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If returns are not predictable, dividend growth must be predictable, to generate
the observed variation in divided yields. I find that the absence of dividend growth
predictability gives stronger evidence than does the presence of return predictability.
Long-horizon return forecasts give the same strong evidence. These tests exploit the
negative correlation of return forecasts with dividend-yield autocorrelation across
samples, together with sensible upper bounds on dividend-yield autocorrelation, to
deliver more powerful statistics. I reconcile my findings with the literature that finds
poor power in long-horizon return forecasts, and with the literature that notes the
poor out-of-sample R2 of return-forecasting regressions. (JEL G12, G14, C22)

Are stock returns predictable? Table 1 presents regressions of the real and
excess value-weighted stock return on its dividend-price ratio, in annual
data. In contrast to the simple random walk view, stock returns do seem
predictable. Similar or stronger forecasts result from many variations of
the variables and data sets.

Economic significance
The estimates in Table 1 have very large economic significance. The
standard deviation of expected returns in the last column of Table 1
is about five percentage points, almost as large as the 7.7% level of the
equity premium in this sample. The equity premium apparently varies over
time by as much as its unconditional mean. The 4–7% R2 do not look
that impressive, but the R2 rises with horizon, reaching values between 30
and 60%, depending on time period and estimation details, as emphasized
by Fama and French (1988). The slope coefficient of over three in the
top two rows means that when dividend yields rise one percentage point,
prices rise another two percentage points on average, rather than declining
one percentage point to offset the extra dividends and render returns
unpredictable. Finally, the regressions of Table 1 imply that all variation
in market price-dividend ratios corresponds to changes in expected excess
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Table 1
Forecasting regressions

Regression b t R2(%) σ (bx)(%)

Rt+1 = a + b(Dt /Pt ) + εt+1 3.39 2.28 5.8 4.9
Rt+1 − R

f
t = a + b(Dt /Pt ) + εt+1 3.83 2.61 7.4 5.6

Dt+1/Dt = a + b(Dt /Pt ) + εt+1 0.07 0.06 0.0001 0.001

rt+1 = ar + br (dt − pt ) + εr
t+1 0.097 1.92 4.0 4.0

�dt+1 = ad + bd (dt − pt ) + ε
dp
t+1 0.008 0.18 0.00 0.003

Rt+1 is the real return, deflated by the CPI, Dt+1/Dt is real dividend growth, and

Dt /Pt is the dividend-price ratio of the CRSP value-weighted portfolio. R
f
t+1 is

the real return on 3-month Treasury-Bills. Small letters are logs of corresponding
capital letters. Annual data, 1926–2004. σ(bx) gives the standard deviation of the
fitted value of the regression.

returns—risk premiums—and none corresponds to news about future
dividend growth. I present this calculation below.

Statistical significance
The statistical significance of the return forecast in Table 1 is marginal,
however, with a t-statistic only a little above two. And the ink was hardly
dry on the first studies1 to run regressions like those of Table 1 before
a large literature sprang up examining their econometric properties and
questioning that statistical significance. The right-hand variable (dividend
yield) is very persistent, and return shocks are negatively correlated with
dividend-yield shocks. As a result, the return-forecast regression inherits
the near-unit-root properties of the dividend yield. The coefficient is
biased upward, and the t-statistic is biased toward rejection. Stambaugh
(1986, 1999) derived the finite-sample distribution of the return-forecasting
regression. In monthly regressions, Stambaugh found that in place of OLS
p-values of 6% (1927–1996) and 2% (1952–1996), the correct p-values
are 17 and 15%. The regressions are far from statistically significant at
conventional levels.2

Does this evidence mean return forecastability is dead? No, because there
are more powerful tests, and these tests give stronger evidence against the
null.

First, we can examine dividend growth. In the regressions of Table 1,
dividend growth is clearly not forecastable at all. In fact, the small point

1 Rozeff (1984), Shiller (1984), Keim and Stambaugh (1986), Campbell and Shiller (1988), and Fama and
French (1988).

2 Precursors include Goetzmann and Jorion (1993) and Nelson and Kim (1993) who found the distribution
of the return-forecasting coefficient by simulation and also did not reject the null. Mankiw and Shapiro
(1986) show the bias point by simulation, though not applied to the dividend-yield/return case. Additional
contributions include Kothari and Shanken (1997), Paye and Timmermann (2003), Torous, Valkanov,
and Yan (2004), Campbell and Yogo (2006), and Ang and Bekaert (2007).
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A Defense of Return Predictability

estimates have the wrong sign—a high dividend yield means a low price,
which should signal lower, not higher, future dividend growth.

If both returns and dividend growth are unforecastable, then present
value logic implies that the price/dividend ratio is constant, which it
obviously is not. Alternatively, in the language of cointegration, since
the dividend yield is stationary, one of dividend growth or price growth
must be forecastable to bring the dividend yield back following a shock.
We cannot just ask, ‘‘Are returns forecastable?’’ and ‘‘Is dividend growth
forecastable?’’ We must ask, ‘‘Which of dividend growth or returns is
forecastable?’’ (Or really, ‘‘How much of each?’’) A null hypothesis in
which returns are not forecastable must also specify that dividend growth
is forecastable, and the statistical evaluation of that null must also confront
the lack of dividend-growth forecastability in the data.

I set up such a null, and I evaluate the joint distribution of
return and dividend-growth forecasting coefficients. I confirm that the
return-forecasting coefficient, taken alone, is not significant: Under the
unforecastable-return null, we see return forecast coefficients as large or
larger than those in the data about 20% of the time and a t-statistic as large
as that seen in the data about 10% of the time. However, I find that the
absence of dividend–growth forecastability offers much more significant
evidence against the null. The best overall number is a 1–2% probability
value (last row of Table 5)—dividend growth fails to be forecastable in only
1–2% of the samples generated under the null. The important evidence, as
in Sherlock Holmes’s famous case, is the dog that does not bark.3

Second, we can examine the long-horizon return forecast implied by
one-year regressions. It turns out to be most convenient to look at
blr

r ≡ br/ (1 − ρφ) where φ is the dividend-yield autocorrelation, ρ ≈ 0.96
is a constant related to the typical level of the dividend yield, and br is
the return-forecast coefficient as defined in Table 1. The ‘‘long horizon’’
label applies because blr

r is the implied coefficient of weighted long-horizon
returns

∑∞
j=1 ρj−1rt+j on dividend yields. The null hypothesis produces a

long-horizon return regression coefficient blr
r larger than its sample value

only about 1–2% of the time, again delivering much stronger evidence
against the null than the one-period return coefficient br .

Why are these tests more powerful? They exploit a feature of the data
and a feature of the null hypothesis that the conventional br test ignores.

The feature of the data is that return shocks εr and dividend-yield
shocks εdp are strongly and negatively correlated. Briefly, a price rise raises
returns and lowers dividend yields. This correlation means that regression

3 Inspector Gregory: ‘‘Is there any other point to which you would wish to draw my attention?’’
Holmes: ‘‘To the curious incident of the dog in the night-time.’’
‘‘The dog did nothing in the night time.’’
‘‘That was the curious incident.’’
(From ‘‘The Adventure of Silver Blaze’’ by Arthur Conan Doyle.)
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estimates br and φ are strongly and negatively correlated across samples.
A large long-run coefficient blr

r = br/(1 − ρφ) requires both a large br and
a large φ, so that the coefficients can build with horizon as they do in our
data. But since br and φ are negatively correlated, samples with unusually
large br tend to come with unusually low φ, so it is much harder for the null
to generate large long-run coefficients. The dividend-growth test works the
same way.

The feature of the null is that we know something about the
dividend-yield autocorrelation φ. The Wald test on br uses no
information about other parameters. It is the appropriate test of the
null {br = 0, φ = anything}. But we know φ cannot be too big. If
φ > 1/ρ ≈ 1.04, the present value relation explodes and the price-dividend
ratio is infinite, which it also is obviously not. If φ ≥ 1.0, the dividend
yield has a unit or larger root, meaning that its variance explodes with
horizon. Economics, statistics, and common sense mean that if our null
is to describe a coherent world, it should contain some upper bound on
φ as well as br = 0, something like

{
br = 0, ‖φ‖ < φ

}
. A good test uses

information on both b̂r and φ̂ to evaluate such a null, drawing regions in
{br , φ} space around the null

{
br = 0, ‖φ‖ < φ

}
, and exploiting the fact

that under the null b̂r should not be too big and φ̂ should not be too
big. The test regions in {br , φ} described by the long-run return coefficient
blr

r = br/(1 − ρφ) and by the dividend-growth coefficient slope downward
in {br, φ} space in just this way.

The long-run return forecasting coefficients also describe a more
economically interesting test region. In economic terms, we want our
test region to contain draws ‘‘more extreme’’ than the observed sample.
Many of the draws that produce a one-period return forecast coefficient
br larger than the sample value also have forecastable dividend growth,
and dividend-yield variation is partially due to changing dividend-growth
forecasts—their dogs do bark; volatility tests are in them a half-success
rather than the total failure they are in our data. It makes great economic
sense to consider such draws ‘‘closer to the null’’ than our sample, even
though the one-year return-forecast coefficient br is greater than it is in our
sample. This is how the long-run coefficients count such events, resulting
in small probability values for events that really are, by this measure,
‘‘more extreme’’ than our data. The long-run return and dividend-growth
forecast coefficients are also linked by an identity br

lr − blr
d = 1, so the test

is exactly the same whether one focuses on returns or dividend growth,
removing the ambiguity in short-horizon coefficients.

Powerful long-horizon regressions?
The success of long-horizon regression tests leads us to another
econometric controversy. Fama and French (1988) found that return-
forecast t-statistics rise with horizon, suggesting that long-horizon return
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regressions give greater statistical evidence for return forecastability. This
finding has also been subject to great statistical scrutiny. Much of this
literature concludes that long-horizon estimates do not, in fact, have better
statistical power than one-period regressions. Boudoukh, Richardson,
and Whitelaw (2006) are the most recent examples and they survey the
literature. Their Table 5, top row, gives probability values for return
forecasts from dividend-price ratios at 1 to 5 year horizons, based on
simulations similar to mine. They report 15, 14, 13, 12 and 17% values. In
short, they find no advantage to long-horizon regressions.

How do I find such large power advantages for long-horizon regression
coefficients? The main answer is that typical long-horizon estimates,
going out to 5-year or even 10-year horizons, do not weight φ enough
to see the power benefits. For example, the 2 year return coefficient
is b

(2)
r = br(1 + φ). Since br ≈ 0.1, this coefficient weights variation in

φ by 0.1 times as much as it weights variation in br . But φ and br

estimates vary about one-for-one across samples, so a powerful test needs
to construct a region in {br , φ} space with about that slope, which the
implied infinite-horizon coefficient blr

r = br/(1 − ρφ) does.
This finding does not imply that one should construct 30-year returns

and regress them on dividend yields or other forecasting variables. I
calculate ‘‘long-horizon’’ coefficients implied from the one-year regression
coefficients, and they are here just a convenient way of combining those
one-year regression coefficients br, φ to generate a test region in {br , φ}
space that has good power and strong economic intuition.

