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Abstract 

A new representation of the diagonal Vech model is given using the Hadamard product. 
Sufficient conditions on parameter matrices are provided to ensure the positive definiteness of 
covariance matrices from the new representation. Based on this, some new and simple models 
are discussed. A set of diagnostic tests for multivariate ARCH models is proposed. The tests are 
able to detect various model misspecifications by examing the orthogonality of the squared 
normalized residuals. A small Monte-Carlo study is carried out to check the small sample 
performance of the test. An empirical example is also given as guidance for model estimation 
and selection in the multivariate framework. For the specific data set considered, it is found that 
the simple one and two parameter models and the constant conditional correlation model perform 
fairly well. 
 
Keywords: conditional covariance, Multivariate ARCH, Hadamard product, M-test.  
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1. Introduction 
 

It has now become common knowledge that the risk of the financial market, which is mainly 
represented by the variance of individual stock returns and the covariance between different assets or with 
the market, is highly forecastable. The research in this area however is far from complete and the 
application of different econometric models is just at its beginning. Most research in this area focuses on 
the modeling and forecasting of stock volatilities instead of the covariation of different assets even though 
the covariance plays a key role in the standard CAPM theory and the mean-variance asset allocation 
model. One main reason for this is probably the complexity in modeling the conditional covariance of 
multiple time series faced by everybody who tries to tackle this problem. One difficulty in modeling the 
conditional second moment for multiple time series is that the model usually involves a huge number of 
parameters which is the same as in the VAR model. But there is one more complexity besides this which 
is the fact that every model must ensure that the estimated conditional covariance matrix is positive 
definite. 
 

This paper starts with the Vech model of Bollerslev, Engle and Wooldridge (1988) and points out 
that the Vech model solves neither of the two difficulties above. A representation using Hadamard product 
in matrix algebra is then given to the Diagonal Vech model. Sufficient conditions on parameter matrices 
are provided to guarantee the conditional covariance matrices to be positive definite from this model. A 
sequence of simplified models is then presented and their properties discussed. Section 2 also presents 
another new class of multivariate ARCH model which we call Principal Component MARCH model. 
Two other models, namely the Constant Conditional Correlation model of Bollerslev(1992) and the 
BEKK model of Engle and Kroner (1995), are also discussed. 
 

With so many possible models one can use, it is necessary to discriminate between them in 
application. Although varieties of different kinds of tests in analyzing univariate time series can be used 
directly in analyzing multiple time series, there are special properties which need to be  considered in 
building conditional covariance matrices. Two sets of diagnostic tests are proposed in section 3. The tests 
are designed to detect different kinds of model misspecification. The first set of tests is essentially a 
moment test to check cross-variable and time series dependence. The second set of tests is an LM test to 
examine whether the conditional covariance matrix is right on average and also whether there is time 
series dependence. Section 4 gives a small Monte-Carlo study to compare the critical values from finite 
sample simulation with their asymptotic counterparts. 
 

Section 5 gives an empirical example of estimation and testing. Different models are estimated 
for stock returns of five US companies. A comparison of the test statistic from different models is 
performed. This section offers guidance for selecting better models for a specific data set, especially when 
the system is large. Section 6 concludes the paper. 
 
 
2. Varieties of Multivariate ARCH Models 
 
 In a regression context, the full model that will be considered in this paper is as follows, 

ttt εXY  

),(~| 1 ttt N H0ε   

where  is an NN parameter matrix, tY  is an N1 vector of the endogenous variables;  is an NK 

parameter matrix, tX  is a K1 vector of exogenous variables in mean equation (including constant and 

ARMA term); tε  is the residuals vector of N1 from this regression model, 1t  is the information set 
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containing all the information available up to time t1, and )( ijtt hH  is the conditional covariance 

matrix we will discuss below. Different specifications of tH will give us different multivariate ARCH 

models. 
 

The first and probably the most general multivariate ARCH model is Bollerslev, Engle and 
Wooldridge’s Vech representation of the multivariate ARCH model. [see Bollerslev et al. (1988).] In 
Vech model, the conditional covariance matrix is specified as follows, 
 

 )()'()(
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it VechVechVech 





  HBεεACH .  (2.1) 

 
Where Vech ( . ) denotes the column stacking operator of the lower portion of a symmetric matrix. So for 
an NN covariance matrix tH  )( tVech H is an N (N 1)21 vector. In equation (2.1), C is also N (N 

1)21, and iA , i 1,...,q and jB , j 1,...,p, are N (N 1)2N (N 1)2 matrices.  

 
Although the Vech representation is very general, it has two major disadvantages in applications. 

