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1. Introduction

The large increase in the number of traded assets in the portfolio of most
Žfinancial institutions has made the measurement of market risk the risk that a

financial institution incurs losses on its trading book due to adverse market
.movements a primary concern for regulators and for internal risk control. In

particular, banks are now required to hold a certain amount of capital as a cushion
against adverse market movements. According to the Capital Adequacy Directive

Ž . Ž .by the Bank of International Settlement BIS in Basle, Basle Comittee, 1996 the
risk capital of a bank must be sufficient to cover losses on the bank’s trading
portfolio over a 10-day holding period in 99% of occasions. This value is usually

Ž .referred to as Value at Risk VaR . Of course, holding period and confidence level
may vary according to application; for purposes of internal risk control most
financial firms also use a holding period of one day and a confidence level of
95%. From a mathematical viewpoint VaR is simply a quantile of the Profit-and-

Ž .Loss P&L distribution of a given portfolio over a prescribed holding period.
Alternative measures of market risk have been proposed in the literature. In two

Ž .recent papers, Artzner et al. 1997, 1999 show that VaR has various theoretical
deficiencies as a measure of market risk; they propose the use of the so-called
expected shortfall or tail conditional expectation instead. The expected shortfall
measures the expected loss given that the loss L exceeds VaR; in mathematical

w < xterms it is given by E L L)VaR . From a statistical viewpoint the main
challenge in implementing one of these risk-measures is to come up with a good
estimate for the tails of the underlying P&L distribution; given such an estimate
both VaR and expected shortfall are fairly easy to compute.

In this paper we are concerned with tail estimation for financial return series.
Our basic idealisation is that returns follow a stationary time series model with
stochastic volatility structure. There is strong empirical support for stochastic

Ž .volatility in financial time series; see for instance Pagan 1996 . The presence of
stochastic volatility implies that returns are not necessarily independent over time.
Hence, with such models there are two types of return distribution to be consid-
ered — the conditional return distribution where the conditioning is on the current
volatility and the marginal or stationary distribution of the process.

Both distributions are of relevance to risk managers. A risk-manager who wants
to measure the market risk of a given portfolio is mainly concerned with the
possible extent of a loss caused by an adverse market movement over the next day
Ž .or next few days given the current volatility background. His main interest is in
the tails of the conditional return distribution, which are also the focus of the
present paper. The estimation of unconditional tails provides different, but comple-
mentary information about risk. Here we take the long-term view and attempt to

Žassign a magnitude to a specified rare adverse event, such as a 5-year loss the size
.of a daily loss which occurs on average once every 5 years . This kind of
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information may be of interest to the risk manager who wishes to perform a
scenario analysis and get a feeling for the scale of worst case or stress losses.

In a referee’s report the concern was raised that the use of conditional return
distributions for market risk measurement might lead to capital requirements that
fluctuate wildly over time and are therefore difficult to implement. Our answer to
this important point is threefold. First, while it is admittedly impossible for a
financial institution to rapidly adjust its capital base to changing market condi-
tions, the firm might very well be able to adjust the size of its exposure instead.
Moreover, besides providing a basis for the determination of risk capital, measures
of market risk are also employed to give the management of a financial firm a
better understanding of the riskiness of its portfolio, or parts thereof. We are
convinced that the riskiness of a portfolio does indeed vary with the general level
of market volatility, so that the current volatility background should be reflected in
the risk-numbers reported to management. Finally, we think that the economic
problem of defining an appropriate risk-measure for setting capital-adequacy
standards should be separated from the statistical problem of estimating a given
measure of market risk, which is the focus of the present paper.

Schematically the existing approaches for estimating the P&L distribution of a
portfolio of securities can be divided into three groups: the non-parametric

Ž .historical simulation HS method; fully parametric methods based on an econo-
metric model for volatility dynamics and the assumption of conditional normality
Že.g. J.P. Morgan’s Riskmetrics and most models from the ARCHrGARCH

. Ž .family ; and finally methods based on extreme value theory EVT .
In the HS-approach the estimated P&L distribution of a portfolio is simply

given by the empirical distribution of past gains and losses on this portfolio. The
method is therefore easy to implement and avoids Aad-hoc-assumptionsB on the
form of the P&L distribution. However, the method suffers from some serious
drawbacks. Extreme quantiles are notoriously difficult to estimate, as extrapolation
beyond past observations is impossible and extreme quantile estimates within
sample tend to be very inefficient — the estimator is subject to a high variance.
Furthermore, if we seek to mitigate these problems by considering long samples
the method is unable to distinguish between periods of high and low volatility.

Econometric models of volatility dynamics that assume conditional normality,
such as GARCH-models, do yield VaR estimates which reflect the current
volatility background. The main weakness of this approach is that the assumption
of conditional normality does not seem to hold for real data. As shown, for

Ž .instance, in Danielsson and de Vries 1997b , models based on conditional
normality are therefore not well suited to estimating large quantiles of the
P&L-distribution.2

2 Note that the marginal distribution of a GARCH-model with normally distributed errors is usually
fat-tailed as it is a mixture of normal distributions. However, this matters only for quantile estimation

Ž .over longer time-horizons; see e.g. Duffie and Pan 1997 .
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The estimation of return distributions of financial time series via EVT is a
Žtopical issue which has given rise to some recent work Embrechts et al., 1998,

1999; Longin, 1997a,b; McNeil, 1997, 1998; Danielsson and de Vries, 1997b,
.1997c; Danielsson et al., 1998 . In all these papers the focus is on estimating the

Ž . Ž .unconditional stationary distribution of asset returns. Longin 1997b and McNeil
Ž .1998 use estimation techniques based on limit theorems for block maxima.
Longin ignores the stochastic volatility exhibited by most financial return series
and simply applies estimators for the iid-case. McNeil uses a similar approach but
shows how to correct for the clustering of extremal events caused by stochastic

Ž .volatility. Danielsson and de Vries 1997a,b use a semiparametric approach based
Ž .on the Hill-estimator of the tail index. Embrechts et al. 1999 advocate the use of

a parametric estimation technique which is based on a limit result for the
excess-distribution over high thresholds. This approach will be adopted in this
paper and explained in detail in Section 2.2.

EVT-based methods have two features which make them attractive for tail
estimation: they are based on a sound statistical theory; they offer a parametric
form for the tail of a distribution. Hence, these methods allow for some extrapola-
tion beyond the range of the data, even if care is required at this point. However,
none of the previous EVT-based methods for quantile estimation yields VaR-
estimates which reflect the current volatility background. Given the conditional
heteroscedasticity of most financial data, which is well documented by the
considerable success of the models from the ARCHrGARCH family, we believe
this to be a major drawback of any kind of VaR-estimator.