We therefore obtain a nice resolution of this long-running statistical
controversy. I reproduce results such as Boudoukh, Richardson, and
Whitelaw’s (2006), that direct regressions at 1-year to 5-year horizons have
little or no power advantages over 1-year regressions, but I also agree
with results such as Campbell (2001) and Valkanov (2003), that there
are strong power advantages to long-horizon regressions, advantages that
are maximized at very long horizons and, to some extent, by calculating
long-horizon statistics implied by VARs rather than direct estimates.

Out-of-sample R2

Goyal and Welch (2003, 2005) found that return forecasts based on
dividend yields and a number of other variables do not work out of
sample. They compared forecasts of returns at time t + 1 formed by
estimating the regression using data up to time t , with forecasts that use
the sample mean in the same period. They found that the sample mean
produces a better out-of-sample prediction than do the return-forecasting
regressions.

I confirm Goyal and Welch’s observation that out-of-sample return
forecasts are poor, but I show that this result is to be expected. Setting up a
null in which return forecasts account for all dividend-yield volatility, I find

1537



out-of-sample performance as bad or worse than that in the data 30–40%
of the time. Thus, the Goyal–Welch calculations do not provide a statistical
rejection of forecastable returns. Out-of-sample R2 is not a test; it is not
a statistic that somehow gives us better power to distinguish alternatives
than conventional full-sample hypothesis tests. Instead, Goyal and Welch’s
findings are an important caution about the practical usefulness of return
forecasts in forming aggressive real-time market-timing portfolios given
the persistence of forecasting variables and the short span of available
data.

Common misunderstandings
First, one should not conclude that ‘‘returns are not forecastable, but
we can somehow infer their forecastability from dividend evidence.’’ The
issue is hypothesis tests, not point estimates. The point estimates are, as
in Table 1, that returns are very forecastable, where the adjective ‘‘very’’
means by any economic metric. The point estimate (possibly with a bias
adjustment) remains anyone’s best guess. Hypothesis tests ask, ‘‘What is
the probability that we see something as large as Table 1 by chance, if
returns are truly not forecastable?’’ Stambaugh (1999) answer is about
15%. Even 15% is still not 50 or 90%, so zero return forecastability is still
not a very likely summary of the data. ‘‘Failing to reject the null’’ does
not mean that we wholeheartedly accept the i.i.d. worldview. Lots of nulls
cannot be rejected.

In this context, I point out that the unforecastable-return null has other
implications that one can also test—the implication that we should see a
large dividend-growth forecast, a low dividend-yield autocorrelation, and
a small ‘‘long-run’’ return forecast. Looking at these other statistics, we can
say that there is in fact less than a 5% chance that our data or something
more extreme is generated by a coherent world with unpredictable returns.
But this evidence, like the return-based evidence, also does nothing to
change the point estimate.

Second, this paper is about the statistics of return forecastability, not
‘‘how best to forecast returns.’’ Simple dividend-yield regressions do
not provide the strongest estimates or the best representation of return
forecastability. If one really wants to forecast returns, additional variables
are important, and one should pick variables and specifications that
reflect repurchases, dividend smoothing, and possible changes in dividend
payment behavior.

I use the simplest environment in order to make the statistical points
most transparently. Better specifications can only increase the evidence
for forecastable returns. For this reason, the point of this article is not
to vary the specification until the magic 5% barrier is crossed. The point
of this article is to see how different and more comprehensive statistical
analysis yields different results, and in particular how tests based on
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dividend growth and long-run regressions yield stronger evidence. Those
points carry over to more complex and hence more powerful forecasting
environments, and it is there that the real search for 5% values (or 1%, or
the appropriate Bayesian evaluation) should occur.

1. Null Hypothesis

To keep the analysis simple, I consider a first-order VAR representation
of log returns, log dividend yields, and log dividend growth,

rt+1 = ar + br(dt − pt ) + εr
t+1 (1)

�dt+1 = ad + bd(dt − pt) + εd
t+1 (2)

dt+1 − pt+1 = adp + φ(dt − pt ) + ε
dp

t+1 (3)

Returns and dividend growth do not add much forecast power, nor do
further lags of dividend yields. Of course, adding more variables can only
make returns more forecastable.

The Campbell-Shiller (1988) linearization of the definition of a return4

gives the approximate identity

rt+1 = ρ(pt+1 − dt+1) + �dt+1 − (pt − dt ) (4)

where ρ = PD/(1 + PD), PD is the price-dividend ratio about which one
linearizes, and lowercase letters are demeaned logarithms of corresponding
capital letters.

This identity applies to each data point, so it links the regression
coefficients and errors of the VAR (1)–(3). First, projecting on dt − pt ,

4 Start with the identity

Rt+1 = Pt+1 + Dt+1
Pt

=

(
1 + Pt+1

Dt+1

)
Dt+1
Dt

Pt
Dt

Loglinearizing,

rt+1 = log
[
1 + e

(
pt+1−dt+1

)]
+ �dt+1 − (pt − dt )

≈ k + P/D

1 + P/D

(
pt+1 − dt+1

)+ �dt+1 − (pt − dt )

where P/D is the point of linearization. Ignoring means, and defining ρ = P/D
1+P/D

, we obtain Equation

(4).
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identity (4) implies that the regression coefficients obey the approximate
identity

br = 1 − ρφ + bd (5)

Second, the identity (4) links the errors in (1)–(3) by

εr
t+1 = εd

t+1 − ρε
dp

t+1 (6)

Thus, the three equations (1)–(3) are redundant. One can infer the data,
coefficients, and error of any one equation from those of the other two.

The identity (5) shows clearly how we cannot form a null by taking
br = 0 without changing the dividend-growth forecast bd or the dividend-
yield autocorrelation φ. In particular, as long as φ is nonexplosive,
φ < 1/ρ ≈ 1.04, we cannot choose a null in which both dividend growth
and returns are unforecastable—br = 0 and bd = 0. To generate a coherent
null with br = 0, we must assume a negative bd , and then we must address
the absence of this coefficient in the data.

By subtracting inflation from both sides, Equations (4)–(6) can apply to
real returns and real dividend growth. Subtracting the risk-free rate from
both sides, we can relate the excess log return (rt+1 − r

f
t ) on the left-hand

side of Equation (4) to dividend growth less the interest rate (�dt+1 − r
f
t )

on the right-hand side. One can either introduce an extra interest rate term
or simply understand ‘‘dividend growth’’ to include both terms. I follow
the latter convention in the excess return results below. One can form
similar identities and decompositions with other variables. For example,
starting with the price/earnings ratio, we form a similar identity that also
includes the earnings/dividend ratio.

To form a null hypothesis, then, I start with estimates of Equations
(1)–(3) formed from regressions of log real returns, log real dividend
growth and the log dividend yield in annual Center for Research in Security
Prices (CRSP) data, 1927–2004, displayed in Table 2. The coefficients are
worth keeping in mind. The return-forecasting coefficient is br ≈ 0.10, the
dividend-growth forecasting coefficient is bd ≈ 0, and the OLS estimate
of the dividend-yield autocorrelation is φ ≈ 0.94. The standard errors are
about the same, 0.05 in each case.

Alas, the identity (5) is not exact. The ‘‘implied’’ column of Table 2
gives each coefficient implied by the other two equations and the identity,
in which I calculate ρ from the mean log dividend yield as

ρ = eE(p−d)

1 + eE(p−d)
= 0.9638

The difference is small, about 0.005 in each case, but large enough
to make a visible difference in the results. For example, the t-statistic
calculated from the implied br coefficient is 0.101/0.050 = 2.02 rather
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Table 2
Forecasting regressions and null hypothesis

ε s. d. (diagonal)
Estimates and correlation.

Null 1 Null 2
b̂, φ̂ σ (b̂) implied r �d dp b, φ b, φ

r 0.097 0.050 0.101 19.6 66 −70 0 0
�d 0.008 0.044 0.004 66 14.0 7.5 −0.0931 −0.046
dp 0.941 0.047 0.945 −70 7.5 15.3 0.941 0.99

Each row represents an OLS forecasting regression on the log dividend yield in
annual CRSP data 1927–2004. For example, the first row presents the regression
rt+1 = ar + br (dt − pt ) + εr

t+1. Standard errors σ(b̂) include a GMM correction
for heteroskedasticity. The ‘‘implied’’ column calculates each coefficient based on
the other two coefficients and the identity br = 1 − ρφ + bd , using ρ = 0.9638.
The diagonals of the ‘‘ε s. d.’’ matrix give the standard deviation of the regression
errors in percent; the off-diagonals give the correlation between errors in percent.
The ‘‘Null’’ columns describes coefficients used to simulate data under the null
hypothesis that returns are not predictable.

than 0.097/0.05 = 1.94, and we will see as much as two to three percentage
point differences in probability values to follow.

The middle three columns of Table 2 present the error standard
deviations on the diagonal and correlations on the off-diagonal. Returns
have almost 20% standard deviation. Dividend growth has a large 14%
standard deviation. In part, this number comes from large variability in
dividends in the prewar data. In part, the standard method for recovering
dividends from the CRSP returns5 means that dividends paid early in
the year are reinvested at the market return to the end of the year. In
part, aggregate dividends, which include all cash payouts, are in fact quite
volatile. Most importantly for the joint distributions that follow, return
and dividend-yield shocks are strongly negatively correlated (−70%), in
contrast to the nearly zero correlation between dividend-growth shocks
and dividend-yield shocks (7.5%).

The final columns of Table 2 present the coefficients of the null
hypotheses I use to simulate distributions. I set br = 0. I start by choosing
φ at its sample estimate φ = 0.941. I consider alternative values of φ below.

5 CRSP gives total returns R and returns without dividends Rx. I find dividend yields by

Dt+1
Pt+1

= Rt+1
Rxt+1

− 1 = Pt+1 + Dt+1
Pt

Pt

Pt+1
− 1

I then can find dividend growth by

Dt+1
Dt

= (Dt+1/Pt+1)

(Dt /Pt )
Rxt+1 = Dt+1

Pt+1

Pt

Dt

Pt+1
Pt

Cochrane (1991) shows that this procedure implies that dividends paid early in the year are reinvested
at the return R to the end of the year. Accumulating dividends at a different rate is an attractive
and frequently followed alternative, but then returns, prices, and dividends no longer obey the identity
Rt+1 = (Pt+1 + Dt+1)/Pt with end-of-year prices.
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Given br = 0 and φ, the necessary dividend forecast coefficient bd follows
from the identity bd = ρφ − 1 + br ≈ −0.1.