Firstly, the model involves (only for conditional covariance equation) N(N1)(pq) 4/)1( 22 NN  
parameters. Even for a small size system, the number of parameters to be estimated is prohibitive. For 
ease of exposition, p and q will always be assumed to equal 1 throughout the paper so that only  
multivariate GARCH(1,1) models will be discussed. It is straightforward to generalize the model to p, 
q>1. For example, when N5 and pq 1 the number of parameters involved in the equation is 465 which 
will prove to be very costly to estimate if it is not impossible. For a relatively large system of N 10, the 
total  parameters involved increases to 6105 which is merely impossible to implement. And secondly, the 
estimated conditional covariance matrices are not guaranteed to be positive definite. Every covariance 
matrix must be positive definite, but for this model it is probably impossible to give general restrictions 
on parameters to insure a positive definite covariance matrix. This shortcoming makes the model not 
reliable in applications.  

 
To solve the first problem, Bollerslev et al. (1988) proposed the much simpler diagonal Vech 

model by restricting the coefficient matrices A and B in equation (2.1) to be diagonal so that each 
conditional covariance depends only on its own past values and surprises. That is, the conditional 
covariance is decided by the following equation, 
 
 111   ijtijjtitijijijt hh ,  i,j = 1,…,N.  (2.2) 

 
Under this restriction only (p q 1)N (N 1)2 parameters are involved for an NN system. For example, 
when pq1 and N5, the total number of parameters to be estimated is 15 45. When N 10, this 
number is 165 which is much smaller than that of a Vech model. 
 

In this section, we will first give a sufficient condition for the diagonal Vech model to be positive 
definite. And based on this, a sequence of simplified models which all guarantee the conditional 
covariance matrix to be positive definite will then be proposed. 
 

It is not difficult to see that the diagonal Vech model defined by (2.2) is equivalent to the 
following representation: 
 111 '   tttt HBεεACH ,      (2.3) 
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where tH  (N N ) is the conditional covariance matrix at time t, C, A and B are all NN parameter 

matrices. Special attention should be paid to  which denotes the Hadamard product of two matrices. If 
U ( iju ) and V ( ijv ) are each mn matrices, then their Hadamard product is the m n matrix of 

elementwise products  
 

UV = ( iju ijv ) . 

 
Since tH  must be symmetric in equation (2.3), so must be the parameter matrices C, A, and B. Hence 

only the lower portion of matrices C, A and B need to be parameterized and estimated. 
 

Some results for Hadamard product are needed before we present the conditions that will 
guarantee the diagonal Vech model to be positive definite. It will be assumed throughout the discussion in 
this paper that the usual matrix or vector multiplication will be carried out before the Hadamard product. 
So AA '11  tt εε  should be interpreted as (AA  '11  tt εε ). 

 
Lemma 2.1 
If U is a symmetric matrix of N N , v is a nonzero vector of N  1, then U vvis positive semi-definite 
iff  U is positive semi-definite. 
Proof: 
By just writing them out element by element, one can easily see that 
 

U vv = diag [v] U diag [v], 
 
where diag [v] is a diagonal matrix with iv  as its i th diagonal element. But the right hand side is positive 

semi-definite iff U is positive semi-definite. 
 
Theorem  2.2 
If both U and V are positive semi-definite matrices of NN, then so is UV. 
Proof: 
Since V is positive semi-definite one can get a spectral decomposition of V,  
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such that 0 i  for all i where i ’s are the eigenvalues of V and iv ’s are the corresponding 

eigenvectors. Hence 
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By Lemma 2.1, U v i v i  is positive semi-definite if U is positive semi-definite, and since 

0 i , i = 1,…,N, so )'( iii vvU  is positive semi-definite. The result is proved since UV is now 

the sum of N positive semi-definite matrices. 
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For a detailed discussion of Hadamard product, one is referred to Styan(1973). There a different 

proof is given to theorem 2.2 . 
 

We now present four sequentially nested multivariate ARCH models from general to simple. 
They are all special cases of the diagonal Vech model and are all guaranteed to be positive semi-definite. 
It will be assumed that all the parameter matrices are either symmetric or lower triangle and so there are 
only N (N 1)2 nonredundant parameters in a NN  parameter matrix. 

 
Matrix-Diagonal Model 
 

111 ''''   tttt HBBεεAACCH  (2.4) 

 
Since CC, AA and BB are all positive semi-definite, so by theorem 2.2, tH  will be positive definite for 

all t as far as the initial covariance matrix 0H is positive definite. If sample covariance is used for 0H  

then tH will always be positive definite. Let ijij )'(CC , ijij )'(AA , ijij )'(BB , then it is 

readily seen that, 
 
 111   ijtijjtitijijijt hh ,  i,j = 1, …, N.  (2.5) 

 
So each conditional covariance depends on its own past values and surprises. The difference between this 
representation and Bollerslev et al. ’s diagonal Vech representation is that the parametrization used here 
imposed restrictions implicitly among different parameters to assure that the parameter matrix is positive 
semi-definite, and which will further assure the conditional covariance matrices positive definite. By 
writing the parameter matrices in the form of CC, AA, and BB instead of just C, A, and B, the positive 
semi-definiteness is guaranteed in estimation without imposing any further restrictions. 
 