In order to overcome the drawbacks of each of the above methods we combine
ideas from all three approaches. We use GARCH-modelling and pseudo-maxi-
mum-likelihood estimation to obtain estimates of the conditional volatility. Statis-
tical tests and exploratory data analysis confirm that the error terms or residuals do
form, at least approximately, iid series that exhibit heavy tails. We use historical

Ž .simulation for the central part of the distribution and threshold methods from
Ž .EVT for the tails to estimate the distribution of the residuals. The application of

Ž .these methods is facilitated by the approximate independence over time of the
residuals. An estimate of the conditional return distribution is now easily con-
structed from the estimated distribution of the residuals and estimates of the
conditional mean and volatility. This approach reflects two stylized facts exhibited
by most financial return series, namely stochastic volatility and the fat-tailedness
of conditional return distributions over short time horizons.

Ž .In a very recent paper Barone-Adesi et al. 1998 have independently proposed
an approach with some similarities to our own. They fit a GARCH-model to a
financial return series and use historical simulation to infer the distribution of the
residuals. They do not use EVT-based methods to estimate the tails of the
distribution of the residuals. Their approach may work well in large data sets —
they use 13 years of daily data — where the empirical quantile provides a
reasonable quantile estimator in the tails. With smaller data sets threshold methods
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from EVT will give better estimates of the tails of the residuals. During the
revision of this paper we also learned that the central idea of our approach — the
application of EVT to model residuals — has been independently proposed by

Ž .Diebold et al. 1999 .
We test our approach on various return series. Backtesting shows that it yields

better estimates of VaR and expected shortfall than unconditional EVT or
GARCH-modelling with normally distributed error terms. In particular, our analy-

Ž .sis contradicts Danielsson and de Vries 1997c , who state that Aan unconditional
approach is better suited for VaR estimation than conditional volatility forecastsB
Ž .page 3 of their paper . On the other hand, we see that models with a normally
distributed conditional return distribution yield very bad estimates of the expected
shortfall, so that there is a real need for working with leptokurtic error distribu-
tions. We also study quantile estimation over longer time-horizons using simula-

Žtion. This is of interest if we want to obtain an estimate of the 10-day VaR as
.required by the BIS-rule from a model fitted to daily data.

2. Methods

Ž .Let X , tgZ be a strictly stationary time series representing daily observa-t

tions of the negative log return on a financial asset price.3 We assume that the
dynamics of X are given by

X sm qs Z , 1Ž .t t t t

Žwhere the innovations Z are a strict white noise process i.e. independent,t
.identically distributed with zero mean, unit variance and marginal distribution

Ž .function F z . We assume that m and s are measurable with respect to GG ,Z t t t -1

the information about the return process available up to time ty1.
Ž . Ž .Let F x denote the marginal distribution of X and, for a horizon hgN,X t

Ž .let F x denote the predictive distribution of the return over theX q . . . qX < GGtq 1 tqh t

next h days, given knowledge of returns up to and including day t. We are
interested in estimating quantiles in the tails of these distributions. For 0-q-1,
an unconditional quantile is a quantile of the marginal distribution denoted by

x s inf xgR: F x Gq ,� 4Ž .q X

3 In the present paper we test our approach on return series generated by single assets only.
However, the method obviously also applies to the time series of profits and losses generated by
portfolios of financial instruments and can therefore by used for the estimation of market risk measures
in a portfolio context.
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and a conditional quantile is a quantile of the predictive distribution for the return
over the next h days denoted by

x t h s inf xgR: F x Gq .Ž . Ž .� 4q X q . . . qX < GGtq 1 tqh t

We also consider an alternative measure of risk for the tail of a distribution known
as the expected shortfall. The unconditional expected shortfall is defined to be

<S sE X X)x ,q q

and the conditional expected shortfall to be

h h
t t<S h sE X X )x h , GG .Ž . Ž .Ý Ýq tqj tqj q t

js1 js1

We are principally interested in quantiles and expected shortfalls for the 1-step
predictive distribution, which we denote respectively by x t and St . Sinceq q

<F x sP s Z qm Fx GG� 4Ž .X < GG tq1 tq1 tq1 ttq 1 t

sF xym rs ,Ž .Ž .Z tq1 tq1

these measures simplify to

x t sm qs z , 2Ž .q tq1 tq1 q

t <S sm qs E Z Z)z , 3Ž .q tq1 tq1 q

where z is the upper qth quantile of the marginal distribution of Z which byq t

assumption does not depend on t.
To implement an estimation procedure for these measures we must choose a

Ž .specific process in the class 1 , i.e. a particular model for the dynamics of the
conditional mean and volatility. Many different models for volatility dynamics
have been proposed in the econometric literature including models from the

Ž . ŽARCHrGARCH family Bollerslev et al., 1992 , HARCH processes Muller et¨
. Ž .al., 1997 and stochastic volatility models Shephard, 1996 . In this paper, we use

Ž .the parsimonious but effective GARCH 1,1 process for the volatility and an
Ž .AR 1 model for the dynamics of the conditional mean; the approach we propose

extends easily to more complex models.
In estimating x t with GARCH-type models it is commonly assumed that theq

innovation distribution is standard normal so that a quantile of the innovation
y1Ž . Ž .distribution is simply z sF q , where F z is the standard normal d.f. Aq

GARCH-type model with normal innovations can be fitted by maximum likeli-
Ž .hood ML and m and s can be estimated using standard 1-step forecasts,tq1 tq1

t Ž .so that an estimate of x is easily constructed using 3 . This is close in spirit toq
Ž .the approach advocated in RiskMetrics RiskMetrics, 1995 , but our empirical

finding, which we will later show, is that this approach often underestimates the
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conditional quantile for q)0.95; the distribution of the innovations seems
generally to be heavier-tailed or more leptokurtic than the normal.

Another standard approach is to assume that the innovations have a leptokurtic
Ž .distribution such as Student’s t-distribution scaled to have variance 1 . Suppose

(Zs ny2 rn T where T has a t-distribution on n)2 degrees of freedom withŽ .
y1Ž . Ž .(d.f. F t . Then z s ny2 rn F q . GARCH-type models with t-innova-Ž .T q T

tions can also be fitted with maximum likelihood and the additional parameter n

can be estimated. We will see in Section 2.2 that this method can be viewed as a
special case of our approach; it yields quite satisfactory results as long as the

Ž .positive and the negative tail of the return distribution are roughly equal.
The method proposed in this paper makes minimal assumptions about the

underlying innovation distribution and concentrates on modelling its tail using
EVT. We use a two-stage approach which can be summarised as follows.

Ž .1. Fit a GARCH-type model to the return data making no assumption about F zZ
Ž .and using a pseudo-maximum-likelihood approach PML . Estimate m andtq1

s using the fitted model and calculate the implied model residuals.tq1

2. Consider the residuals to be a realisation of a strict white noise process and use
Ž . Ž .extreme value theory EVT to model the tail of F z . Use this EVT model toZ

estimate z for q)0.95.q

We go into these stages in more detail in the next sections and illustrate them
by means of an example using daily negative log returns on the Standard and
Poors index.