We have to choose two variables to simulate and then let the third follow
from the identity (4). I simulate the dividend-growth and dividend-yield
system. This is a particularly nice system, since we can interpret the errors
as essentially uncorrelated ‘‘shocks to expected dividend growth’’ and
‘‘shocks to actual dividend growth’’ respectively. (Formally, the VAR (7)
can be derived from a model in which expected dividend growth follows
an AR(1), Et(�dt+1) = xt = φxt−1 + δx

t , returns are not forecastable, and
dividend yields are generated from the present value identity (9)). However,
the identity (4) holds well enough that this choice has almost no effect on
the results.

In sum, the null hypotheses takes the form⎡
⎣ dt+1 − pt+1

�dt+1
rt+1

⎤
⎦ =

⎡
⎣ φ

ρφ − 1
0

⎤
⎦ (dt − pt ) +

⎡
⎢⎣ ε

dp

t+1
εd
t+1

εd
t+1 − ρε

dp

t+1

⎤
⎥⎦ (7)

I use the sample estimate of the covariance matrix of εdp and εd .
I simulate 50,000 artificial data sets from each null. For φ < 1, I
draw the first observation d0 − p0 from the unconditional density
d0 − p0 ∼ N

[
0, σ 2

(
εdp
)
/(1 − φ2)

]
. For φ ≥ 1, I start at d0 − p0 = 0. I

then draw εd
t and ε

dp
t as random normals and simulate the system forward.

2. Distribution of Regression Coefficients and t-statistics

2.1 Return and dividend-growth forecasts
In each Monte Carlo draw I run regressions (1)–(3). Figure 1 plots the
joint distribution of the return br and dividend-growth bd coefficients, and
the joint distribution of their t-statistics. Table 3 collects probabilities.

The marginal distribution of the return-forecast coefficient br gives quite
weak evidence against the unforecastable-return null. The Monte Carlo
draw produces a coefficient larger than the sample estimate 22% of the
time, and a larger t-statistic than the sample about 10% of the time (points
to the right of the vertical line in the top panels of Figure 1, top left entries
of Table 3). Taken on its own, we cannot reject the hypothesis that the
return-forecasting coefficient br is zero at the conventional 5% level. This
finding confirms the results of Goetzmann and Jorion (1993), Nelson and
Kim (1993), and Stambaugh (1999).

However, the null must assume that dividend growth is forecastable.
As a result, almost all simulations give a large negative dividend-growth
forecast coefficient bd . The null and cloud of estimates in Figure 1 are
vertically centered a good deal below zero and below the horizontal line
of the sample estimate b̂d . Dividend-growth forecasting coefficients larger
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Table 3
Percent probability values under the φ = 0.941 null

br tr bd td

Real 22.3 10.3 1.77 1.67
Excess 17.4 6.32 1.11 0.87

Each column gives the probability that the indicated coefficients are
greater than their sample values, under the null. Monte Carlo simulation
of the null described in Table 2 with 50,000 draws.

-0.2 0 0.2 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

br

b d

0.0 % 1.8 %

77.6 %

20.6 %

Coefficients, φ = 0.94

-2 0 2 4

-8

-6

-4

-2

0

2

t, br

t, 
b d

0.1 % 1.6 %

89.7 %

8.7 %

t-stats, φ = 0.94

-0.2 0 0.2 0.4

-0.3

-0.2

-0.1

0

0.1

0.2

br

b d

0.8 % 5.6 %

77.6 %

16.1 %

Coefficients, φ = 0.99

-2 0 2 4

-8

-6

-4

-2

0

2

t, br

t, 
b d

0.8 % 5.7 %

82.4 %

11.1 %

t-stats, φ = 0.99

Figure 1
Joint distribution of return and dividend-growth forecasting coefficients (left) and t-statistics (right). The
lines and large dots give the sample estimates. The triangle gives the null. One thousand simulations
are plotted for clarity; each point represents 1/10% probability. Percentages are the fraction of 50,000
simulations that fall in the indicated quadrants.

than the roughly zero values observed in sample are seen only 1.77% of the
time, and the dividend-growth t-statistic is only greater than its roughly
zero sample value 1.67% of the time (points above the horizontal lines
in Figure 1, bd and td columns of Table 3). Results are even stronger for
excess returns, for which bd > b̂d is observed only 1.11% of the time and
the t-statistic only 0.87% of the time (Table 3).

In sum, the lack of dividend forecastability in the data gives far stronger
statistical evidence against the null than does the presence of return
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forecastability, lowering probability values from the 10–20% range to the
1–2% range. (I discuss the φ = 0.99 results seen in Figure 1 below.)

2.2 Long-run coefficients

If we divide the identity (5) br − bd = 1 − ρφ by 1 − ρφ, we obtain the
identity

br

1 − ρφ
− bd

1 − ρφ
= 1 (8)

blr
r − blr

d = 1

The second row defines notation.
The terms of identity (8) have useful interpretations. First, blr

r is the
regression coefficient of long-run returns

∑∞
j=1 ρj−1rt+j on dividend yields

dt − pt , and similarly for blr
d , hence the lr superscript. Second, blr

r and
−blr

d represent the fraction of the variance of dividend yields that can be
attributed to time-varying expected returns and to time-varying expected
dividend growth, respectively.

To see these interpretations, iterate the return identity (4) forward,
giving the Campbell–Shiller (1988) present value identity

dt − pt = Et

∞∑
j=1

ρj−1rt+j − Et

∞∑
j=1

ρj−1�dt+j (9)

Multiply by (dt − pt ) − E(dt − pt ) and take expectations, giving

var(dt − pt ) = cov

⎛
⎝ ∞∑

j=1

ρj−1rt+j , dt − pt

⎞
⎠

−cov

⎛
⎝ ∞∑

j=1

ρj−1�dt+j , dt − pt

⎞
⎠ (10)

This equation states that all variation in the dividend-price (or price-
dividend) ratio must be accounted for by its covariance with, and thus
ability to forecast, future returns or future dividend growth. Dividing
by var(dt − pt ) we can express the variance decomposition in terms of
regression coefficients

β

⎛
⎝ ∞∑

j=1

ρj−1rt+j , dt − pt

⎞
⎠− β

⎛
⎝ ∞∑

j=1

ρj−1�dt+j , dt − pt

⎞
⎠ = 1 (11)
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where β(y, x) denotes the regression coefficient of y on x. In the context
of our VAR(1) representation we have

β

⎛
⎝ ∞∑

j=1

ρj−1rt+j , dt − pt

⎞
⎠ =

∞∑
j=1

ρj−1β
(
rt+j , dt − pt

)

=
∞∑

j=1

ρj−1φj−1br = br

1 − ρφ
= blr

r (12)

and similarly for dividend growth. This sort of calculation is the standard
way to adapt the ideas of Shiller (1981) and LeRoy and Porter (1981)
volatility tests to the fact that dividend yields rather than prices are
stationary. See Campbell and Shiller (1988) and Cochrane (1991, 1992,
2004) for more details.

2.3 Long-run estimates and tests
Table 4 presents estimates of the long-horizon regression coefficients.
These are not new estimates, they are simply calculations based on the
OLS estimates b̂r , b̂d , φ̂ in Table 2. I calculate asymptotic standard errors
using the delta-method and the heteroskedasticity-corrected OLS standard
errors from Table 2.

Table 4 shows that dividend-yield volatility is almost exactly accounted
for by return forecasts, b̂lr

r ≈ 1, with essentially no contribution from
dividend-growth forecasts b̂lr

d ≈ 0. This is another sense in which return
forecastability is economically significant. This finding is a simple
consequence of the familiar one-year estimates. b̂d ≈ 0 means b̂lr

d ≈ 0,

of course, and

b̂lr
r = b̂r

1 − ρφ̂
≈ 0.10

1 − 0.96 × 0.94
≈ 1.0

Table 4
Long-run regression coefficients

Variable b̂lr s. e. t % p value

r 1.09 0.44 2.48 1.39–1.83
�d 0.09 0.44 2.48 1.39–1.83
Excess r 1.23 0.47 2.62 0.47–0.69

The long-run return forecast coefficient b̂lr
r is computed as b̂lr

r = b̂r /(1 − ρφ̂), where b̂r is the
regression coefficient of one-year returns rt+1 on dt − pt , φ̂ is the autocorrelation of dt − pt , ρ

= 0.961, and similarly for the long-run dividend-growth forecast coefficient b̂lr
d

. The standard error

is calculated from standard errors for b̂r and φ̂ by the delta method. The t-statistic for �d is the
statistic for the hypothesis b̂lr

d
= −1. Percent probability values (% p value) are generated by Monte

Carlo under the φ = 0.941 null. The range of probability values is given over the three choices of
which coefficient (b̂r , φ̂, b̂d ) is implied from the other two.
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In fact, the point estimates in Table 4 show slightly more than 100% of
dividend-yield volatility coming from returns, since the point estimate of
dividend-growth forecasts go slightly the wrong way. The decomposition
(10) is not a decomposition into orthogonal components, so elements can
be greater than 100% or less than 0% in this way. Excess returns in the last
row of Table 4 show slightly stronger results. In the point estimates, high
price-dividend ratios actually signal slightly higher interest rates, so they
signal even lower excess returns.

The first two rows of Table 4 drive home the fact that, by the identity
blr

r − blr
d = 1, the long-horizon dividend-growth regression gives exactly

the same results as the long-horizon return regression.6 The standard
errors are also exactly the same, and the t-statistic for blr

r = 0 is exactly the
same as the t−statistic for blr

d = −1.
One great advantage of using long-horizon regression coefficients is

that we do not need to choose between return and dividend-growth tests,
as they give precisely the same results. As a result, we can tabulate the
small-sample distribution of the test in a conventional histogram, rather
than a two-dimensional plot.

Figure 2 tabulates the small-sample distribution of the long-run return-
forecast coefficients, and Table 4 includes the probability values—how
many long-run return forecasts are greater than the sample value under
the unforecastable-return null br

lr = 0. There is about a 1.5% probability
value of seeing a long-run forecast larger than seen in the data. (The
range of probability values in Table 4 derives from the fact that the
identities are only approximate, so the result depends on which of the
three parameters (br , φ, bd ) is implied from the other two.) The long-run
return (or dividend-growth) regressions give essentially the same strong
rejections as the short-run dividend-growth regression.

The last row of Table 4 shows the results for excess returns. Again, excess
returns paint a stronger picture. The probability values of 0.38–0.64% are
lower and the evidence against the null even stronger.

3. Power, Correlation, and the φ View

Where does the greater power of dividend-growth and long-run return
tests come from? How do we relate these results to the usual analysis of
the {br , φ} coefficients in a two-variable VAR consisting of the return and
the forecasting variable?