The following three models are simplified versions of Matrix-Diagonal Model. By imposing extra 
conditions on the model we substantially reduce the parameters that need to be estimated while keeping 
the estimated conditional covariance matrices positive definite. 
 
Vector-Diagonal Model 

 

111 ''''   tttt HbbεεaaCCH  (2.6) 

 
where a and b are N1 vectors. Here we impose restrictions on parameter matrix A and B to be only rank 
one. 
 
Scalar-Diagonal or Two-parameter Model 

 

111 ''   tttt HεεCCH  (2.7) 

 
where , are positive scalars. This model implies any linear combinations of the original series will 
have a GARCH representation with the same ARCH and GARCH parameter. This is obviously a very 
strong restriction. Each conditional covariance is as follows, 
  
 111   ijtjtitijijt hh ,  i,j = 1, …, N.  (2.8) 
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Integrated MARCH Model 
 

111 )1('   tttt HεεH  (2.9) 

 
This model is from the two-parameter model by assuming 1  and C=0. Following the practice in 
univariate ARCH model we will call this Integrated Multivariate ARCH model.  
 

A brief summary of these models is given in Table 2.1. These models are basically in the same 
group. One get more parsimonious models by imposing restrictions on the parameter matrices A and B in 
Matrix-Diagonal Model. One may find the restrictions are too strong in order to get a positive definite 
covariance matrix. In fact the above restrictions are sufficient but may not be necessary for the covariance 
matrix to be positive definite since U + V can be positive definite even if V is not. For more discussion on 
these and some other models, see Ding (1994). 
 

For these models, a consistent estimator for the matrix C can be derived from the estimator for A, 
B and the sample covariance matrix if the system is covariance stationary. For example in the two-
parameter model if 1  then tEH , '11  ttE εε  exist and are both equal to the unconditional 

covariance matrix. So 

.)1/('

'' 111


 

CC

HεεCCH tttt EEE
 (2.10) 

But we know the sample covariance matrix is a consistent estimator of the unconditional covariance 
matrix when the system is stationary. So let 

0)1/(' HCC    

then one gets 
)1(' 0  HCC . 

Hence the two-parameter model becomes 

1110 ')1(   tttt HεεHH  (2.11) 

which is a real two-parameter model. The same arguments hold for the other models. This approach is 
called Variance Targeting by Engle and Mezrich(1996). 
 

One other model in this class worth to be mentioned here is the Exponentially Weighted Moving 
Average model. It is defined as follows: 

 
EWMA Model 

 








 





1

1

1
1

'
)1(

)1( t

i
itit

i
tt εεH  (2.12) 

 
This model is widely used in industry, and is known as Exponentially Weighted Moving Average 
(EWMA) model. It is essentially the same as the Integrated Multivariate ARCH model. For this model, 

tH  is positive definite only when t >N . 

 
Although the two-parameter model and the EWMA model are very simple and may impose too 

strong restrictions on parameters, they are found to be very useful and able to provide a reasonable 
approximation when one wants to build covariance forecast models for a large system.  
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Three other models will also be considered and be compared in this paper. They are all proposed 

to overcome the two disadvantages mentioned earlier for Vech model. They are the Constant  Conditional 
Correlation (CCC) model of Bollerslev (1992), the BEKK model of Engle and Kroner (1995), and finally, 
the Principal Component (PRCOMP) ARCH model of Kahn (1992). 

 
Constant Conditional Correlation Model 

We first give the Constant Conditional Correlation Multivariate ARCH model. The model 
assumes that each individual series has a univariate ARCH structure but the conditional correlation is 
constant. i.e. 

 

 1
2

1   iitiitiiiit hh ,  i = 1, …, N.  (2.13) 

 
and 

 ,jjtiitijijt hhh    i = 1,…,N,  j = 1, …, N. (2.14) 

 

Let )( ijR  and tD be a diagonal matrix with iith , i1,…,N on its diagonal entries, then the 

conditional covariance matrix is, 

ttt RDDH  . 

In this paper we will use Ding, Granger and Engle’s Asymmetric Power ARCH model [see Ding, 
Granger, Engle (1993)] as a more generalized structure for each univariate series. So one has, 
 

2
iitiit sh  ,     i = 1, …, N , 

and 
 

iii
iitiitiitiiiit ss 





  111 )|(| ,  i = 1, …, N . 

 
By doing this seven other univariate ARCH models are nested in this model here.  
 