2.1. Estimating s and m using PMLt q 1 t q 1

For predictive purposes we fix a constant memory n so that at the end of day t
Ž .our data consist of the last n negative log returns x , . . . , x , x . Wetynq1 ty1 t

Ž . Ž .consider these to be a realisation from a AR 1 –GARCH 1,1 process. Hence, the
conditional variance of the mean-adjusted series e sX ym is given byt t t

s 2 sa qa e 2 qbs 2 , 4Ž .t 0 1 ty1 ty1

where a )0, a )0 and b)0. The conditional mean is given by0 1

m sf X . 5Ž .t ty1

This model is a special case of the general first order stochastic volatility process
Ž . Ž .considered by Duan 1997 , who uses a result by Brandt 1986 to give conditions

Ž .for strict stationarity. The mean-adjusted series e is strictly stationary ift

2E log bqa Z -0. 6Ž .Ž .1 ty1

Ž .By using Jensen’s inequality and the convexity of ylog x it is seen that a
Ž .sufficient condition for Eq. 6 is that bqa -1, which moreover ensures that1
Ž .the marginal distribution F x has a finite second moment.X
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This model is fitted using the PML method. This means that the likelihood for a
Ž .GARCH 1,1 model with normal innovations is maximized to obtain parameter

ˆ ˆ ˆ TŽ .estimates us f, a , a , b . While this amounts to fitting a model using aˆ ˆ0 1

distributional assumption we do not necessarily believe, the PML method delivers
reasonable parameter estimates. In fact, it can be shown that the PML method
yields a consistent and asymptotically normal estimator; see for instance Chapter 4

Ž .of Gourieroux 1997 .´
ŽEstimates of the conditional mean and standard deviation series m , . . . ,ˆ tynq1

. Ž . Ž . Ž .m and s , . . . , s can be calculated recursively from Eqs. 4 and 5 afterˆ ˆ ˆt tynq1 t

substitution of sensible starting values. In Fig. 1 we show an arbitrary thousand
day excerpt from our dataset containing the stock market crash of October 1987;
the estimated conditional standard deviation derived from the GARCH fit is shown
below the series.

Residuals are calculated both to check the adequacy of the GARCH modelling
and to use in Stage 2 of the method. They are calculated as

x ym x ymˆ ˆtynq1 tynq1 t t
z , . . . , z s , . . . , ,Ž .tynq1 t ž /s sˆ ˆtynq1 t

and should be iid if the fitted model is tenable. In Fig. 2 we plot correlograms for
the raw data and their absolute values as well as for the residuals and absolute

Fig. 1. 1000 day excerpt from series of negative log returns on Standard and Poors index containing
crash of 1987; lower plot shows estimate of the conditional standard deviation derived from PML

Ž . Ž .fitting of AR 1 –GARCH 1,1 model.
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Fig. 2. Correlograms for the raw data and their absolute values as well as for the residuals and absolute
residuals. While the raw data are clearly not iid, this assumption may be tenable for the residuals.

residuals. While the raw data are clearly not iid, this assumption may be tenable
for the residuals.4

If we are satisfied with the fitted model, we end stage 1 by calculating
estimates of the conditional mean and variance for day tq1, which are the
obvious 1-step forecasts

ˆm sf x ,ˆ tq1 t

$ $
2 2 2ˆs sa qa e qbs ,ˆ ˆ ˆtq1 0 1 t t

where e sx ym .ˆ ˆt t t

4 We also ran some Ljung–Box tests in selected time periods and found no evidence against the
iid-hypothesis for the residuals.
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2.2. Estimating z using EVTq

We begin stage 2 by forming a QQ-Plot of the residuals against the normal
distribution to confirm that an assumption of conditional normality is unrealistic,
and that the innovation process has fat tails or is leptokurtic — see Fig. 3.

We then fix a high threshold u and we assume that excess residuals over this
Ž .threshold have a generalized Pareto distribution GPD with d.f.

y1rj1y 1qj yrb if j/0,Ž .
G y sŽ .j ,b ½1yexp yyrb if js0,Ž .

where b)0, and the support is yG0 when jG0 and 0FyFybrj when
j-0.

This particular distributional choice is motivated by a limit result in EVT.
Consider a general d.f. F and the corresponding excess distribution above the
threshold u given by

F yqu yF uŽ . Ž .
� 4F y sP XyuFyNX)u s ,Ž .u 1yF uŽ .

Ž .for 0Fy-x yu, where x is the finite or infinite right endpoint of F.0 0
Ž . Ž .Balkema and de Haan 1974 and Pickands 1975 showed for a large class of

Fig. 3. Quantile–quantile plot of residuals against the normal distribution shows residuals to be
leptokurtotic.
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Ž .distributions F that it is possible to find a positive measurable function b u such
that

< <lim sup F y yG y s0. 7Ž . Ž . Ž .u j ,b Žu.
u™x0 0Fy-x yu0

Ž .For more details consult Theorem 3.4.13 on page 165 of Embrechts et al. 1997 .
In the class of distributions for which this result holds are essentially all the

common continuous distributions of statistics5, and these may be further subdi-
vided into three groups according to the value of the parameter j in the limiting
GPD approximation to the excess distribution. The case j)0 corresponds to
heavy-tailed distributions whose tails decay like power functions, such as the
Pareto, Student’s t, Cauchy, Burr, loggamma and Frechet distributions. The case´
js0 corresponds to distributions like the normal, exponential, gamma and
lognormal, whose tails essentially decay exponentially. The final group of distribu-

Ž .tions are short-tailed distributions j-0 with a finite right endpoint, such as the
uniform and beta distributions.

We assume the tail of the underlying distribution begins at the threshold u.
From our sample of n points a random number NsN )0 will exceed thisu

threshold. If we assume that the N excesses over the threshold are iid with exact
Ž .GPD distribution, Smith 1987 has shown that maximum likelihood estimates

ˆ ˆ ˆ ˆjsj and bsb of the GPD parameters j and b are consistent and asymptoti-N N

cally normal as N™`, provided j)y1r2. Under the weaker assumption that
Ž .the excesses are iid from F y which is only approximately GPD he also obtainsu

ˆ ˆasymptotic normality results for j and b. By letting usu ™x and NsN ™`n 0 u

as n™` he shows essentially that the procedure is asymptotically unbiased
provided that u™x sufficiently fast. The necessary speed depends on the rate of0

Ž .convergence in Eq. 7 . In practical terms, this means that our best GPD estimator
of the excess distribution is obtained by trading bias off against variance. We

Ž .choose u high to reduce the chance of bias while keeping N large i.e. u low to
Ž .control the variance of the parameter estimates. The choice of u or N is the most

important implementation issue in EVT and we discuss this issue in the context of
finite samples from typical return distributions in Section 2.3.