6 The identities are only approximate, so to display estimates that obey the identities one must estimate
two of br , bd , and φ, and imply the other using the identity br − bd = 1 − ρφ. In the top two lines of
Table 4, I use the direct b̂r and b̂d estimates from Table 2. I then use ρφ̂impl = 1 − b̂r + b̂d and I construct

long-run estimates by b̂lr
r = b̂r /(1 − ρφ̂impl ). Since φ̂ = 0.94 and φ̂impl = 0.95, the difference between

these estimates and those that use φ̂ is very small. Using the direct estimate φ̂ rather than φ̂impl , we have

b̂lr
r = 1.04 (s.e. = 0.42) and blr

d
= 0.08 (s.e. = 0.42).
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Figure 2
Distribution of blr

r = br /(1 − ρφ). The vertical bar gives the corresponding value in the data.
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Figure 3
Joint distribution of return and dividend yield forecasting coefficients br , φ. In each graph the triangle
marks the null hypothesis used to generate the data and the circle marks the estimated coefficients b̂r , φ̂.
The diagonal dashed line marked ‘‘bd ’’ marks the line br = 1 − ρφ + b̂d ; points above and to the right are
draws in which bd exceeds its sample value. The solid diagonal line marked ‘‘blr

r ’’ marks the line defined
by br /(1 − ρφ) = b̂r /(1 − ρφ̂); points above and to the right are draws in which blr

r exceeds its sample
value. Numbers are the percentage of the draws that fall in the indicated quadrants.

Figure 3 addresses these questions by plotting the joint distribution
of estimates {br , φ} across simulations. We see again that a high return
coefficient br by itself is not so unusual, occurring about 22% of the time
(area to the right of the vertical line). We learn, however, that br and φ

estimates are negatively correlated across samples. Though we often see
large br and large φ, we almost never see br larger than in the data together
with φ larger than in the data. (Figure 3 is the same as Lewellen (2004)
Figure 1, Panel B, except Lewellen calibrates to monthly postwar data.
Lewellen focuses on a different distributional calculation.)

This observation on its own is not a good way to form a test statistic.
Though the northeast quadrant of the plot is suggestively empty, we would
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not want to commit to accepting the null for φ just below a rectangular
rejection region and arbitrarily large br .

The {br , φ} plot is more important to help us to digest why the dividend-
growth test bd and the long-horizon regression test blr

r give so many
fewer rejections under then null than the usual one-period return br

test. The diagonal dashed line marked bd in Figure 3 uses the identity
br = 1 − ρφ + bd to mark the region bd > b̂d in this {br , φ} space. Points
above and to the right of this dashed line are exactly the points above
bd > b̂d in Figure 1. The similar diagonal solid line marked blr

r uses the
definition blr

r = br/ (1 − ρφ) to mark the region blr
r > b̂lr

r in this {br, φ}
space. Points above and to the right of this line are exactly the points
above blr

r > b̂lr
r in the histogram of Figure 2.

Viewed in {br , φ} space, dividend-growth bd and long-run regression
blr tests capture in a single number and in a sensible test region the fact
that samples with high br typically come with low φ, and they exploit
that negative correlation to produce more powerful tests. By the definition
br/ (1 − ρφ), samples with high br but low φ produce a low long-run return
forecast blr

r . Generating a large long-run return forecast requires both a
large one-year return forecast and a large autocorrelation, so forecasts can
build with horizon. Because most large return forecasts come with low
autocorrelation, it is much harder for the null to deliver a large long-run
return forecast. By the identity bd = br + ρφ − 1, dividend growth works
the same way.

3.1 The source of negative correlation
The strong negative correlation of estimates br and φ across samples,
which underlies the power of long-horizon return and dividend-growth
tests, stems from the strong negative correlation of the shocks εr

t+1 and ε
dp

t+1
in the underlying VAR, (1)–(3). If shocks are negatively correlated in two
regressions with the same right-hand variable, then a draw of shocks that
produces an unusually large coefficient in the first regression corresponds
to a draw of shocks that produces an unusually small coefficient in the
second regression.

It is important to understand this correlation. We do not want the
power of long-run or dividend-growth tests to hinge on some arbitrary
and inessential feature of the null hypothesis, and strong correlations of
shocks are usually not central parts of a specification.

From the identity

εr
t+1 = εd

t+1 − ρε
dp

t+1 (13)

the fact that return shocks and dividend-yield shocks are strongly and
negatively correlated is equivalent to the fact that dividend-yield shocks
and dividend-growth shocks are not correlated. Intuitively, we can see this
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fact by looking at the definition of return

Rt+1 = (1 + Pt+1/Dt+1)

Pt/Dt

Dt+1

Dt

that underlies (13): a decline in dividend yield Dt+1/Pt+1 is a rise in prices,
which raises returns, but only so long as there is no offsetting change in
dividend growth Dt+1/Dt . More precisely, multiply both sides of (13) by
ε
dp

t+1 and take expectations, yielding

cov
(
εr
t+1, ε

dp

t+1

)
= cov

(
ε
dp

t+1, εd
t+1

)
− ρσ 2

(
ε
dp

t+1

)
(14)

When dividend growth and dividend yields are uncorrelated
cov(ε

dp

t+1, εd
t+1) = 0, we obtain a strong negative correlation between

returns and dividend yields cov(εr
t+1, ε

dp

t+1).
Dividend yields move on news of expected returns (in the point estimates)

or news of expected dividend growth (in the null) (see (9)). Thus, the central
fact in our data is that shocks to expected returns (data) or expected
dividend growth (null) are uncorrelated with shocks to ex post dividend
growth. The strong negative correlation of dividend-yield shocks with
return shocks follows from the definition of a return.

It seems that we can easily imagine other structures, however. For
example, in typical time-series processes, like an AR(1), shocks to ex post
dividend growth are correlated with shocks to expected dividend growth;
only rather special cases do not display this correlation. In economic
models, it is not inconceivable that a negative shock to current dividends
would raise risk premia, raising expected returns and thus dividend yields.

However, identity (13) makes it hard to construct plausible alternatives.
There are only three degrees of freedom in the variance-covariance matrix
of the three shocks, since any one variable can be completely determined
from the other two. As a result, changing one correlation forces us to
change the rest of the covariance matrix in deeply counterfactual ways.

For example, let us try to construct a covariance matrix in which
return and dividend-yield shocks are uncorrelated, cov(εr

t+1, ε
dp

t+1) = 0.
Let us continue to match the volatility of returns σ(εr

t+1) = 0.2 and
dividend yields σ(ε

dp

t+1) = 0.15. We cannot, however, match the volatility
of dividend growth. Writing the identity (13) as

εd
t+1 = εr

t+1 + ρε
dp

t+1 (15)

we see that in order to produce cov(εr
t+1, ε

dp

t+1) = 0, we must specify
dividend-growth shocks that are more volatile than returns! We need to
specify 25% dividend-growth volatility, rather than the 14% volatility in
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our data:

σ(εd) =
√

σ 2(εr
t+1) + ρ2σ 2(ε

dp

t+1)

=
√

0.202 + 0.962 × 0.152 = 0.25

It is a quite robust fact that return variation is dominated by variation of
prices or valuations with little change in cashflows, and more so at high
frequencies. The variance of returns far exceeds the variance of dividend
growth. By (15) that fact alone implies that positive innovations to current
returns εr

t+1 must come with negative innovations to dividend yields.
Continuing the example, we can find the required correlation of

dividend-growth shocks and dividend-yield shocks by multiplying (15)
by ε

dp

t+1 giving

cov
(
εd, εdp

) = cov(εr, εdp) + ρσ 2 (εdp
)

corr
(
εd, εdp

) = ρ
σ
(
εdp
)

σ(εd)
= 0.96 × 0.15

0.25
= 0.58

rather than 0.07, essentially zero, in the data (Table 2). In this alternative
world, good news about dividend growth is frequently accompanied by
an increase in dividend yield, meaning prices do not move that much. In
turn, that means the good news about dividend growth comes either with
news that future dividend growth will be low—dividends have a large
mean-reverting component—or with news that future expected returns
will be high. In our data, dividend-yield shocks typically raise prices
proportionally, leading to no correlation with dividend yields.

Needless to say, the changes to the covariance matrix required to
generate a positive correlation between return and dividend-yield shocks
are even more extreme. In sum, the negative correlation of estimates {br, φ},
which ultimately derives from the negative correlation of shocks εr

t+1, ε
dp

t+1

or equivalently from the near-zero correlation of shocks ε
dp

t+1, εd
t+1 is a deep

and essential feature of the data, not an easily changed auxiliary to the null.

3.2 Which is the right region?—economics
We now have three tests: the one-period regression coefficients br and bd ,
and the long-horizon regression coefficient blr . Which is the right one to
look at? Should we test br > b̂r , or should we test bd > b̂d, or blr

r > b̂lr
r ?

Or perhaps we should test some other subset of the {br , φ} region?
The central underlying question is, how should we form a single test

statistic from the joint distribution of many parameters? We have three
parameters, br, bd, φ. The identity br = 1 − ρφ + bd means we can reduce
the issue to a two-dimensional space, but we still have two dimensions to
think about.
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In economic terms, we want the most interesting test. The issue comes
down to defining what is the ‘‘event’’ we have seen, and what other events
we would consider ‘‘more extreme,’’ or ‘‘further from the null’’ than the
event we have seen. If we focus on the one-year return regression, we
think of the ‘‘event’’ as the return forecast coefficient seen in the data
br = b̂r ≈ 0.1, and ‘‘more extreme’’ events as those with greater one-
year return-forecast coefficients, br > b̂r . But, as the joint distributions
point out, most of the events with br > b̂r , have dividend-growth forecast
coefficients larger (more negative) than seen in the data, bd < b̂d , they
have dividend-yield autocorrelations lower than seen in the data φ < φ̂,
they have long-run return coefficients less than seen in the data blr

r < b̂lr
r ,

and thus (by identity) they have long-run dividend-growth coefficients
larger (more negative) than seen in the data, blr

d < b̂lr
d ≈ 0. In these events,

dividend-growth is forecastable, prices are moving to some extent on
forecasts of future dividend growth, and in the right direction. Volatility
tests are a half-success, rather than the total failure that they are in our
data. The long-run coefficients count these draws as ‘‘closer to the null’’
than our data, despite the larger values of br . From this point of view,
the test on the long-run coefficient is the economically interesting test. If
we want to view that test in the {br, φ} space of one-period regression
coefficients, diagonal test regions as marked by blr

r in Figure 3 are the right
ones to look at.