BEKK Model 

We next present the BEKK representation of the multivariate conditional covariance matrix. The 
model is first proposed by Baba, Engle, Kraft and Kroner (1991). The name BEKK is after the authorship 
of that paper. The latest published version of that paper is Engle and Kroner (1995). The BEKK 
representation embeds the covariance matrix in such a structure that the positive definiteness of the 
covariance matrix is guaranteed. The simplest BEKK model is as follows: 

 
'''' 111 BBHAεAεCCH   tttt  (2.15) 

 
This model imposes restrictions over parameters across equations. More general versions of the model are 
available by putting more terms in the right hand side of the equation. As pointed out by Engle and 
Kroner (1995), this model includes all positive definite diagonal Vech models and nearly all positive 
definite Vech representations. The BEKK representation solves the positive definiteness problem 
successfully but the first disadvantage of the Vech model remains. Even for the simplest form given in 
(2.15), the number of parameters are the same order of magnitude that of any diagonal model. 
 
 If A and B are diagonal, Lemma 2.1 reveals that the BEKK model is simply the Vector Diagonal 
model defined above. 
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Principal Component MARCH Model 

The final model we will discuss here is first suggested by Ron Kohn of BARRA and we will call 
it the Principal Component Multivariate ARCH model. The main idea is to assume that there exists an 
orthogonal transformation of the original N time series to get N independent series which follow 
univariate ARCH processes. The formal model is as follows. Assume  
 ),(~| 1 ttt N H0ε      (2.16) 

and 
 ,'PPΛH tt      (2.17) 

where P is an orthonormal matrix with 1'  PP , and  tΛ is a diagonal matrix changing over time, tΛ = 

diag [ NNttt hhh ,...,, 2211 ]. Under this assumption we have, 

)',(~| 1 PPΛ0ε ttt N , 

that is 
),(~|' 1 tttt N Λ0εPe   

The final assumption is that each ite  follows a univariate ARCH process with mean 0 and conditional 

variance iith . Having got the conditional variance estimation for the transformed time series one can 

easily get the conditional covariance matrix estimation of the original time series by simply transforming 
back using equation (2.28). Obviously it may not be reasonable to assume that P is constant over time 
here. But the model is still attractive because of its simplicity. Usually the largest two principal 
components will account for about 90% of the volatility of the whole system. 
 
Table 2.1 gives a summary of the functional forms of the above models. The relationship between 
different models are clearly seen. Table 2.1 also gives the number of parameters needed in conditional 
covariance equation when there are N equations. Two special cases are given when N5 and N20. 

 
Table 2.1 Summary of the multivariate ARCH models ( '111   ttt εεΣ ) 

 

model functional form #par N=5 N=20

Matrix-Diagonal H t  = CC + AA    1t + BB   H 1t  3N(N+1)/2 45 630 

Variance Targeting H t  = H 0  (ii-AA-BB) + AA  1t +BBH 1t  N(N+1) 30 420 

Vector-Diagonal H t  = CC + aa   1t + bb   H 1t  N(N+5)/2 25 250 

Variance Targeting H t  = H 0   (ii-aa-bb) +aa  1t + bb  H 1t  2N 10 40 

Two-parameter H t  = CC +   1t + H 1t  N(N+1)/2+2 17 212 

Variance Targeting H t  = H 0 (1--) +   1t + H 1t  2 2 2 

Integrated MARCH H t  =   1t  + (1-) H 1t  1 1 1 

EWMA 
H t  = (1-)/(1- 1t )






1

1

1
t

i

i  it  
1 1 1 

CCC H t = D t RD t , D t  = diag [s t ] N(N+9)/2 35 290 

BEKK H t = CC +A 1t A+BH 1t B 3N(N+1)/2 45 630 

PRCOMP H t = P t P ,   t  = diag [h t ] 5N 25 100 



 9

3. Diagnostic Tests for Multivariate ARCH Models 
 

Given all these possible multivariate ARCH models in section 2, it is important to design a set of 
multivariate diagnostic tests for assessing the general descriptive validity of these models. Compared to 
the huge body of diagnostic tests available for univariate models, there are relatively few such tests 
available in the literature for multivariate models. However, the general principles to carry out diagnostic 
tests for multivariate models are similar to those for univariate models. The ARCH model proposed by 
Engle (1982) has the property that although the residuals from the time series regression are not correlated 
themselves, their squared values are. The univariate ARCH test is thus designed to detect autocorrelation 
of squared residuals from a regression model. The idea can be easily carried over to do multivariate 
ARCH tests. In this section, two sets of diagnostic tests will be discussed. One is specifically for 
multivariate models, the other is a direct extension of the univariate ARCH test to the multivariate 
situation. 

 
As is assumed in section 2, the residuals from the simultaneous equation,  t , follow a conditional 

multivariate normal distribution with mean zero and covariance matrix H t , i.e. 