Consider now the following equality for points x)u in the tail of F

1yF x s 1yF u 1yF xyu . 8Ž . Ž . Ž . Ž .Ž . Ž .u

Ž .If we estimate the first term on the right hand side of Eq. 8 using the random
proportion of the data in the tail Nrn, and if we estimate the second term by

5 More precisely, the class comprises all distributions in the maximum domain of attraction of an
extreme value distribution.
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approximating the excess distribution with a generalized Pareto distribution fitted
by maximum likelihood, we get the tail estimator

ˆy1rj
$ N xyu

ˆF x s1y 1qj ,Ž . ž /ˆn b

Ž .for x)u. Smith 1987 also investigates the asymptotic relative error of this
estimator and gets a result of the form

$

1yF xŽ . d
1r2 2N y1 ™N 0,Õ ,Ž .ž /1yF xŽ .

as usu ™x and NsN ™`, where the asymptotic unbiasedness again re-n 0 u

quires that u™x sufficiently fast.0

In practice we will actually modify the procedure slightly and fix the number of
data in the tail to be Nsk where k<n. This effectively gives us a random

Ž .threshold at the kq1 th order statistic. Let z Gz G . . . Gz represent theŽ1. Ž2. Žn.
ordered residuals. The generalized Pareto distribution with parameters j and b is

Ž .fitted to the data z yz , . . . , z yz , the excess amounts over theŽ1. Žkq1. Žk . Žkq1.
threshold for all residuals exceeding the threshold. The form of the tail estimator

Ž .for F z is thenZ

ˆy1rj
$ k zyzŽ .kq1ˆF z s1y 1qj . 9Ž . Ž .Z ž /ˆn b

For q)1ykrn we can invert this tail formula to get
ˆyj

b̂ 1yq$ $

z s z sz q y1 ; 10Ž .q q , Žkq1.k ž /ž /ˆ krnj
$

we use the z notation when we want to emphasize the dependence of theq ,k
$

estimator on the choice of k and the simpler z notation otherwise.q

In Table 1 we give threshold values and GPD parameter estimates for both tails
of the innovation distribution of the test data in the case that ns1000 and
ks100; we discuss this choice of k in Section 2.3. In Fig. 4 we show the

Table 1
Threshold values and maximum likelihood GPD parameter estimates used in the construction of tail
estimators for both tails of the innovation distribution of the test data. Note that ks100 in both cases.

Ž .Standard errors s.e.s are calculated using a standard likelihood approach based on the observed Fisher
information matrix

ˆ ˆTail z j s.e. b s.e.Ž kq1.

Ž . Ž .Losses 1.215 0.224 0.122 0.568 0.089
Ž . Ž .Gains 1.120 y0.096 0.090 0.589 0.079 5
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Fig. 4. GPD tail estimates for both tails of the innovations distribution. The points show the empirical
distribution of the residuals and the solid lines represent the tail estimates. Also shown are the d.f. of

Ž . Ž .the standard normal distribution dashed and the d.f. of the t-distribution dotted with degrees of
Ž . Ž .freedom as estimated in an AR 1 –GARCH 1,1 model with t-innovations.

Ž Ž ..corresponding tail estimators Eq. 9 . We are principally interested in the left
picture marked Losses which corresponds to large positive residuals. The solid
lines in both pictures correspond to the GPD tail estimates and can be seen to
model the residuals well. Also shown is a dashed line which corresponds to the
standard normal distribution and a dotted line which corresponds to the estimated

Ž .conditional t distribution scaled to have variance 1 in a GARCH model with
t-innovations. The normal distribution clearly underestimates the extent of large
losses and also of the largest gains, which we would already expect from the
QQ-plot. The t-distribution, on the other hand, underestimates the losses and
overestimates the gains. This illustrates the drawbacks of using a symmetric
distribution with data which are asymmetric in the tails.

With more symmetric data the conditional t-distribution often works quite well
and it can, in fact, be viewed as a special case of our method. As already
mentioned, it is an example of a heavy-tailed distribution, i.e. a distribution whose

Ž .limiting excess distribution is GPD with j)0. Gnedenko 1943 characterized all
such distributions as having tails of the form

1yF x sxy1rj L x , 11Ž . Ž . Ž .
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Ž .where L x is a slowly varying function and j is the positive parameter of the
limiting GPD. 1rj is often referred to as the tail index of F. For the t-distribu-
tion with n degrees of freedom the tail can be shown to satisfy

n Žny2.r2
yn1yF x ; x , 12Ž . Ž .

B 1r2,nr2Ž .
Ž .where B a,b denotes the beta function, so that this provides a very simple

example of a symmetric distribution in this class, and the value of j in the
Žlimiting GPD is the reciprocal of the degrees of freedom see McNeil and Saladin

Ž ..1997 .
Fitting a GARCH model with t innovations can be thought of as estimating the

j in our GPD tail estimator by simpler means. Inspection of the form of the
likelihood of the t-distribution shows that the estimate of n will be sensitive
mainly to large observations so that it is not surprising that the method gives a
reasonable fit in the tails although all data are used in the estimation. Our method
has, however, the advantage that we have an explicit model for each tail. We
estimate two parameters in each case, which gives a better fit in general.

Ž Ž ..We also use the GPD tail estimator Eq. 9 to estimate the right tail of the
Ž .negative return distribution F x by applying it directly to the raw return dataX

x , . . . , x ; in this way we calculate an unconditional quantile estimate x̂tynq1 t q

using unconditional EVT. We investigate whether this approach also provides
reasonable estimates of x t . It should however be noted that the assumption ofq

independent excesses over threshold is much less satisfactory for the raw return
data. The asymptotics of the GPD-based tail estimator are therefore much more
poorly understood if applied directly to the raw return data.

Even if the procedure can be shown to be asymmptotically justified, in practice
it is likely to give much more unstable results when applied to non-iid, finite

Ž . Žsample data. Embrechts et al. 1997 provide a related example see Fig. 5.5.4. on
. Ž .page 270 ; they construct a first order autoregressive AR 1 process driven by a

symmetric, heavy-tailed, iid noise, so that both noise distribution and marginal
distribution of the process have the same tail index. They apply the Hill estimator
Ž .an alternative EVT procedure described in Section 2.3 to simulated data from the

Ž .process and also to residuals obtained after fitting an AR 1 model to the raw data
and find estimates of the tail index to be much more accurate and stable for the
residuals, although the Hill estimator is theoretically consistent in both cases. This
example supports the idea that pre-whitening of data through fitting of a dynamic
model may be a sensible prelude to EVT analysis in practice.

2.3. Simulation study of threshold choice

Ž .To investigate the issue of threshold choice i.e. choice of k we perform a
small simulation study. We also use this study to compare the GPD approach to
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tail estimation with the approach based on the Hill estimator and the approach
Ž .based on the empirical distribution function historical simulation .