The dividend-growth coefficient tests bd > b̂d give almost exactly the
same answers as the long-run coefficient tests, as can be seen both in the
tables and by the fact that the dividend bd and long-run blr

r regions of
Figure 3 are nearly the same. In fact, these tests are different conceptually
and slightly different in this sample. The long-run return coefficient test
blr

r > b̂lr
r means blr

d > b̂lr
d which means bd/(1 − ρφ) > b̂d/(1 − ρφ̂). If we

had b̂d = 0 exactly, this would mean bd > b̂d = 0 and the two regions
would be exactly the same. With b̂d �= 0, a different sample φ can affect the
long-run dividend-growth coefficient blr

d = bd/(1 − ρφ) for a given value
of bd , perhaps pushing it across a boundary. In a sample with b̂d further
from zero, the two test statistics could give substantially different answers.

When there is a difference, I find the long-run coefficients more
economically attractive than the dividend-growth coefficients. As an
important practical example, think about the specification of the null.
In long-run coefficient terms, we specify the null as blr

d = −1, blr
r = 0, that

is, all variation in dividend yields is due to time-varying expected dividend
growth and none to time-varying expected returns. In short-run coefficient
terms, this specification is equivalent to bd = 1/(1 − ρφ). At the sample
φ = φ̂ ≈ 0.96, we have bd ≈ −0.1. As we vary φ, however, we vary bd to
keep blr

d = −1. This is exactly how I specify the φ = 0.99 null above and
how I specify the null for different φ values below.
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Suppose instead that we specify the null in short-run coefficient terms
as bd = −0.1 for any value of φ. Now, different values of φ give us
specifications in which expected returns do explain nonzero fractions
of dividend yield and in which returns are predictable. For example,
at φ = 0.99, we would have blr

d = −0.1/(1 − 0.96 × 0.99) ≈ −2 and thus
blr

r ≈ −1, with br ≈ (1 − 0.96 × 0.99) × (−1) ≈ 0.05. In this null, a rise
in prices signals so much higher dividend growth that it must also signal
much higher future returns. Obviously, this is not a very interesting way to
express the null hypothesis that returns are unpredictable. The same sorts
of things happen to test regions if bd �= 0.

If one accepts that the null should be expressed this way, in terms of
long-horizon coefficients to accommodate variation in φ, it seems almost
inescapable that the economically interesting test region should be specified
in the same way.

3.3 Which is the right region?—statistics
In statistical terms we want the most powerful test. It is clear that the
dividend growth bd and long-run blr

r tests, implying a test of a diagonal
region in {br , φ} space, are more powerful. It is important to understand
the source of that power.

‘‘Power,’’ of course, is not the probability under the null of finding more
extreme statistics that I have calculated. To document power, I should set
up regions based on br , bd , and blr that reject at a given level, say 5% of
the time, under the null. Then I should evaluate the probability that draws
enter those rejection regions under alternatives, in particular generating
data from the estimated parameters b̂r and φ̂. I should document that
draws do enter the long-run or dividend-growth rejection regions more
frequently. I do not perform these calculations in the interest of brevity,
since it is clear from the graphs how they work out. Since the br vertical
line in Figure 3 demarks a 22% probability value now, the boundary of
the 5% region under the null is farther to the right. Since the bd and blr

diagonal lines demark 1–2% probability values now, the boundaries of the
5% regions under the null are a bit to the left of the current lines. Under
the alternative, the cloud of points in Figure 3 moves to the right—drag
the triangle to the circle and move the cloud of points with it. Because of
the negative correlation between br and φ estimates, that operation will
drag roughly half of the simulated data points across the diagonal lines,
but it will still leave the bulk of the data points shy of the 5% vertical br

region. The long-run and dividend-growth tests do have more power.
Therefore, one key to the extra power is the negative correlation between

br and φ coefficients, documented by Figure 3. If the cloud sloped the other
way, there would be no power advantage.

The other key to extra power is a limitation on φ in the null. So far, I have
calculated test statistics from a point null, specifying {br = 0, φ = 0.941}.
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One wants obviously to think about other, and particularly larger, values
of φ. As we raise φ in the null, the cloud of points in Figure 3 rises. The
right-hand panel of Figure 3 shows this rise for φ = 0.99. If we were to
raise φ arbitrarily, say to 2 or 3, the cloud of points would rise so much that
all of them would be above the diagonal lines. The null would generate
greater long-run and dividend predictability than the sample 100% of the
time, and the power would decline to zero. The br test, based on a vertical
rejection region, would still have something like the same probability of
rejection, and we would reverse the power advantages.

But of course φ = 2 or φ = 3 are ridiculous null hypotheses. The
null should be a coherent, economically sensible view of the world, and
explosive price-dividend ratios do not qualify. I argue in detail below for
upper limits between φ = 0.99 and φ = 1.04. For the moment, it is enough
to accept that there is some upper limit φ that characterizes coherent and
economically sensible null hypotheses.

This observation solves a statistical mystery. How can it be that a
powerful test of a simple null hypothesis like br = 0 involves other
parameters, or a joint region in {br , φ} space? The answer is that the
null hypothesis is not {br = 0, φ = anything} , but it is

{
br = 0, ‖φ‖ < φ

}
(Going further, one-sided tests make more sense in this context.) Given
such a joint null hypothesis, any sensible test will set up a region
surrounding the null hypothesis, and thus use information on both
parameters. For example, if the upper bound is φ = 1.04, the observation
φ̂ = 3 would reject the null even if the estimate is b̂r = 0. A test region
surrounding the null

{
br = 0, ‖φ‖ < φ

}
will be downward sloping in

{br , φ} space in the region of our sample estimates, with large b̂r and large
φ̂, exactly as the long-run regression test or dividend-growth coefficient
test give downward sloping regions in {br , φ} space.

For example, for ‖φ‖ < 1 and in large samples, we can write the
likelihood ratio test statistic as7

LR ≈ (T − 1) ln

[
1 + b̂2

1 − φ̂
2

σ 2(ε
dp

t+1)

σ 2(εr
t+1)

]

7 The likelihood ratio is the ratio of constrained (br = 0) to unconstrained (OLS) residual variances. We
can write

LR = (T − 1) ln
σ2(rt+1)

σ2(εr
t+1)

= (T − 1) ln
σ2(b̂ (dt − pt ) + εr

t+1)

σ2(εr
t+1)

= (T − 1) ln

[
b̂2 σ2(dt − pt )

σ2(εr
t+1)

+ 1

]
= (T − 1) ln

⎡
⎣ b̂2

1 − φ̂
2

σ2(ε
dp
t+1)

σ2(εr
t+1)

+ 1

⎤
⎦
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where σ 2(εr
t+1) and σ 2(ε

dp

t+1) are the unconstrained, OLS regression
errors. The corresponding test regions in {br , φ} space are ellipses
surrounding the line {br = 0, ‖φ‖ < 1}, and slope downward through
the data point

{
b̂r , φ̂

}
with, it turns out, almost exactly the same slope

as the long-run blr
r or dividend-growth bd regions. If we expand the null

to {br = 0, φ = anything}, then of course the likelihood ratio test becomes
asymptotically the same as the Wald test on br alone. (It turns out that
the likelihood ratio test is not as powerful as the long-horizon or dividend-
growth regressions in this data set, in part because it is a two-sided test
and in part because it does not exploit the correlation of errors, so I do
not pursue it further.)

4. Autocorrelation φ, Unit Roots, Bubbles, and Priors

Higher values of φ lower the power of the dividend-growth and long-run
test statistics. Thus, we have to ask, first, how large a value of φ should we
consider in our null hypothesis, and second, how large, quantitatively, is
the loss of power as we move toward sensible upper limits for φ?

4.1 How large can φ be?
We can start by ruling out φ > 1/ρ ≈ 1.04, since this case implies an infinite
price-dividend ratio, and we observe finite values. Iterating forward the
return identity (4), we obtain the present value identity

pt − dt = Et

∞∑
j=1

ρj−1�dt+j − Et

∞∑
j=1

ρj−1rt+j + lim
k→∞

ρkEt (pt+k − dt+k)

(16)

In our VAR(1) model, the last term is ρkφk (pt − dt ), and it explodes if
φ > 1/ρ.

If we have φ = 1/ρ ≈ 1.04, then it seems we can adopt a null with
both br = 0 and bd = 0, and respect the identity br = 1 − ρφ + bd . In
fact, in this case we must have br = bd = 0, otherwise terms such as
Et

∑∞
j=1 ρj−1�dt+j =∑∞

j=1 ρj−1φj−1bd(dt − pt ) in Equation (16) do not
converge. This is a ‘‘rational bubble.’’ If φ = 1/ρ exactly, then price-
dividend ratios can vary on changing expectations of future price-dividend
ratios, the last term of Equation (16), with no news at all about dividends
or expected returns. This view is hard to hold as a matter of economic
theory, so I rule it out on that basis. Since I will argue against any φ ≥ 1,
it does not make sense to spend a lot of time on a review of the rational
bubbles literature to rule out φ = 1.04.

At φ = 1, the dividend yield follows a random walk. φ = 1 still
implies some predictability of returns or dividend growth, br + bd =
1 − ρφ ≈ 0.04. If prices and dividends are not expected to move after a
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dividend-yield rise, the higher dividend yield still means more dividends
and thus a higher return. φ = 1 does not cause trouble for the present
value model; φ = 1 is the point at which the statistical model explodes to
an infinite unconditional variance. φ = 1 does cause trouble for loglinear
approximation of course, since that approximation is only valid near the
expansion point. To take φ = 1 seriously, one really has to move past local
approximations.

Can we consider a unit root in dividend yields? The dividend yield
does pass standard unit root tests (Craine (1993)), but with φ̂ = 0.941
that statistical evidence will naturally be tenuous. In my simulations with
φ = 1, the observed φ̂ = 0.941 is almost exactly the median value, so I do
not reject φ = 1 on that basis.

However, we do not need a continuous data set to evaluate statistical
questions, and evidence over very long horizons argues better against a
random walk for the dividend yield. Stocks have been trading since the
1600s, giving spotty observations of prices and dividends, and privately
held businesses and partnerships have been valued for a millennium. A
random walk in dividend yields generates far more variation than we have
seen in that time. Using the measured 15% innovation variance of the
dividend yield, and starting at a price/dividend ratio of 25 (1/0.04), the
one-century one-standard deviation band—looking backwards as well as
forwards—is a price-dividend ratio between8 5.6 and 112, and the ±2
standard deviation band is between9 1.24 and 502. In 300 years, the bands
are ±1σ = 1.9 to 336, and ±2σ = 0.14 to 4514. If dividend yields really
follow a random walk, we should have seen observations of this sort. But
market-wide price-dividend ratios of two or three hundred have never been
approached, let alone price-dividend ratios below one or over a thousand.

Looking forward, and as a matter of economics, do we really believe
that dividend yields will wander arbitrarily far in either the positive or
negative direction? Are we likely to see a market price-dividend ratio of
one, or one thousand, in the next century or two? Is the unconditional
variance of the dividend yield really infinite?