 ),(~| 1 ttt N H0ε      (3.1) 

where H t  = H t (z 1t , ), z 1t   1t  is the lagged information available now and  is the parameter 

vector of l1 from the parameter space , . Various possible forms of H t (z 1t , ) are discussed in 

section 2. If the model is correctly specified and the true values of parameter vector  is known, then one 
has, 

e t = H
2/1

t  t  1t  N(0, I N ), 

i.e. the normalized residuals are independently normally distributed with mean zero and covariance 

matrix NI . Let  e 2
t  = ( 2

1te , . . . , 2
Nte ) be the elementwise square of the vector e t , then three 

consequences of model correct specification are, 
A1). E (e t e t ') I N , 

A2). 0),( 22 jtit eecov ,  for all ji  , 

and       A3). cov ( 2
ite , 2

kjte  ) = 0, for k>0. 

Tests of A1 have no power for many important types of misspecifications. Tests of A2 have power to 
detect non-normality in the conditional distribution.  Tests of A3 can be made robust to non-normality 
and are therefore capable of isolating failures in the dynamic structure of H.  A3 are necessary conditions 
for the correct specification of the covariance equation. As in the univariate ARCH case, it is no longer 
enough just looking at whether ite  and jte  (i j) are correlated or not when the conditional constant 

second moment assumption is removed. Conditions A2 and A3 examine cross-section and time series 
independence of the normalized residuals. As an illustration, let us look at the following example. If the 
true conditional distribution of  t  is (3.1) with unconditional covariance matrix H, EH t H, but one 

misspecifies the distribution of  t without heteroskedasticity as, 

 t  1t  ~  N (0, H) 

 
then the normalized residuals of the misspecified model are: 
 

te~ = H 2/1   t = H 2/1 H t
2/1 e t  

and, 
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E( te~ te~ ) = E (H 2/1 H 2/1
t e t e t ' H 2/1

t H 2/1 ) 

= E {E 1t [ H 2/1 H 2/1
t  e t e t ' H 2/1

t H 2/1  1t ]} 

= E {H 2/1 H 2/1
t E 1t [ e t e t '  1t ] H 2/1

t H 2/1 } 

= E { H 2/1 H 2/1
t I N  H 2/1

t H 2/1 } 

= E{ H 2/1 H t H 2/1 } 

= H 2/1 EH t  H 2/1  

= H 2/1 H H 2/1  
=I N  

 
So condition A1 is still satisfied as far as the conditional mean equation is correctly specified. But 
condition A2 will not hold in general since usually 

0)~,~( 22 jtit eecov . 

So the misspecification of the conditional covariance equation can result in the violation of condition A2. 
Thus a test of only A1 will have no power against the misspecification of the conditional covariance 
matrix. It is also possible that the conditional covariance equation is correctly specified but the 
conditional normality assumption is violated or both the conditional covariance equation is misspecified 
and the conditional normality assumption is violated. 
 

If the true conditional distribution is multivariate t instead of multivariate normal, i.e. 
 

 t  1t   t (v, 0, H t ) 

 
where t (v, 0, H t ) is a multivariate t distribution with covariance matrix H t  and vdegrees of freedom 

[see Fang, et al. (1990), Johnson and Kotz (1992)]. The density function of the multivariate t distribution 
used here is defined as follows, 
 

f(x)=

2/)(1

2/12/ )2(
1

)2/()(

)2/)((
Nv

N vvv

Nv
















 xx
 

 
where is the covariance matrix and N is the number of variables. For this distribution, one has, 
 

e t = H 2/1
t  t   1t    t (v, 0, I N ). 

 
So, 
 

E e t e t ' =
)2( v

v
I N .              (3.2)  

 
i.e. 

cov ( e it  , e jt ) 0 for i  j .  

But 
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E(e 2
t - E e 2

t )(e 2
t - E e 2

t ) = [
)2)(4(

2 2

 vv

v
I N )2(

1




v
ii ,    

 
i.e. 
 

cov (
2
ite ,

2
jte ) = 

2

2

)2)(4(

2

 vv

v
, for i  j ,         (3.3)     

 
which is nonzero. If one normalizes e t  to have unit variance then condition A1 still holds under 

conditional t distribution but condition A2 no longer holds. When v   the multivariate t distribution 
goes to multivariate normal distribution and equations (3.2) and (3.3) become the same as conditions A1 
and A2. 
 

In conclusion, the test given above can either detect the misspecification of the conditional 
covariance equation or departures from the conditional normality assumption or both. 

 
If the true values of the parameter vector in the system are known exactly, then, the residuals  t  

and conditional covariance matrix H t  are also known exactly. Hence the standardized residuals e t  which 

is iid with multivariate normal distribution. It is then very easy to derive the asymptotic distribution of the 

sample covariance of e 2
t  by the law of large numbers for iid variables. The sample correlation coefficient 

will usually follow a normal distribution with mean zero and variance T , where T is the sample size. So 

T times the squared correlation coefficient will have a  2 (1) distribution. But this is not the situation we 
are dealing with here. 
 