Ž .The Hill estimator Hill, 1975 is designed for data from heavy-tailed distribu-
Ž Ž ..tions admitting the representation Eq. 11 with j)0. The estimator for j ,
Ž .based on the k exceedances of the kq1 th order statistic, is

k
ŽH . ŽH . y1ˆ ˆj sj sk log z y log z ,Ýk Ž j. Žkq1.

js1

and an associated quantile estimator is
Ž .Hˆyj1yq$ $Ž . Ž .H H

z s z sz ; 13Ž .q q , Žkq1.k ž /krn

Ž .see Danielsson and de Vries 1997b for details. The properties of these estimators
have been extensively investigated in the EVT literature; in particular, a number of

Žrecent papers show consistency of the Hill estimator for dependent data Resnick
.and Starica, 1995, 1996 and develop bootstrap methods for optimal choice of theˇ ˇ

Ž .threshold z Danielsson and de Vries, 1997a .Žkq1.
In the simulation study we generate samples of size ns1000 from Student’s

t-distribution which, as we have observed, provides a rough approximation to the
observed distribution of model residuals. The size of sample corresponds to the

Ž .window length we use in applications of the two-step method. From 12 we know
the tail index of the t-distribution and quantiles are easily calculated. We calculate

$

ˆ Žj and z the maximum-likelihood and GPD-based estimators of j and zk q , qk
$ ŽH.ŽH .ˆ.based on k threshold exceedances as well as j and z for various valuesk q ,k

of k; for the quantile estimates we restrict our attention to values of k such that
Ž .k)1000 1yq , so that the target quantile is beyond the threshold. Of interest are

Ž .the mean squared errors MSEs and biases of these estimators, and the depen-
dence of these errors on the choice of k. For each estimator we estimate MSE and
bias using Monte Carlo estimates based on 1000 independent samples. For

$

Ž .example, we estimate MSE z byq ,k

1000 2
$$ $Ž .j
MSE z s z yz ,Ýž /q , q ,k qž /k

js1
$ Žj.

where z represents the quantile estimate obtained from the jth sample.q ,k
ŽAlthough the Hill estimator is generally the most efficient estimator of j it

.gives the lowest MSE for sensibly chosen k it does not provide the most efficient
nor the most stable quantile estimator. Our simulations suggest that the GPD
method should be preferred for estimating high quantiles.

An example is given in Fig. 5. We plot the bias and MSE of estimators of the
99th percentile against k, in the case that the degrees of freedom of the
t-distribution is ns4. The Hill estimator is marked with a solid line, the GPD
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Ž .Fig. 5. Estimated bias and MSE mean squared error against k for various estimators of the 0.99
quantile of a t distribution with n s4 degrees of freedom based on an iid sample of 1000 points. Solid
line is Hill estimator; dashed line is estimator based on GPD approach; dotted line is the empirical

Ž .quantile estimator i.e. the historical simulation approach . The alternative x-axis labels above the
graphs give the threshold corresponding to k expressed as a sample percentile.

estimator is marked with a dashed line and the empirical HS-estimate z of theŽ11.
quantile is marked by a dotted line.

The Hill method has a negative bias for low values of k that becomes positive
and then grows rapidly with k; the GPD estimator has a positive bias that grows
much more slowly; the empirical estimate has a negative bias. The MSE reveals
more about the relative merits of the methods: the GPD estimator attains its lowest
value corresponding to a k value of about 100 but, more importantly, the MSE is
very robust to the choice of k because of the slow growth of the bias. The Hill
method performs well for kF70 but then deteriorates rapidly. The HS method is
obviously less efficient than the two EVT methods, which shows that EVT does
indeed give more precise estimates of the 99th percentile based on samples of size
1000 from the t-distribution.

For the 99th percentile both the GPD and Hill estimators are clearly useful, if
used correctly. In the case of GPD we must ensure that the variance of the
estimator is kept low by setting k sufficiently high, but as long as k is greater than
about 50 the method is robust; the issue of choosing an optimal threshold does not
seem so critical for the GPD method. For the Hill method it is more important
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because the efficient range for k is smaller; it is important that the bias be kept
under control by choosing a low k.

In this paper we only show results for the t-distribution with four degrees of
freedom, but further simulations suggest that the same qualitative conclusions hold
for other values of n and other heavy-tailed distributions. For estimating more
distant quantiles we observe that the GPD method appears to be more efficient
than the Hill method and maintains its relative stability with respect to choice of k.
The greater complexity of the GPD quantile estimator, which involves a second

ˆ ŷ1estimated scale parameter b as well as the tail index estimator j , seems to lead
to better finite sample performance.

2.4. Summary: adÕantages of the GPD approach

We favour the GPD approach to tail estimation in this paper for a variety of
reasons that we list below.

v In finite samples of the order of 1000 points from typical return distributions
ŽEVT quantile estimators whether maximum-likelihood and GPD-based or Hill-

.based are more efficient than the historical simulation method.
v ŽThe GPD-based quantile estimator is more stable in terms of mean squared
.error with respect to choice of k than the Hill quantile estimator. In the present

application a k value of 100 seems reasonable, but we could equally choose to use
k values of 80 or 150.

v For high quantiles with qG0.99 the GPD method is at least as efficient as the
Hill method.

v The GPD method allows effective estimates of expected shortfall to be
constructed as will be described in Section 4.

v Ž .The GPD method is applicable to light-tailed data js0 or even short-tailed
Ž .data j-0 , whereas the Hill method is designed specifically for the heavy-tailed
Ž .case j)0 . There are periods when the conditional distribution of financial

returns appears light-tailed rather than heavy-tailed.

3. Backtesting

We backtest the method on five historical series of log returns: the Standard
and Poors index from January 1960 to June 1993, the DAX index from January
1973 to July 1996, the BMW share price over the same period, the US dollar
British pound exchange rate from January 1980 to May 1996 and the price of gold
from January 1980 to December 1997.

To backtest the method on a historical series x , . . . x , where m4n, we1 m
t � 4calculate x on days t in the set Ts n, . . . , my1 using a time window of nˆq

days each time. In our implementation we have set ns1000 so that we use
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somewhat less than the last four years of data for each prediction. In a long
backtest it is less feasible to examine the fitted model carefully every day and to
choose a new value of k for the tail estimator each time; for this reason we always
set ks100 in these backtests, a choice that is supported by the simulation study
of the previous section. This means effectively that the 90th percentile of the
innovation distribution is estimated by historical simulation, but that higher
percentiles are estimated using the GPD tail estimator. On each day tgT we fit a

Ž . Ž .new AR 1 –GARCH 1,1 model and determine a new GPD tail estimate. Fig. 6
shows part of the backtest for the DAX index. We have plotted the negative log
returns for a 3-year period commencing on the first of October 1987; superim-

t Ž .posed on this plot is the EVT conditional quantile estimate x dashed line andˆ0.99
Ž .the EVT unconditional quantile estimate x dotted line .ˆ0.99

t � 4We compare x with x for qg 0.95,0.99,0.995 . A violation is said toˆq tq1

occur whenever x )x t . The violations corresponding to the backtest in Fig. 6ˆtq1 q

are shown in Fig. 7. We use different plotting symbols to show violations of the
conditional EVT, conditional normal and unconditional EVT quantile estimates. In
Fig. 8 the portion of Fig. 7 relating to the crash of October 1987 has been
enlarged.

