00 1.61

Aymmetric slope 1 1.60 0.00 0.83 0.00 0.00 0.00 2.39

2.5 3.35 0.00 0.01 0.00 0.00 0.00 1.85

5 6.02 0.00 0.11 0.00 0.00 0.00 1.48

Indirect GARCH(1,1) 1 1.32 0.01 0.00 0.00 0.00 0.00 2.67

2.5 3.08 0.00 0.00 0.00 0.00 0.00 2.03

5 5.54 0.05 0.00 0.00 0.00 0.00 1.59

Indirect AR(1)-GARCH(1,1) 1 1.32 0.01 0.15 0.02 0.00 0.00 2.49

2.5 3.04 0.00 0.74 0.02 0.03 0.01 1.91

5 5.55 0.04 0.89 0.12 0.01 0.02 1.49

aResults pertain to the 1000-length window size. See the note in Table 2 regarding the statistical tests and

measures, and Section 1.5 for a description of the models.

23 As regards autocorrelation and the degree to which this may only be an artifact of the index data

examined here, we refer to note 18.
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passes for the 2.5% and 5% VaR levels. Hence, in the sense that it is less prone to

violation clustering, the new model improves considerably on the previous CAViaR

specifications.

3.2 Smaller Window Sizes

So far, the analysis has been based on the use of a moving window of w = 1000

observations, but it can be decisive to know the extent to which the results are

compatible when using different, particularly shorter, lengths. To address this,

we repeat all the calculations using w ¼ 500 and w ¼ 250, except for the CAViaR

models, given their poorer performance. To save space, we consider only their
coverage performance; the deviation plots in Figure 5 show these for w = 500,

while Table 4 includes the summary deviation measures for both cases.

Some very clear conclusions easily emerge from comparison of Figures 2

(w ¼ 1000) and 5 (w ¼ 500). The normal and Student’s t GARCH models again

perform very poorly, exhibiting much the same ‘‘shape’’ in the deviation plot for

both values of w, while the skewed-t GARCH again does remarkably well. Both

EVT models also perform well, though the relative performance of N-EVT and

ST-EVT has reversed when compared to the w¼ 1000 case. This cautiously signals
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Figure 5 Same as Figure 2, but based on a window size of 500.

82 Journal of Financial Econometrics



that a trade-off exists between sample size and model robustness, with smaller

samples benefiting from a simpler GARCH filter. Regarding the FHS methods,

both again perform admirably well, indicating their applicability for a range of

sample sizes. As a point of reference, in the upper left panel we also provide the
deviations of the historical simulation for this sample size.24 Notably, a number of

the parametric methods presented here considerably outperform the plain histor-

ical simulation even as the sample size shrinks.

The performance of the mixture models is precisely in line with our expecta-

tions. While still far better than the normal and t GARCH models, overall the

MixN models perform worse with w ¼ 500, due presumably to their rather large

parameterization, though the MixN(3, 2) performs reasonably well. We conjecture

that the MixN(2, 2) case is inadequate for capturing the dynamics of the series, but
the MixN(3, 3) case is overly parameterized with respect to this sample size. This

is also supported by the MixGED results, for which the MixGED(3, 2) is among

the top performers of all the entertained models, but the (2, 2) and, particularly,

the (3, 3) cases do poorly.

The window size of w ¼ 250 should be the most challenging for all models,

though from Table 4 we see that the MAE and MSE actually decrease when moving

from w = 1000 to w ¼ 500 to w ¼ 250 for some models, such as MixN(3, 2),

and general conclusions about model performance as the window length decreases
cannot be made. Comparisons across models for the w ¼ 250 case are possible,

however, and are quite in agreement with the results for larger w. In particular, we

see that the skewed-t GARCH model is vastly superior to its normal or symmetric t

counterparts, though it is, in turn, outperformed by the MixN(3, 2) model. Among

the MixN models, the situation is the same as for the w ¼ 500 case, that is, three

components are necessary to capture the dynamics, but the third component does

not need a GARCH specification for this small window size. Differences to the

w ¼ 500 case appear with the MixGED models, which are not competitive for
w ¼ 250 because of their relatively large parameterization. For the EVT models,

the ST-EVT outperforms the N-EVT, as was the case for w ¼ 1000, again lending

evidence of the importance of appropriate distributional assumptions in this model

class. The best models for w ¼ 250 are the ST-EVT, MixN(3, 2), and ST-FHS,

which all perform virtually identically with regard to the MAE and MSE measures

over �2 (0, 0.1).

4 CONCLUSION

The predictive performance of several recently advanced and some new VaR

models has been examined. The majority of these suffer from excessive VaR

violations, implying an underestimation of market risk. Employing more infor-

mative tests than is common in the literature, we find that regulatory forecasting

24 For the results shown we have prefiltered the data using ordinary least squares to remove first-order

autocorrelation. The plot for unconditional historical simulation on the raw data, however, looks

quantitatively very similar.
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assessment can be flawed. Most notably, all of the unconditional models produce

clustered VaR violations, yet some may still pass as acceptable when considering

only the (unconditional) violation frequencies.

Conditional VaR models lead to much more volatile VaR predictions than
unconditional models and may arguably cause problems in allocating capital for

trading purposes [see, e.g., Danielsson and Morimoto (2000)]. However, our

results show that only conditionally heteroskedastic models yield acceptable

forecasts. For the fully parametric models, a major improvement in terms of

violation frequencies is achieved when accounting for scale dynamics. In addi-

tion, taking heteroskedasticity into account yields reasonably unclustered VaR

violations. Considerable improvement in normality is achieved by using innova-

tion distributions that allow for skewness and fat tails. The conditional skewed-t,
MixGED(n, g), two EVT (N-EVT and ST-EVT), and two FHS approaches (N-FHS

and ST-FHS) perform best, though this conclusion depends to some extent on the

chosen window size, with less-parameterized models having an advantage as w

decreases from 1000 to 250.