In addition, the present value relation (9) means that a unit root in the
dividend yield requires a unit root in stock returns or dividend growth:
if r and �d are stationary, then pt − dt = Et

∑
ρj−1

(
�dt+j − rt+j

)
is

stationary as well, and conversely. Almost all economic models describe
stationary returns and stationary dividend-growth rates, and the same
sort of long-run volatility calculations give compelling intuition for that
specification.

8 That is between eln(25)−0.15
√

100 = 5.6 and eln(25)+0.15
√

100 = 112.

9 That is eln(25)−2×0.15
√

100 = 1.24 and eln(25)+2×0.15
√

100 = 502.

1555



Having argued against φ = 1, how close to one should we seriously
consider as a null for φ? Neither the statistical nor the economic arguments
against φ = 1 rest on an exact random walk in dividend yields. Both
arguments center on the conditional variance of the price-dividend ratio,
returns, and dividend-growth rates over long horizons, and φ = 0.999 or
φ = 1.001 generate about the same magnitudes as φ = 1.000. Thus, if
φ = 1.00 is too large to swallow, there is some range of φ < 1 that is also
too large to swallow.

4.2 Results for different φ values
Table 5 collects probability values for various events as a function of
φ. The previous figures include the case φ = 0.99. As φ rises, Figure 3
shows that more points cross the bd and blr boundaries, giving higher
probabilities. We see the same point in the {br , bd} region of Figure 1: as
φ rises, bd = 1 − ρφ + 0 also rises, so the cloud of points rises, and more
of them cross the bd > b̂d line. However, probability values are not so
simple as a vertical translation of the sampling draws. The small-sample
biases increase as φ rises, so the clouds do not rise quite as far as the null
hypothesis, and this attenuates the loss of power somewhat. A quantitative
evaluation of the effects of higher φ is important.

Table 5 verifies the conjecture that as φ rises, the probability of the one-
period return coefficient br exceeding its sample value is little changed, at
about 20–22% for all values of φ.

Looking down the bd column of Table 5, the bd > b̂d probability for
real returns rises with φ. It crosses the 5% mark a bit above φ = 0.98 and is
still below 10% at φ = 1. Excess returns give stronger results as usual, with
the bd probability value still below 5% at φ = 1. The probability values of
the long-run coefficients blr are nearly the same as those of the dividend-
growth coefficients bd , which we expect since the dividend-growth and
long-run regression regions are nearly the same in our data. (This would
not be true of a data set with an estimate b̂d not so close to zero.)

Since the dividend-yield regression is a very simplified specification, and
since 5% is an arbitrary cutoff, the main point is not exactly where a test
crosses the 5% region. The main point is that in all cases, the dividend-
growth bd and long-run regression tests blr still have a great deal more
power than the one-period return regressions br for any reasonable value
of φ.

To get additional insight on upper limits for φ, the final columns of
Table 5 include the unconditional variance of dividend yields and the
half-life of dividend yields implied by various values of φ. The sample
estimate φ̂ = 0.941 is consistent with the sample standard deviation of
σ(dp) = 0.45, and a 11.4-year half-life of dividend-yield fluctuations. In
the φ = 0.99 null, the standard deviation of log dividend yields is actually
1.14, more than twice the volatility that has caused so much consternation
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Table 5
The effects of dividend-yield autocorrelation φ

Percent probability values Other

Null Real returns Excess returns Statistics

φ br bd blr
min blr

max br bd blr
min blr

max σ (dp) 1/2 life

0.90 24 0.6 0.3 0.6 19 0.4 0.1 0.2 0.35 6.6
0.941 22 1.6 1.2 1.7 17 1.1 0.5 0.7 0.45 11.4
0.96 22 2.6 2.0 2.8 17 1.6 0.8 1.2 0.55 17.0
0.98 21 4.9 4.3 5.5 17 2.7 1.8 2.5 0.77 34.3
0.99 21 6.3 5.9 7.4 17 3.6 2.7 3.6 1.09 69.0
1.00 22 8.7 8.1 10 16 4.4 3.7 4.8 ∞ ∞
1.01 19 11 11 13 14 5.1 5.1 6.3 ∞ ∞

Draw φ 23 1.6 1.4 1.7 18 1.1 0.6 0.8

The first column gives the assumed value of φ. ‘‘Draw φ’’ draws φ from the concentrated
unconditional likelihood function displayed in Figure 4. ‘‘Percent probability values’’
give the percent chance of seeing each statistic larger than the sample value. br is the
return forecasting coefficient, bd is the dividend-growth forecasting coefficient. blr is
the long-run regression coefficient, blr

r = br /(1 − ρφ). blr
min and blr

max are the smallest
and largest values across the three ways of calculating the sample value of br /(1 − ρφ),
depending on which coefficient is implied by the identity br = 1 − ρφ + bd . σ(dp) gives

the implied standard deviation of the dividend yield σ(dp) = σ
(
εdp
)

/

√
1 − φ2. Half

life is the value of τ such that φτ = 1/2.

in our sample, and the half-life of market swings is in reality 69 years; two
generations rather than two business cycles. These numbers seems to me
an upper bound on a sensible view of the world.

Nothing dramatic happens as φ rises from 0.98 to 1.01. In particular,
none of the statistics explode as φ passes through 1, so one may take any
upper limit in this range without changing the conclusions dramatically.
And that conclusion remains much stronger evidence against the null that
returns are unpredictable.

What about higher values of ρ? From the identity br = 1 − ρφ + bd , a
higher ρ works just like a higher φ in allowing us to consider low values
for both br and bd . In the long-run coefficient blr

r = br/(1 − ρφ), a higher
ρ allows us to generate a larger long-run coefficient with a lower φ. Of
course ρ cannot exceed one, and in fact ρ must stay somewhat below one,
as ρ = 1 implies an infinite level of the dividend yield. Still, ρ is estimated
from the mean dividend yield, which it is not perfectly measured, so it’s
natural to ask how much a larger ρ would change the picture.

In my sample, the mean log dividend yield is −3.28, corresponding
to a price-dividend ratio of PD = e3.28 = 26.6 and ρ = PD/(1 +
PD) = 0.963. The standard error of the mean log price-dividend ratio
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is10 0.415. A one-standard error increase in the mean dividend yield, gives
PD = e3.28+0.41 = 34.85 and ρ = 0.972—a roughly one-percentage-point
increase in ρ. In simulations (not reported), changing ρ in this way has
about the same effect as a one-percentage-point change in φ. Higher ρ also
lowers our upper limits for φ, which may offset some power losses. For
example, we imposed φ ≥ 1/ρ ≈ 1.04 because that value would produce
an infinite price-dividend ratio.

4.3 An overall number
It would be nice to present a single number, rather than a table of values
that depend on assumed values for the dividend-yield autocorrelation φ.
One way to do this is by integrating over φ with a prior distribution.
The last row of Table 5 presents this calculation, using the unconditional
likelihood of φ as the integrating distribution.

Figure 4 presents the likelihood function for φ. This is the likelihood
function of an AR(1) process fit to the dividend yield, with the intercept
and error variance parameters maximized out. The conditional likelihood
takes the first data point as fixed. The unconditional likelihood adds the
log probability of the first data point, using its unconditional density.
As Figure 4 shows, the conditional and unconditional likelihoods have
pretty much the same shape. The unconditional likelihood goes to zero at
φ = 1, which is the boundary of stationarity in levels. The maximum
unconditional likelihood is only very slightly below the maximum
conditional likelihood and OLS estimate of φ.

I repeat the simulation, but this time drawing φ from the unconditional
likelihood plotted in Figure 4 before drawing a sample of errors ε

dp
t and

εd
t . I use the unconditional likelihood in order to impose the view that

dividend yields are stationary with a finite variance, φ < 1, and to avoid
any draws in the region φ > 1/ρ ≈ 1.04 in which present value formulas
blow up.

The last row of Table 5 summarizes the results. The results are quite
similar to the φ = 0.941 case. This happens because the likelihood function
is reasonably symmetric around the maximum likelihood estimate, and our
statistics are not strongly nonlinear functions of φ. If something blew up
as φ → 1, for example, then we could see an important difference between
results for a fixed φ = 0.941 and this calculation.

Most importantly, rather than a 23% chance of seeing a return-
forecasting coefficient br > b̂r , we can reject the null based on the 1.4–1.7%

10 I compute this standard error with a correction for serial correlation as

σ(dt − pt )√
T − 1

√
1 + φ

1 − φ
.
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0.8 0.85 0.9 0.95 1 1.05
φ

Li
ke

lih
oo

d

Uconditional

Conditional

Figure 4
Likelihood function for φ, the autoregressive parameter for dividend yields. The likelihood is based on an

autoregressive model, dt+1 − pt+1 = adp + φ(dt − pt ) + ε
dp
t+1. The intercept adp and innovation variance

σ2(εdp) are maximized out.

chance of seeing the dividend growth bd or long-run regression coefficients
blr greater than their sample values. As usual, excess returns give even
stronger rejections, with probability values of 0.6–1.1%. (Lewellen (2004)
presents a similar and more formally Bayesian calculation that also delivers
small probability values.)

5. Power in Long-run Regression Coefficients?

I find much greater ability to reject the unforecastable-return null
in the long-horizon coefficient blr

r = br/(1 − ρφ) than in the one-year
coefficient br . A large literature, most recently exemplified by Boudoukh,
Richardson, and Whitelaw (2006), finds no power advantage in long-
horizon regressions.11 How can we reconcile these findings?

5.1 Long-horizon regressions compared
There are three main differences between the coefficients that I have
calculated and typical long-horizon regressions. First, blr

r is an infinite-
horizon coefficient. It corresponds to the regression of

∑∞
j=1 ρj−1rt+j

on dt − pt . Most studies examine instead the power of finite-horizon

11 Boudoukh, Richardson, and Whitelaw focus much of their discussion on the high correlation of short-
horizon and long-horizon regression coefficients. This is an interesting but tangential point. Short- and
long-horizon coefficients are not perfectly correlated, so long-horizon regressions add some information.
The only issue is how much information they add, and whether the extra information overcomes additional
small sample biases—whether long-run regressions have more or less power than one-year regressions.
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regression coefficients,
∑k

j=1 ρj−1rt+j on dt − pt . Second, I calculate
blr

r = br/(1 − ρφ) as an implication of the first-order VAR coefficients.
Most studies examine instead direct regression coefficients—they actually
construct

∑k
j=1 ρj−1rt+j and explicitly run it on dt − pt . Third, blr

r is
weighted by ρ where most studies examine instead unweighted returns, that
is, they run

∑k
j=1 rt+j on dt − pt .

Table 6 investigates which of these three differences in technique
accounts for the difference in results. The first row of Table 6 presents
the familiar one-year return forecast. We see the usual sample coefficient
of b̂r = 0.10, with 22% probability value of observing a larger coefficient
under the null.