Fig. 6. Three years of the DAX backtest beginning in October 1987 and showing the EVT conditional
t Ž . Ž .quantile estimate x dashed line and the EVT unconditional quantile estimate x dotted lineˆ ˆ0.99 0.99

superimposed on the negative log returns. The conditional EVT estimate clearly responds quickly to the
high volatility around the 1987 stock market crash.
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Fig. 7. Violations of x t and x corresponding to the backtest in Fig. 6. Triangles, circles andˆ ˆ0.99 0.99

squares denote violations of the conditional normal, conditional EVT and unconditional EVT estimates
respectively. The conditional normal estimate like the conditional EVT estimate responds to changing
volatility but tends to be violated rather more often, because it does not take into account the
leptokurtosis of the residuals. The unconditional EVT estimate cannot respond quickly to changing
volatility and tends to be violated several times in a row in stress periods.

It is possible to develop a binomial test of the success of these quantile
estimation methods based on the number of violations. If we assume the dynamics

Ž .described in Eq. 1 , the indicator for a violation at time tgT is Bernoulli

I :s1 t s1 ;Be 1yq .Ž .t �X ) x 4 �Z ) z 4tq 1 q tq1 q

Moreover, I and I are independent for t, sgT and t/s, since Z and Zt s tq1 sq1

are independent. Therefore,

I ;B card T ,1yq ,Ž .Ž .Ý t
tgT

i.e. the total number of violations is binomially distributed under the model.
Under the null hypothesis that a method correctly estimates the conditional

quantiles, the empirical version of this statistic S 1 t is from thetg T �x ) x 4ˆtq 1 q

Ž Ž . .binomial distribution B card T ,1yq . We perform a two-sided binomial test of
the null hypothesis against the alternative that the method has a systematic
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Fig. 8. Enlarged section of Fig. 7 corresponding to the crash of 1987. Triangles, circles and squares
denote violations of the conditional normal, conditional EVT and unconditional EVT estimates
respectively. The dotted line shows the path of the unconditional EVT estimate, the dashed line shows
the path of the conditional EVT estimate and the long dashed line shows the conditional normal
estimate.

estimation error and gives too few or too many violations.6 The corresponding
binomial probabilities are given in Table 2 alongside the numbers of violations for
each method. A p-value less than or equal to 0.05 will be interpreted as evidence
against the null hypothesis.

In 11 out of 15 cases our approach is closest to the mark. On two occasions
GARCH with conditional t innovations is best and on one occasion GARCH with
conditional normal innovations is best. In one further case our approach and the

Žconditional t approach are joint best. On no occasion does our approach fail lead
.to rejection of the null hypothesis , whereas the conditional normal approach fails

11 times; unconditional EVT fails three times. Figs. 7 and 8 give some idea of
how the latter two methods fail. The conditional normal estimate of x t like the0.99

conditional EVT estimate responds to changing volatility but tends to be violated
rather more often, because it does not take into account the leptokurtosis of the

6 Ž .See also Christoffersen et al. 1998 for related work on tests of data on VaR violations.
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Table 2
Backtesting Results: Theoretically expected number of violations and number of violations obtained

Ž .using our approach conditional EVT , a GARCH-model with normally distributed innovations, a
GARCH-model with Student t-innovations, and quantile estimates obtained from unconditional EVT
for various return series. p-Values for a binomial test are given in brackets

Length of test S&P DAX BMW $r£ Gold
7414 5146 5146 3274 3413

0.95 Quantile
Expected 371 257 257 164 171

Ž . Ž . Ž . Ž . Ž .Conditional EVT 366 0.81 258 0.97 261 0.82 151 0.32 155 0.22
Ž . Ž . Ž . Ž . Ž .Conditional normal 384 0.49 238 0.22 210 0.00 169 0.69 122 0.00
Ž . Ž . Ž . Ž . Ž .Conditional t 404 0.08 253 0.80 245 0.44 186 0.08 168 0.84
Ž . Ž . Ž . Ž . Ž .Unconditional EVT 402 0.10 266 0.59 251 0.70 156 0.55 131 0.00

0.99 Quantile
Expected 74 51 51 33 34

Ž . Ž . Ž . Ž . Ž .Conditional EVT 73 0.91 55 0.62 48 0.67 35 0.72 25 0.12
Ž . Ž . Ž . Ž . Ž .Conditional normal 104 0.00 74 0.00 86 0.00 56 0.00 43 0.14
Ž . Ž . Ž . Ž . Ž .Conditional t 78 0.68 61 0.18 52 0.94 40 0.22 29 0.39
Ž . Ž . Ž . Ž . Ž .Unconditional EVT 86 0.18 59 0.29 55 0.62 35 0.72 25 0.12

0.995 Quantile
Expected 37 26 26 16 17

Ž . Ž . Ž . Ž . Ž .Conditional EVT 43 0.36 24 0.77 29 0.55 21 0.26 18 0.90
Ž . Ž . Ž . Ž . Ž .Conditional normal 63 0.00 44 0.00 57 0.00 41 0.00 33 0.00
Ž . Ž . Ž . Ž . Ž .Conditional t 45 0.22 32 0.23 18 0.14 21 0.26 20 0.54
Ž . Ž . Ž . Ž . Ž .Unconditional EVT 50 0.04 36 0.05 31 0.32 21 0.26 11 0.15

residuals. The unconditional EVT estimate cannot respond quickly to changing
volatility and tends to be violated several times in a row in stress periods.

4. Expected shortfall

Ž .In two recent papers Artzner et al. 1997, 1999 have criticized quantile-based
risk-measures such as VaR as a measure of market risk on two grounds. First they
show that VaR is not necessarily subadditive, i.e. there are cases where a portfolio
can be split into sub-portfolios such that the sum of the VaR corresponding to the
sub-portfolios is smaller than the VaR of the total portfolio. They explain that this
may cause problems, if one bases a risk-management system of a financial
institution on VaR-limits for individual books. Moreover, VaR gives only an upper
bound on the losses that occur with a given frequency; VaR tells us nothing about
the potential size of the loss given that a loss exceeding this upper bound has
occurred. The expected shortfall, as defined in Section 2, is an alternative risk
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measure to the quantile which overcomes the theoretical deficiencies of the latter.
In particular, this risk measure gives some information about the size of the
potential losses given that a loss bigger than VaR has occurred.

In this section we discuss methods for estimating the expected shortfall in our
models. Moreover, we develop an approach for backtesting our estimates. Not
surprisingly, we find that the estimates of expected shortfall are very sensitive to
the choice of the model for the tail of the return distribution. In particular, while
the conditional 0.95 quantile estimates derived under the GPD and normal
assumptions typically do not differ greatly, we find that the same is not true of
estimates of the expected shortfall at this quantile. It is thus much more problem-
atic to base estimates of the conditional expected shortfall at even the 0.95 quantile
on an assumption of conditional normality when there is evidence that the
residuals are heavy-tailed.

4.1. Estimation

Ž . Ž .We recall from Eq. 3 that the conditional 1-step expected shortfall is given
by

tS sm qs E ZNZ)z .q tq1 tq1 q

To estimate this risk measure we require an estimate of the expected shortfall for
w xthe innovation distribution E ZNZ)z . For a random variable W with an exactq

GPD distribution with parameters j-1 and b it can be verified that

wqb
w xE WNW)w s , 14Ž .