In our case all the parameters are unknown and need to be estimated from the sample data and are 
thus stochastic themselves. The asymptotic distribution of the sample covariance of the standardized 
residuals from the maximum likelihood estimated model will be different. Let m t  be a vector of 

N(N)1 with jiee jtit  ),1)(1( 22 , as its elements, then condition A2 is equivalent to the following 

moment condition, 
E m t  = 0.          (3.4) 

The sample moments )ˆ(
1

)ˆ(
1

T

T

t
tTT T
θmθm 



  should be close to zero in large sample if equation (3.4) 

is satisfied. Thus, the result for conditional moment test of Newey (1985) and Tauchen (1985) can be 

adopted here. Let )ˆ( Ttt θss   be the score vector of l 1 at data point t and assume certain regularity 

conditions satisfied, then by Lemma 2.1 and Theorem 2.2 of Newey (1985), the M statistic for testing 
model misspecification is simply 
 

2TRdT  ,          (3.5)  

where R 2
 is the uncentered R-squared from a regression of 1 on ]','[ tt sm .  Td   will have a asymptotic 

 2
 distribution with N(N)2 degrees of freedom. 

 
More specification tests can be carried out by just  adding more relevant moment conditions as 

desired. 
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4. A Monte-Carlo Study 
 

To examine the performance of these two sets of test, a small Monte-Carlo experiment was 
carried out. The ideal way to do this would be first to generate data from some specific multivariate 
ARCH model, and then estimate a multivariate ARCH model (either correctly specified or not) and do the 
moment tests for standardized residuals as described in section 3. In this way one can investigate both the 
size and the power of the tests. But since on the one hand, there are too many possible models that can be 
used and no one is known to be very representative. On the other hand, it takes too much computer time 
even to estimate one large multivariate ARCH model (say 2020). It is merely impractical to do a Monte-
Carlo study in this way. So a simplification is adopted here. 

 
We first generate a 51 vector e t , t 1,...,1000 from a multivariate normal distribution N(0, I 5 ), 

so ite , kjte   is independent to each other when i j or k 0.  e t  is then used as standardized residuals 

from the multivariate ARCH estimation. The auxiliary regression is then run without the score function. 
Five sets of moment conditions will be used in the simulation study. They are: 

 
 

1). C-test 
We use N(N 1)2 sample covariances as regressors in the moment test, 
 

m 0
ijt = (e 2

it - 2
ie )(e 2

jt - 2
je ) 

 
for i 1, ..., N 1, and j i 1 , . . . , N. We will refer to this test as Covariance test (C-test). The test 

statistic is simply T times the R 2
 from the auxiliary regression of 1 on m 0

ijt . The test statistic is 

asymptotically equivalent to T times the sum of N(N 1)2 squared sample correlation coefficients 

between e 2
it  and e 2

jt for i  j which, by the standard law of large numbers for iid  variables, will have a 

)2/)1((2  NN distribution. 
 
2). CC-test 

We use the sum of N (N(N 1)2 sample covariances in C-test as one moment condition: 
 

0
tm = 

ij
ijtm0  

This test will be referred to as Composite Covariance test (CC-test). T times the R 2
 of the regression 1 

on 0
tm will have a )1(2 distribution. 

 
3). LC-test. 

We use N 2 first order lagged sample covariances as regressors in moment test, 
 

m 1
ijt = ( 2

ite - 2
ie )( 2

kjte  - 2
je )  

 
for i, j1, ..., N. We will refer to this test as Lagged Covariance test (LC-test). The test is designed to 

detect time dependency of multivariate time series. TR 2
 from the auxiliary regression of 1 on m 1

ijt  will 

have a  2 (N 2 ) distribution. 
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4). CLC-test 

We use the sum of N 2
 lagged sample covariances in LC-test as one moment condition: 

 


ij

ijtt mm 11  

 

This test will be referred to as Composite Lagged Covariance test (CLC-test). T times the R 2 of the 

regression 1 on 1
tm  will have a  2 (1) distribution. 

 
5). AC-test 

The last test we will introduce is an additive composite test to check 2) and 4) simultaneously. 

 TR 2
 of the regression 1 on 0

tm , 1
tm  will have a  2 (2) distribution. 

 
Table 4.1 gives the simulated 1%, 5%, 10% level critical values for the tests discussed above. 1000 
replications were performed. For convenience of comparison, table 4.1 also gives the asymptotic critical 
values for these tests. It is seen that the small sample distribution is quite close to their asymptotic one. As 
the data set we will analyze in section 5 have 7420 observations, it will be quite reasonable to use the 
asymptotic value in doing the multivariate ARCH tests. 
 