Increasing to a 5-year horizon, we see that the sample regression
coefficient rises substantially, to 0.35–0.43, depending on which method
one uses. In the direct estimates, the probability values get slightly worse,
rising to 28–29% of seeing a larger value. I therefore confirm findings
such as those of Boudoukh, Richardson, and Whitelaw’s (2006) that
directly-estimated 5-year regressions have slightly worse power than 1-year
regressions. The implied 5-year regression coefficients do a little bit better,
with probability values declining to 16-18%. The improvement is small,
however, and looking only at 1-year to 5-year horizons, one might well
conclude that long-horizon regressions have at best very little additional
power.

As we increase the horizon, the probability values decrease substantially.
The implied long-horizon regression coefficients reach 5% probability
values at horizons between 15 and 20 years under φ = 0.94, and there
are still important gains in power going past the 20-year horizon. Excess
returns, as usual, show stronger results (not shown).

Table 6 shows that the central question is the horizon: conventional
5-year and even 10-year horizons do not go far enough out to see the
power advantages of long horizon regressions. All of the methods show
much better power at 20-year horizons than at 1 year horizons.

To understand why long horizons help and why we need such long
horizons, consider two-year and three-year return regressions

rt+1 + ρrt+2 = a(2)
r + b(2)

r xt + δt+2

rt+1 + ρrt+2 + ρ2rt+3 = a(3)
r + b(3)

r xt + δt+3

The coefficients are (in population, or in the indirect estimate)

b(3)
r = br(1 + ρφ) (17)

b(3)
r = br(1 + ρφ + ρ2φ2) (18)
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Thus, coefficients rise with horizon mechanically as a result of one-
period forecastability and the autocorrelation φ of the forecasting variable
(Campbell and Shiller, (1988).

These regressions exploit the negative correlation of br and φ to increase
power, just as do the infinite-horizon regressions studied above. Because
large br tend to come with small φ it is harder for the null to produce large
long-horizon coefficients than it is for the null to produce large one-year
coefficients.

The trouble is that this mechanism is not quantitatively strong for 2-year,
3-year, or even 5-year horizons, as their particular combinations of br and
φ do not stress φ enough. To display this fact, Figure 5 plots again the
joint distribution of {br , φ}, together with lines that show rejection regions
for long-horizon regression coefficients. The 1-year horizon line is vertical
as before. The 5-year horizon line is the set of {br , φ} points at which
br(1 + ρφ + · · · + ρ4φ4) equals its value in the data. Points above and to
the right of this line are simulations in which the five-year (unweighted,
implied) regression coefficient is larger than the sample value of this
coefficient. As the figure shows, this line excludes a few additional points,
but not many, which is why the associated probability value declines from
22% to only 17%. The k = ∞ line is the set of (br , φ) points at which
br/(1 − ρφ) equals its value in the data; points above and to the right of
this line are simulations in which the infinite-horizon long-run regression
coefficients studied above are greater than their sample values.

0 0.1 0.2 0.3 0.4

0.7

0.8

0.9

1

br

φ

br and φ, with long run regressions

1 5 10 20 ∞

∞, unweighted

Figure 5
Joint distribution of br and φ estimates, together with regions implied by long-run regressions. The
lines give the rejection regions implied by long-horizon return regressions at the indicated horizon.
For example, the points above and to the right of the line marked ‘‘5’’ are simulations in which

coefficient b
(5)
r = (1 + ρφ + · · · + ρ4φ4)br are larger than its value in the data. The dashed line marked

‘‘∞, unweighted’’ plots the line where br /(1 − φ) equals its value in the data, corresponding to the
infinite-horizon unweighted regression.
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As Figure 5 shows, longer horizon regressions give more and more
weight to φ, and therefore generate smaller probability values. The figure
shows why one must consider such long horizons to exclude many points
and obtain a powerful test.

5.2 Implications and nonimplications
Table 6 shows that the distinction between weighted and unweighted long-
horizon regressions makes almost no difference. Since ρ = 0.96 is close
to one, that result is not surprising. (Yes, the implied infinite-horizon
unweighted regression coefficient makes sense. Even though the left-hand
variable and its variance explode, the coefficient converges to the finite
value br/(1 − φ).)

Table 6 shows some interesting differences between implied and direct
estimates. In most cases, the direct estimates give less power against the
null than the implied estimates. In a few cases, the direct estimates seem
better than the indirect estimates, but this is a result of larger directly-
estimated coefficients in our sample. If we set an even bar, then the direct
coefficients show lower power than implied estimates in every case. It is
interesting, however, that the direct estimates are not much worse, even
at very long horizons. (Boudoukh and Richardson (1994) also find little
difference between methods given the horizon.)

Table 6 does not say much in general about whether it is better to
compute long-horizon statistics directly, ‘‘nonparametrically,’’ or whether
one should compute them by calculating implied coefficients from a low-
order model. The latter strategy works better here, but that fact is hardly
surprising since the data are generated by the same AR(1) I use to cal-
culate implied long-horizon statistics. In some other circumstances, direct
estimates of long-horizon statistics can pick up low-frequency behavior
that even well-fit short-horizon models fail to capture. Cochrane (1988) is
a good example. In other circumstances, the short-order model is a good
approximation, small sample biases are not too severe, and especially when
cointegrating vectors are present and one variable (price) summarizes con-
ditional expectations, implied long-horizon statistics can perform better.
I present some evidence below that the VAR(1) is a good fit for the data
on returns and dividend yields we are studying here, suggesting the latter
conclusion, but of course that conclusion is also limited to this data set.

The statistical power of ‘‘long-horizon regressions’’ in this analysis really
has nothing to do with the horizon per se. The test is powerful in these
simulations because it forms a joint region of short-horizon coefficients
br and φ that has good power. The one-year horizon bd test gives almost
exactly the same results. The economic interpretation, and the economic
motivation for defining ‘‘distance from the null’’ in terms of long-horizon
statistics involves horizon, of course, but says nothing about whether
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one should estimate long-horizon statistics directly or indirectly as a
consequence of a fitted VAR(1).

In sum, Table 6 shows that long-horizon regression coefficients have the
potential for substantially greater power to reject the null of unforecastable
returns. However, one must look a good deal past the 5-year horizon to
see much of that power. Furthermore, direct estimates of long-horizon
coefficients introduce additional uncertainty, and that uncertainty can be
large enough to obscure the greater power for some horizons, null hypothe-
ses, and sample sizes. This summary view reconciles the analytical and
simulation results on both sides, including Boudoukh, Richardson, and
Whitelaw (2006) simulations showing low power, and Campbell (2001)
and Valkanov (2003) analyses showing good power in large samples and
at very long horizons.

6. Out-of-Sample R2

Goyal and Welch (2005) show in a comprehensive study that the dividend
yield and many other regressors thought to forecast returns do not do so
out of sample. They compare two return-forecasting strategies. First, run
a regression rt+1 = a + bxt + εt+1 from time 1 to time τ , and use â + b̂xτ

to forecast the return at time τ + 1. Second, compute the sample mean
return from time 1 to time τ , and use that sample mean to forecast the
return at time τ + 1. Goyal and Welch compare the mean squared error of
the two strategies, and find that the ‘‘out-of-sample’’ mean squared error
is often larger for the return forecast than for the sample mean.

Campbell and Thompson (2005) give a partial rejoinder. The heart of the
Goyal–Welch low R2 is that the coefficients a and b are poorly estimated
in ‘‘short’’ samples. In particular, sample estimates often give conditional
expected excess returns less than zero, and recommend a short position.
Campbell and Thompson rule out such ‘‘implausible’’ estimates, and find
out-of-sample R2 that are a bit better than the unconditional mean. Goyal
and Welch respond that the out-of-sample R2 are still small.

6.1 Out of sample R2 as a test
Does this result mean that ‘‘returns are really not forecastable?’’ If all
dividend-yield variation were really due to return forecasts, how often
would we see Goyal–Welch results?

To answer this question, I set up the null analogous to (7) in which
returns are forecastable, dividend growth is not forecastable, and all
dividend-yield variation comes from time-varying expected returns,⎡
⎣ dt+1 − pt+1

�dt+1

rt+1

⎤
⎦ =

⎡
⎣ φ

0
ρφ − 1

⎤
⎦ (dt − pt ) +

⎡
⎢⎣ ε

dp

t+1
εd
t+1

εd
t+1 − ρε

dp

t+1

⎤
⎥⎦
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Mechanically, this is the same as the previous VAR (7) except
br = ρφ − 1 and bd = 0 rather than the other way around. It can be
derived from an analogous ‘‘structural’’ model that expected returns follow
an AR(1), Et(rt+1) = xt = φxt−1 − δx

t , dividend growth is unforecastable
�dt+1 = εd

t+1, and dividend yields are generated from the present value
identity (9) (Cochrane (2004) ch. 20). This null is very close to the sample
estimates of Table 2, but turns off the slight dividend predictability in the
‘‘wrong’’ direction.

I simulate artificial data from this null as before. I start with φ = 0.941,
which implies a return-forecasting coefficient br = 1 − ρφ ≈ 0.1. I also
consider φ = 0.99 to address small-sample bias worries, which implies a
lower value of br = 1 − ρφ ≈ 0.05. In each sample, I calculate the Goyal-
Welch statistic: starting in year 20, I compute the difference between root
mean squared error from the sample-mean forecast and from the fitted
dividend-yield forecast. A larger positive value for this statistic is good for
return forecastability; a larger negative value implies that the sample mean
is winning.

Figure 6 shows the distribution of this statistic across simulations. In
the data, marked by the vertical ‘‘Data’’ line, the statistic is negative; the
sample mean is a better out-of-sample forecaster than the dividend yield,
as Goyal and Welch (2005) find. However, 30–40% of the draws show
even worse results than our sample. In fact, the mean of the Goyal-Welch
statistic is negative, and only about 20% of the draws show a positive
value. Even though under this null all dividend-price variation is due to
time-varying expected returns by construction, it is unusual for dividend-
yield forecasting to actually work better than the sample mean in this

-1 0 1

Data

32 %

φ = 0.94

Δ rmse (%)

-1 0 1

Data

39 %

φ = 0.99

Δ rmse (%)

-2 -2

Figure 6
Distribution of the Goyal–Welch statistic under the null that returns are forecastable and dividend growth
is not forecastable. The statistic is the root mean squared error from using the sample mean return from
time 1 to time t to forecast returns at t + 1, less the root mean squared error from using a dividend yield
regression from time 1 to time t to forecast returns at time t + 1.
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out-of-sample experiment. φ = 0.99 makes it even more likely for sample
means to win the Goyal–Welch race.

Thus, the Goyal–Welch statistic does not reject the time-varying
expected return null. Poor out-of-sample R2 is exactly what we expect
given the persistence of the dividend yield, and the relatively ‘‘short’’
samples we have for estimating the relation between dividend yields and
returns.