1yj

where bqwj)0. Suppose that excesses over the threshold u have exactly this
distribution, i.e. ZyuNZ)u;G . By noting that for z )u we can writej ,b q

Zyz NZ)z s Zyu y z yu N Zyu ) z yu ,Ž . Ž . Ž . Ž .q q q q

it can be easily shown that

Zyz NZ)z ;G , 15Ž .q q j ,bqj Ž z yu.q

so that excesses over the higher threshold z also have a GPD distribution with theq
Ž .same shape parameter j but a different scaling parameter. We can use Eq. 14 to

get

1 byj u
E ZNZ)z sz q . 16Ž .q q ž /1yj 1yj zŽ . q
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Ž .This is estimated analogously to the quantile estimator in Eq. 10 by replacing all
unknown quantities by GPD-based estimates and replacing u by z . This givesŽkq1.
us the conditional expected shortfall estimate

ˆ ˆ1 byj zŽ .kq1tŜ su qs z q . 17Ž .ˆ ˆ ˆq tq1 tq1 q ˆ ˆž /1yj 1yj ẑŽ . q

4.2. Expected shortfall to quantile ratios

Ž .From Eq. 3 we see that, for m small, the conditional one-step quantiles andtq1

shortfalls of the return process are related by
t tS S ym E ZNZ)zq q tq1 q

f s .t t zx x ym qq q tq1

Thus, the relationship is essentially determined by the ratio of shortfall to quantile
for the noise distribution.

Ž .It is instructive to compare Eq. 16 with the expected shortfall to quantile ratio
Ž .in the case when the innovation distribution F z is standard normal. In this caseZ

E ZNZ)z sk z , 18Ž . Ž .q q

Ž . Ž . Ž Ž .. Ž .where k x sf x r 1yF x is the reciprocal of Mill’s ratio and f x and
Ž .F x are the density and d.f. of the standard normal distribution. Asymptotically

Mill’s ratio is of the form

k x sx 1qxy2 qo xy2 ,Ž . Ž .Ž .
as x™`, from which it is clear that the expected shortfall to quantile ratio
converges to one as q™1. This can be compared with the limit in the GPD case;

Ž .y1for j)0 the ratio converges to 1yj )1 as q™1; for jF0 the ratio
converges to 1.

w x Ž .In Table 3 we give values for E ZNZ)z rz in the GPD j)0 and normalq q

cases. For the value of the threshold u and the GPD parameters j and b we have
taken the values obtained from our analysis of the positive residuals from our test

Table 3
Values of the expected shortfall to quantile ratio for various quantiles of the noise distribution under
two different distributional assumptions. In the first row we assume that excesses over the threshold

Ž .us1.215 have an exact GPD distribution with parameters j s0.224 and b s0.568 see Table 1 . In
the second row we assume that the innovation distribution is standard normal

q 0.95 0.99 0.995 q™1

GPD 1.52 1.42 1.39 1.29
Normal 1.25 1.15 1.12 1.00
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Ž .data see Table 1 . The table shows that when the innovation distribution is
heavy-tailed the expected shortfall to quantile ratio is considerably larger than
would be expected under an assumption of normality. It also shows that, at the
kind of probability levels that interest us, the ratio is considerably larger than its
asymptotic value so that scaling quantiles with the asymptotic ratio would tend to
lead to an underestimation of expected shortfall.

4.3. Backtesting

It is possible to develop a test along similar lines to the binomial test of quantile
violation to verify that the GPD-based method gives much better estimates of the
conditional expected shortfall than the normal method for our datasets. This time
we are interested in the size of the discrepancy between X and St in the eventtq1 q

of quantile violation. We define residuals

X ySt
tq1 q

R s sZ yE ZNZ)z .tq1 tq1 q
stq1

Ž .It is clear that under our model 1 these residuals are iid and that, conditional on
� t 4 � 4X )x or equivalently Z )z , they have expected value zero.tq1 q tq1 q

Suppose we again backtest on days in the set T. We can form empirical
versions of these residuals on days when violation occurs, i.e. days on which
x )x t . We will call these residuals exceedance residuals and denote them bytq1 q

ˆtx yStq1 qtr : tgT , x )x , where r s ,ˆ� 4tq1 tq1 q tq1
ŝtq1

ˆtwhere S is an estimate of the shortfall. Under the null hypothesis that weq
Ž .correctly estimate the dynamics of the process m and s and the firsttq1 tq1
Ž w x.moment of the truncated innovation distribution E ZNZ)z , these residualsq

should behave like an iid sample with mean zero. In Fig. 9 we show these
exceedance residuals for the BMW series and qs0.95. Clearly for residuals
calculated under an assumption of conditional normality the null hypothesis seems
doubtful.

To test the hypothesis of mean zero we use a bootstrap test that makes no
Žassumption about the underlying distribution of the residuals see page 224 of

.Efron and Tibshirani, 1993 . We conduct a one-sided test against the alternative
hypothesis that the residuals have mean greater than zero or, equivalently, that
conditional expected shortfall is systematically underestimated, since this is the
likely direction of failure. This can be applied to either the standardised or
unstandardised residuals with similar results. The residuals derived under an
assumption of normality always fail the test with p-values in all cases much less
than 0.01; we conclude that an assumption of conditional normality is useless for
the purposes of calculating expected shortfall.
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Fig. 9. Exceedance residuals for the BMW series and qs0.95. Under the null hypothesis that the
Ž .dynamics in Eq. 1 and the tail of the innovation distribution are correctly estimated, these should have

mean zero. The right graph shows clear evidence against the conditional normality assumption; the left
graph shows the assumption of a conditional GPD tail is more reasonable. Note that there are only 210
normal residuals as opposed to 261 GPD residuals; refer to Table 2 to see that conditional normality
overestimates the conditional quantile x t for the BMW data.0.95

On the other hand, the GPD-based residuals are much more plausibly mean
zero. In the following Table 4 we give p-values for the test applied to the GPD
residuals for all five test series and various values of q. The most problematic

Ž .series are the two indices S&P and DAX ; for the former the null hypothesis is

Table 4
p-values for a one-sided bootstrap test of the hypothesis that the exceedance residuals in the GPD case
have mean zero against the alternative that the mean is greater than zero

q 0.95 0.99 0.995

S&P 0.06 0.01 0.01
DAX 0.09 0.06 0.01
BMW 0.36 0.08 0.11
USD.GBP 0.28 0.26 0.62
Gold 0.24 0.04 0.12
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Ž .rejected at the 5% level for qs0.99 and qs0.995; for the latter the null
hypothesis is rejected for qs0.995. The null hypothesis is also rejected for the
Gold price returns series and qs0.99. In all other cases, it is not rejected and for
the BMW and USD–GBP series the hypothesis of zero-mean seems quite strongly
supported.