Table 4.1 Simulated and asymptotic critical values for moment tests 
 

test level C CC LC CLC AC 
small sample 1% 23.14 6.82 44.13 5.72 8.75 

T=1000 5% 18.83 4.18 38.68 3.58 6.10 
N=5 10% 16.46 2.95 35.64 2.56 4.49 

asymptotic 1% 23.21 6.64 44.31 6.64 9.21 
T 5% 18.31 3.84 37.65 3.84 5.99 
N=5 10% 15.99 2.71 34.38 2.71 4.61 


 
5. An Empirical Example 
 

Because of the difficulties encountered in estimating multivariate ARCH models, most of the 
empirical examples in the literature only deal with two or three variable problems. However, in practice it 
is often needed to estimate the covariance matrix for a much larger system. For example, BARRA, a 
financial consulting firm at Berkeley, built a 668 factor covariance matrix using EWMA method for 
their US equity model. However, the weight they used is ad hoc - simply decided by assuming the half 
life of the system to be 36 months. For a large system like this, only a small portion of the models 
discussed in section 2 are applicable. Most useful the Integrated MARCH model, the two parameter 
MARCH model, the Exponentially Weighted Moving Average model, the Constant Conditional 
Correlation model and the Principal Component model. All the other models are merely impossible to 
estimate. Although we have done estimation and comparison for large systems (117 and 668) for 
the five simple models mentioned above, we will give a 5 example in this paper in order to give 
illustrative guidance in estimating and selecting best models for multivariate systems. 
 

The five series we will use are daily individual stock returns for five US companies, 1). Amoco, 
2). Ford, 3). HP, 4). IBM, and 5). Merck. The data are drawn from CRSP data file. They all start from 
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July 3, 1962 and end at December 31, 1991 with 7420 observations. Table 5.1 gives the summary 
statistics of these five series. It can be seen that all these five companies have a positive mean returns over 
this 30 year period. They are all leptokurtic and the Jarque-Bera normality test statistic show that the 
returns are far from normal. The Ljung-Box test statistic for autocorrelation in returns, Q 12 (r), show that 
there are statistically significant autocorrelations in return processes. However, the Ljung-Box test 

statistics for autocorrelation in absolute returns, Q 12 (r), and in squared returns, Q 12 (r 2 ), show that there 
are substantially more autocorrelations in absolute returns and squared returns which is one would expect 
for stock market return series. 
 

Table 5.1 Summary statistics of five stock returns 
 

data mean std skewness kurtosis normality 
test 

Q 12 (r) Q 12  (  r  ) Q 12 (r 2 )

AMOCO .0007 .0149 -.180 11.75 23680 121.80 1633.4 367.3
FORD .0005 .0164 .272 7.86 7400 28.35 1362.9 680.4
HP .0008 .0208 -.026 6.74 4330 37.28 989.0 733.0
IBM .0004 .0137 -.340 16.56 56985 22.70 1074.8 512.5
MERCK .0008 .0143 .133 6.28 3350 99.33 722.8 950.1
 

In order to focus our attention on the higher moments, we did some preprocessing before we start 
to fit any multivariate ARCH models. The first and second order autocorrelations in the return are 
corrected and the mean is subtracted. The summary statistics for adjusted returns are shown in table 5.2. 
From the Ljung-Box test statistic for the adjusted returns it can be seen that there are much less 
autocorrelations left in the new transformed series. However, the autocorrelations in the absolute returns 
and squared returns are still very significant.  
 

Table 5.2 Summary statistics of five adjusted returns 
 

data mean std skewness kurtosis normality 
test 

Q 12 (r) Q 12  (  r  ) Q 12 (r 2 )

AMOCO .0000 .0148 -.150 11.63 23060 18.51 1814.8 532.3
FORD .0002 .0164 .282 7.74 7032 6.48 1440.3 726.0
HP -.0001 .0208 -.035 6.72 4283 16.46 982.6 764.0
IBM .0000 .0137 -.340 16.56 56980 22.70 1074.8 512.5
MERCK .0001 .0142 .114 6.25 3280 17.31 702.4 954.5
 

Table 5.3 shows the sample covariance matrix for the five adjusted returns, and table 5.4 shows 
the sample correlation matrix. It is seen that these five series are significantly positively correlated with 
each other. That is, the individual stock returns tend to move in the same direction with each other.  
 


Table 5.3 Sample covariance 10000) matrix 


 AMOCO FORD HP IBM MERCK 
AMOCO 2.19     
FORD .71 2.68    
HP .91 1.24 4.32   
IBM .73 1.01 1.33 1.89  
MERCK .61 .79 1.03 .81 2.03 
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Table 5.4 Sample correlation matrix 

 
 AMOCO FORD HP IBM MERCK 
AMOCO 1     
FORD .294 1    
HP .295 .365 1   
IBM .359 .450 .468 1  
MERCK .289 .338 .347 .416 1 
 
 
Table 5.5 shows the correlation matrix for squared sample covariance normalized residuals. If the 
conditional covariance matrix is constant over time and the normality is a good assumption for the data, 

then the off diagonal elements in Table 5.5 should be very close to zero and T 2
ij   should follow a 

 2 (10) distribution. But in table 5.5 at least half of the correlations are too big to be ignored and 

T 2
ij = 1978 which is significant almost in any statistical level. 