It is worth noting the presence of the skewed t among the best models

(skewed-t GARCH, ST-EVT, and ST-FHS), adding further evidence to the find-

ings of work cited in Section 1.2. It appears that the FHS methods are the most

robust to the choice of window length, though the other top performers did not
suffer much when changing w. The finding regarding the importance of the

skewed t in the EVT and FHS models is interesting, if not disturbing, because it

implies that distributionally nonparametric models do indeed depend on the

distribution assumed in the filtering stage.

Finally, none of the CAViaR models perform well overall, though the pro-

posed indirect AR(1)-GARCH(1, 1) model is most promising in the CAViaR class,

in the sense that it passes most of the tests. In a dataset without autocorrelation, or

in prefiltered data, the indirect GARCH(1, 1) CAViaR specification therefore is
expected to also yield reasonable results.

Depending on the application, multistep VaR forecasting may be necessary.

Due to the nonlinearity inherent in the GARCH dynamics, multistep-ahead

forecasts require simulation. In particular, one would draw a large number of

sequences of shocks from either the estimated innovations distribution or

directly from the filtered residuals, and use these to simulate return

paths. The resulting distribution can then be used to compute the desired VaR

forecasts.
For the CAViaR models, the drawback in forecasting is that no return process

is estimated along with the quantile process. For multistep-ahead forecasts, one

could, in principle, separately estimate a model for the return process and a

CAViaR model for the quantile. The model for the return process could then be

used to simulate paths of return series and the CAViaR model would conse-

quently deliver forecasts for the VaRs. A multistep-ahead forecast could, for

example, rely on the mean VaR. Alternatively, one could understand the CAViaR

models as representing h-day holding returns. The models would then need to be
reestimated using multiday returns.
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In this article we restrict ourselves to one-step-ahead forecasts, leaving the

more general case for future work.

APPENDIX

We implemented the EVT approach unconditionally, using the raw return data,

and conditionally (i.e., GARCH filtered) assuming normal and skewed-t innova-

tions. In simulations of size 1000, for t-residuals, McNeil and Frey (2000) found
that k 
 100 minimizes the MSE of the resulting quantile estimates ẑ01��;k and that

the results are rather insensitive to the choice of k for a wide range of k. While this

choice may not be adequate for other innovation distributions, there exist no

automatic mechanisms capable of choosing k consistently [though see Gonzalo

and Olmo (2004)]. We therefore followed their choice. Differentiating Equation

(11) and assuming excesses are iid GPD, the log-likelihood function is

L 
,�; y1, . . . ,ykð Þ ¼
�k log� � 1


 þ 1
� �Pk

j¼1

log 1þ 

� yj

� �
, if 
 6¼ 0,

�k log� �
Pk
j¼1

yj

� , if 
 ¼ 0,

8>>><>>>:
with support yj � 0, if 
 � 0, and with 0 � yj � – �/
, if 
 < 0. Smith (1987) showed

that maximum-likelihood estimation works well for 
 > –1/2, a constraint that

was never violated in our empirical analysis. Moreover, for iid data, we have

ffiffiffi
n
p


̂ � 
, �̂n

�
� 1

 !
�!d N 0, M�1

� �
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where

M�1 ¼ 1þ 
ð Þ 1þ 
 1
1 2


 �
, ð34Þ

and the usual consistency and efficiency properties of maximum-likelihood esti-
mation apply [Smith (1987)].

The support constraint for 
 < 0 is not easily implemented in standard

constrained optimization. We chose to penalize the likelihood function propor-

tionally to the amount of violation in order to ‘‘guide’’ the estimates back into

regions covered by the GPD. We used the Nelder-Mead simplex algorithm, as

implemented in the Matlab 6 routine ‘‘fminsearch,’’ employing the default options.

Our implementation of the CAViaR approach was essentially the same as that

in Engle and Manganelli (2004). Here, we discuss some relevant issues. Due to the
multitude of local minima in the objective function of Equation (19), the baseline

CAViaR model was estimated using a genetic algorithm [for details on the algo-

rithm, see Engle and Manganelli (2004)]. The initial population consisted of 500

members chosen from the interval [0, 1]. A population size of 20 was maintained

in each of a maximum of 500 generations. The programs used for calculation in

Engle and Manganelli (2004) were unconstrained, which, for the NASDAQ data
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we considered, resulted occasionally in negative estimates for parameter �̂. In this

case, each violation lowers the VaR measure. If toward the end of the in-sample

period, the VaR measure is sufficiently low, the number of violations tends to

accelerate, rapidly driving down the out-of-sample VaR forecasts to levels well
below zero (toward –1 for long forecast horizons). This drawback may be over-

come by decreasing the ‘‘genetic fitness’’ if this happens. We ‘‘punish’’ the fit by

adding a value of three (about one-tenth of the fitness function for the 1% �-level

and correspondingly less for the higher levels) whenever VaR or the parameter

estimate is negative. This proved to be successful in guiding the process back into

more suitable regions. To estimate the remaining specifications, we used the

Matlab 6 functions ‘‘fminunc’’ and ‘‘fminsearch,’’ as described in Engle and

Manganelli (2004).
The indirect GARCH models need to be constrained to prevent the terms in

parentheses in Equations (20) and (23) from becoming negative. This was

achieved by setting the objective function to 1010 whenever this occurred.
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