5. Multiple day returns

t Ž .In this section we consider estimates of x h for h)1. Among other reasons,q
Žthis is of interest if we want to obtain an estimate of the 10-day VaR as required

.by the BIS-rule from a model fitted to daily data. For GARCH-models
Ž .F x is not known analytically even for a known innovationX q . . . qX N GGtq 1 tqh t

distribution, so we adopt a simulation approach to obtaining these estimates as
follows. Working with the last n negative log returns we fit as before the

Ž . Ž .AR 1 -GARCH 1,1 model and this time we estimate both tails of the innovation
ˆ Ž1. ˆ Ž1.Ž .distribution F z . j and b are used to denote the estimated parameters ofZ

ˆ Ž2. ˆ Ž2.the GPD excess distribution for the positive tail and j and b denote the
corresponding parameters for the negative tail.

We simulate iid noise from the innovation distribution by a combination of
bootstrap and GPD simulation according to the following algorithm which was

Ž .also proposed independently by Danielsson and de Vries 1997c .

1. Randomly select a residual from the sample of n residuals.
ˆ Ž1. ˆ Ž1.Ž .2. If the residual exceeds z sample a GPD j , b distributed excess yŽkq1. 1

from the right tail and return z qy .Žkq1. 1
ˆ Ž2. ˆ Ž2.Ž .3. If the residual is less than z sample a GPD j , b distributed excessŽnyk .

y from the left tail and return z yy .2 Žnyk . 2

4. Otherwise return the residual itself.
5. Replace residual in sample and repeat.

This gives points from the distribution

Ž .2ˆy1rj° < <k zyzŽ .nykŽ .2ˆ1qj if z-zŽnyk .Ž .2ž /ˆn b

n1$ ~ 1 if z FzFzF z sŽ . Ý � z F z4 Žnyk . Žkq1.z in is1

Ž .1ˆy1rjk zyzŽ .kq1Ž .1ˆ1y 1qj if z)z ,Žkq1.Ž .1¢ ž /ˆn b

Ž .which approximates F z .Z
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Using this composite estimate of the noise distribution and the fitted GARCH
Ž .model we can simulate future paths x , . . . , x and calculate the correspond-tq1 tqh

ing cumulative sums which are simulated iid observations from our estimate for
Ž .the distribution F x . In our implementation we choose to simulateX q . . . qX N GGtq 1 tqh t

1000 paths and to construct 1000 iid observations of the conditional h-day return.
To increase precision we then apply a second round of EVT by setting a threshold
at the 101st order statistic of these data and calculating GPD-based estimates of

t Ž . t Ž .x h and x h . In principle it would also be possible to calculate estimates0.95 0.99
t Ž . t Ž .of S h and S h in this way, although we do not go this far.0.95 0.99

For horizons of hs5 and hs10 days backtesting results are collected in
Table 5 for the same datasets used in Table 2. We compare the Monte-Carlo
method proposed above, which we again label conditional EVT, with the approach
where the conditional 1-day EVT estimates are simply scaled with the square-root
of the horizon h. For a given historical series x , . . . , x , with m4n, we1 m

t Ž . � 4calculate x h on days t in the set Ts n, . . . ,myh and compare each estimateˆq

with x q . . . qx . Under the null hypothesis of no systematic estimationtq1 tqh

error each comparison is a realization of a Bernoulli event with failure probability

Table 5
Backtesting Results: Theoretically expected number of violations and number of violations obtained

Ž .using our approach Monte Carlo simulation from the k-day conditional distribution and square-root-
of-time scaling of 1-day estimates

S&P DAX BMW $r£ Gold
hs5; length of test 7409 5141 5141 3270 3409

0.95 Quantile
Expected 371 257 257 164 170

Ž .Conditional EVT h-day 380 247 231 185 156
Square-root-of-time 581 315 322 199 160

0.99 Quantile
Expected 74 51 51 33 34

Ž .Conditional EVT h-day 81 46 57 44 38
Square-root-of-time 176 71 65 42 27

hs10; length of test 7405 5136 5136 3265 3404

0.95 Quantile
Expected 370 257 257 163 170

Ž .Conditional EVT h-day 403 249 231 170 147
Square-root-of-time 623 318 315 196 163

0.99 Quantile
Expected 74 51 51 33 34

Ž .Conditional EVT h-day 85 48 53 46 34
Square-root-of-time 206 83 70 42 25
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1yq, but we have a series of dependent comparisons because we use overlapping
k-day returns. It is thus difficult to construct formal tests of violation counts, as we
did in the case of 1-day horizons. For the multiple day backtests we simply
provide qualitative comparisons of expected and observed numbers of violations
for the two methods.

In 16 out of 20 backtests the Monte Carlo method is closer to the expected
number of violations and in all cases it performs reasonably well. In contrast,
square-root-of-time seems to severely underestimate the relevant quantiles for the
BMW stock returns and the two stock indices. Its performance is somewhat better
for the dollar-sterling exchange rate and the price of gold.

We are not aware of a theoretical justification for a universal power law scaling
t Ž . t lrelationship of the form x h rx fh for conditional quantiles. However, ifq q

such a rule is to be used, our results suggest that the exponent l should be greater
than a half, certainly for stock market return series. In this context see Diebold et

Ž .al. 1998 , who also argue against square-root-of-time scaling. Our results also
cast doubt on the usefulness for conditional quantiles of a scaling law proposed by

Ž .Danielsson and de Vries 1997c where the scaling exponent is j , the reciprocal of
the tail index of the marginal distribution of the stationary time series, which
typically takes values around 0.25.

6. Conclusion

The present paper is concerned with tail estimation for financial return series
and, in particular, the estimation of measures of market risk such as value at risk
Ž .VaR or the expected shortfall. We fit GARCH-models to return data using
pseudo maximum likelihood and use a GPD-approximation suggested by extreme
value theory to model the tail of the distribution of the innovations. This approach
is compared to various other methods for tail estimation for financial data. Our
main findings can be summarized as follows.

v We find that a conditional approach that models the conditional distribution
of asset returns against the current volatility background is better suited for VaR
estimation than an unconditional approach that tries to estimate the marginal
distribution of the process generating the returns. The conditional approach is
vindicated by the very satisfying overall performance of our method in various
backtesting experiments.

v The distribution of the residuals is often found to be leptokurtic. As an
Aad-hoc approachB the innovations can be modeled by a t-distribution where the
degree-of-freedom parameter is estimated with maximum likelihood. This ap-
proach works quite well for return series with symmetric tails but fails when the
tails are asymmetric. We find the GPD-approximation to be preferable, because it
can deal with asymmetries in the tails. Moreover, this method is based on a sound
theory.
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v We advocate the expected shortfall as an alternative risk measure with good
theoretical properties. This risk measure is easy to estimate in our model. A
comparison of estimates for the expected shortfall using our approach and a
standard GARCH-model with normal innovations shows again that the innovation
distribution should be modelled by a fat-tailed distribution, preferably using EVT.

v We find that square-root-of-time scaling of one-day VaR estimates to obtain
VaR estimates for longer time horizons of 5 or 10 days does not perform well in
practice, particularly for stock market returns. In contrast we propose a Monte
Carlo method based on our fitted models that gives more reasonable results.

In practice, VaR estimation is often concerned with multivariate return series.
We are optimistic that our Atwo-stage-methodB can be extended to multivariate
series. However, a detailed analysis of this question is left for future research.
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