 
Table 5.5 Sample correlation matrix for 

squared sample covariance normalized residuals 
 

 AMOCO FORD HP IBM MERCK 
AMOCO 1    
FORD .246 1   
HP .069 .097 1  
IBM .359 .156 .132 1 
MERCK .032 .047 .074 .112 1


For many multivariate ARCH models, estimation is usually computationally time consuming 

because a lot of matrix inverse operation must be performed when calculating the likelihood function in 
each iteration. For some of them, for example the BEKK model, it is difficult to estimate without proper 
initial values for the parameters. The program designed for this study is able to set the proper initial 
values automatically according to different data set [The estimation procedure used in this study is now 
available in S-Plus GARCH, see Martin, et al. (1996)]. 

 
Table 5.6 Number of parameters and log-likelihood functions 

 
 # of parameters log-likelihood function 
Matrix-Diagonal 45 106789.9 
Vector-Diagonal 25 106638.1 
Two-parameter 17 106608.3 
Variance Targeting 2 106589.6 
Integrated 1 106342.8 
EWMA 1 106060.5 
CCC 25 106731.3 
BEKK 45 106715.7 
PRCOMP 15 106452.6 
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Table 5.6 gives the log likelihood functions for different estimated models and the parameters used in the 
final preferred parameter specifications for each different model. The convergence criteria used for the 

estimation is that the 2R from the auxiliary regression of 1 on score vector be less than 0.0001. The whole 
estimation results will not be reported here because of the space limit. Most parameters in the final 
preferred model are significant. Usually the residuals from these ARCH filters are much closer to normal 
compared to the residuals normalized just by sample covariance. From table 5.6, it is seen that going from 
Two-parameter model to Vector-Diagonal model to Matrix-Diagonal model, i.e. giving more flexibility to 
the GARCH parameter does not improve the likelihood function a lot. This could possibly mean that a lot 
of parameters in B matrix are redundant. On the other hand, the likelihood value decreases a lot if we 
impose more restriction on the ARCH coefficient matrix A (results not shown here). So the ARCH 
parameters should be more flexible for each shock. Overall, the Matrix-Diagonal model gives the highest 
likelihood value with the maximum number of parameters. However, the constant correlation matrix does 
quite a good job with only 25 parameters. It should also be noted that the Two-parameter Variance 
Targeting model has a likelihood value of 106589.6 which is also fairly good and is potentially very 
useful in modeling large systems. 
 
Table 5.7 shows the results of the five tests discussed in section 4 for each estimated model. Since the test 

statistic is T times the 2R  from the regression of 1 on the moment conditions and scores, the more 
parameters one used, the more punishment there will be at least if the optimizer has not fully reached the 
maximum. From table 5.7 it is seen that the models with less parameters, such as the Two-parameter 
Variance Targeting, Integrated MARCH and EWMA, perform better overall than other models in these 
moment tests even though their likelihood values from these models are smaller. The constant correlation 
model also performs very well and is one of the top candidates due to its simplicity in estimation. For this 
particular data set, the less desired models are the BEKK model, Vector-Diagonal model and the Principal 
Component model. On the other hand, compared to the theoretical critical values for these tests, no model 
can pass all these tests. As mentioned before, this may suggest that all these models are misspecified or 
that the conditional distribution is not multivariate normal. 

 
Table 5.7 M-test of squared residuals orthogonality 

 



6. Conclusion 
 
This paper proposes several new Multivariate ARCH models that are simple and guarantee the positive 
definiteness of the estimated conditional covariance matrices. Two sets of diagnostic tests are designed 
for detecting various model misspecification. The new proposed models, together with the Constant 
Conditional Correlation model and the BEKK model, are estimated for asset returns of five US 
companies. The test results show that no single model can pass all the diagnostic tests proposed which 
suggests either the models are misspecified or the conditional multivariate normal distribution is not a 

Model C CC LC CLC AC
Matrix-Diagonal 96.30 35.00 100.66 33.56 33.80
Vector-Diagonal 99.38 38.47 165.43 61.60 61.95
Two-parameter 100.26 24.12 152.71 54.08 54.22
Variance Targeting 69.63 8.71 126.26 29.19 29.65
Integrated MARCH 61.85 4.00 117.29 19.11 20.01
EWMA 44.63 3.44 96.88 12.75 14.43
CCC 75.41 28.41 80.62 27.13 27.14
BEKK 118.40 81.84 152.99 60.07 62.13
PRCOMP 78.64 19.76 138.29 44.52 46.90
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good assumption. Nevertheless, our feeling is that the one and two parameter models and the constant 
conditional correlation models are potentially useful in modeling large scale conditional covariance 
matrix because of their simplicity in estimation and their fairly good performance. 
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