6.2 Reconciliation
Both views are right, if correctly interpreted. Goyal and Welch (2005)
message is that regressions on dividend yields and similarly persistent
variables are not likely to be useful in forming real-time forecasts or
market-timing portfolios, given the difficulty of accurately estimating the
coefficients in our ‘‘short’’ data sample. This conclusion echoes Kandel and
Stambaugh (1996) and Barberis (2000), who show in a Bayesian setting that
uncertainty about the parameter br means that market-timing portfolios
should use a much lower parameter, shading the portfolio advice well
back toward the use of the sample mean. How these more sophisticated
calculations perform out of sample, extending Campbell and Thompson
(2005) idea, is an interesting open question.

However, poor out-of-sample R2 does not reject the null hypothesis
that returns are predictable. Out-of-sample R2 is not a new and powerful
test statistic that gives stronger evidence about return forecastability
than the regression coefficients or other standard hypothesis tests. One
can simultaneously hold the view that returns are predictable, or more
accurately that the bulk of price-dividend ratio movements reflect return
forecasts rather than dividend-growth forecasts, and believe that such
forecasts are not very useful for out-of-sample forecasting and portfolio
advice, given uncertainties about the coefficients in our data sets.

7. What about. . .

7.1 Repurchases, specification, and additional variables
What about the fact that firms seem to smooth dividends, many firms do
not pay dividends, dividend payments are declining in favor of repurchases,
and dividend behavior may shift over time?

Dividends as measured by CRSP capture all payments to investors,
including cash mergers, liquidations, and so forth, as well as actual
dividends. If a firm repurchases all of its shares, CRSP records this event
as a dividend payment. If a firm repurchases some of its shares, an investor
may choose to hold his shares, and the CRSP dividend series captures
the eventual payments he receives. Thus, there is nothing wrong in an
accounting sense with using the CRSP dividends series. The price really
is the present value of these dividends. These worries are therefore really
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statistical rather than conceptual, whether the VAR(1) model adequately
captures the time-series data.

Dividends that are frequently zero, and consist of infrequent large
lumps would clearly not fit a linear VAR(1). For this reason, I limit
attention to the market price-dividend ratio, so that this lumpiness is
averaged out across firms. Shifts in dividend behavior also do not mean
there is anything conceptually wrong with a dividend-yield regression. We
can understand this regression as a characterization of the unconditional
moments, averaging over such shifts. Dividend-smoothing can only do
limited damage, since earnings must eventually be paid out as dividends.

Although there is nothing wrong with using the dividend yield to
forecast returns, one can use variables that adjust for payout policies or
stochastic shifts in dividend behavior, as we can use any other variable
in the time-t information set, to forecast returns. Such forecasts can
give even stronger evidence of return predictability, since the payout
yield is ‘‘more stationary’’ than the dividend yield (Boudoukh Michaely,
Richardson, and Roberts (2007)). For example, Boudoukh, Richardson,
and Whitelaw (2006) report a 5.16% R2 using the dividend yield, but
8.7, 7.7, and 23.4% R2 using various measures of the payout yield12 (i.e.,
including repurchases). Lettau and Van Nieuwerburgh (2006) show that
allowing for a shift in dividend payout behavior also raises the forecast R2

substantially. Price/earnings, book/market and similar variables forecast
returns, and one can understand these as sensible variations that account
for the behavior of measured dividends.

More generally, a large number of additional variables seem to forecast
returns; for example, see the summary in Goyal and Welch (2005).
Although we cannot fish across variables for t-statistics any more than
we can fish across horizons, once we agree that dividend yields forecast
returns, additional variables can only add to the evidence for return
forecastability.

Again, the point of the dividend-yield specification in this paper is
not to find the best return-forecasting specification; the point is to show
how return-forecast statistics work in the simplest possible specification.
Everything I do here can only give even stronger evidence with these
additional variables or more complex specifications.

Additional variables can also help to predict dividend growth. Ribeiro
(2004), and Lettau and Ludvigson (2005) give examples. This fact does
not imply that returns must become less predictable. The identities that
dividend-growth predictability and return predictability add up apply
only to forecasts based on the dividend yield. Other variables can raise
the predictability of both dividend growth and of returns. To be specific,
consider any set of forecasting variables 
t that includes the dividend

12 The stunning 23.4 R2 value comes from one large outlier in the early 1930s.
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yield. The return identity (4) implies

dt − pt = E(rt+1|
t) − E(�dt+1|
t) + ρE(dt+1 − pt+1|
t) (19)

and the present value identity (9) is

dt − pt = Et

⎛
⎝ ∞∑

j=1

ρj−1�rt+j

∣∣∣∣∣∣
t

⎞
⎠− Et

⎛
⎝ ∞∑

j=1

ρj−1�dt+j

∣∣∣∣∣∣
t

⎞
⎠ (20)

By Equation (19), if any variable helps to forecast one-period dividend
growth, it must help to forecast returns, or help to forecast future
dividend yields. By Equation (20), if any variable helps to forecast long-run
dividend growth, it must also help to forecast long-run returns (Lettau
and Ludvigson (2005)). Again, considering more variables can only make
the evidence for return predictability stronger, even if those variables also
help to forecast dividends.

7.2 Direct long-horizon estimates and hidden dividend growth
Concerns about dividend smoothing, repurchases, and so on mean that,
despite aggregation, prices might move today on news of dividends several
years in the future, news not seen in next year’s dividend. The 1-year VAR
would miss this pattern. We can address this worry by examining direct
forecasts of long-horizon returns and dividend growth, regressions of the
form

k∑
j=1

ρj−1�dt+j = a
(k)
d + b

(k)
d (dt − pt ) + εd

t+k

k∑
j=1

ρj−1rt+j = a(k)
r + b(k)

r (dt − pt ) + εr
t+k

As with their infinite-horizon counterparts in Equations (10)–(12), these
regression coefficients amount to a variance decomposition for dividend
yields. They obey the identity

1 = b(k)
r − b

(k)
d + b

(k+1)
dp (21)

where b
(k+1)
dp is the regression coefficient of ρk+1(dt+k+1 − pt+k+1) on

dt − pt . We can interpret these regression coefficients as estimates of what
fraction of dividend-yield variance is due to k-period dividend-growth
forecasts, what fraction is due to k-period return forecasts, and what
fraction is due to k+1-period forecasts of future dividend yields. As
k → ∞ and for φ < 1/ρ the last term vanishes and we recover the identity
blr

r − blr
d = 1 studied in Section 2.2.
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Figure 7 presents direct estimates of long-horizon regression coefficients
in Equation (21) as a function of k. I do not calculate the last, future
price-dividend ratio term because its value is implied by the other two
terms.

In the top panel of Figure 7, we see that dividend-growth forecasts
explain small fractions of dividend yield variance at all horizons. The
triangles in Figure 7 are direct regressions,

∑k
j=1 ρj−1�dt+j on dt − pt .

The rise in these estimates means that long-run dividend growth moves
in the wrong direction, explaining negative fractions of dividend-yield
variation. The circles in Figure 7 sum individual regression coefficients,∑k

j=1 ρj−1β(�dt+j , dt − pt ). This estimate differs from the last one
only because it uses more data points. For example, the first year
β(�dt+1, dt − pt ) in the 10-year horizon return is estimated using T − 1
data points, not T − 10 data points of the direct (triangle) estimate. Here
we at least see the ‘‘right,’’ negative, sign, though the magnitudes are still
trivial.
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Dividend growth
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Horizon in years

Figure 7
Regression forecasts of discounted dividend growth

∑k
j=1 ρj−1�dt+j (top) and returns

∑k
j=1 ρj−1rt+j

(bottom) on the log dividend yield dt − pt , as a function of the horizon k. Triangles are
direct estimates: I form the weighted long-horizon returns and run them on dividend yields—for

example, β
(∑k

j=1 ρj−1�dt+j , dt − pt

)
. Circles sum individual estimates: I run dividend growth and

return at year t + j on the dividend yield at t and then sum up the coefficients—for example,∑k
j=1 ρj−1β

(
�dt+j , dt − pt

)
. The dashed lines are the long-run coefficients implied by the VAR—for

example,
∑k

j=1 ρj−1φj−1bd .
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By contrast, the return forecasts account for essentially all dividend-
yield volatility once one looks out past 10-years. The long-horizon return
regression coefficients approach and even exceed one. This, with a negative
sign, is what long-horizon dividend forecasts should look like if we are
to hope that changing expectations of dividend growth explain price
variation. They do not come close, even in these direct estimates that
allow for unstructured temporal correlations and long-delayed dividend
payments.

Despite the battering return forecasts measured by br took in the 1990s,
cutting return coefficients br almost in half, both these direct and the above
indirect blr

r = br/(1 − ρφ) long-horizon estimates of Table 4 are very little
changed since Cochrane (1992). The longer sample has a lower br , but a
larger φ, so br/(1 − ρφ) is still just about exactly one.

The dashed lines in Figure 7 present the long-run coefficients implied by
the VAR,

∑k
j=1 ρj−1φj−1br = br

(
1 − ρkφk

)
/(1 − ρφ) and similarly for

dividend growth, to give a visual sense of how well the VAR fits the direct
estimates. The point estimates of the long-run regressions show slightly
stronger return forecastability than the values implied by the VAR, and
dividend growth that goes even more in the ‘‘wrong’’ positive direction,
though the differences are far from statistically significant. Though low-
order VAR systems do not always capture long-run dynamics well (for
example, Cochrane (1988)), they seem to do so in this data set.

To keep the graph from getting too cluttered, I omit standard error
bars from Figure 7. The best set of asymptotic standard errors I calculated
gives the return-forecast t-statistic of about two at all horizons. The
dividend-growth forecasts are completely insignificant.

7.3 Bias in forecast estimates
Table 7 presents the means of the estimated coefficients under the null
hypothesis. As we expect for a near-unit-root process, the dividend-
yield autocorrelation estimate φ is biased downward. The return forecast
coefficient br is biased upward. The bias of approximately 0.05 accounts
for roughly half of the sample estimate b̂r ≈ 0.10. This bias results from the
strong negative correlation between return and dividend-yield errors and

Table 7
Means of estimated parameters

br bd φ blr
r blr

d

φ = 0.941 Null 0 −0.093 0.941 0 −1
Mean 0.049 −0.097 0.886 0.24 −0.77

φ = 0.99 Null 0 −0.046 0.990 0 −1
Mean 0.057 −0.050 0.926 0.43 −0.57

Means are taken over 50,000 simulations of the Monte Carlo
described in Table 2
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the consequent strong negative correlation between return and dividend-
yield coefficients.

The dividend-growth coefficient bd is not biased. There is no particular
correlation between the bd and φ estimates, deriving from the nearly zero
correlation between dividend-growth and dividend-yield shocks. Thus, the
dividend-growth forecast does not inherit any near-unit-root issues from
the strong autocorrelation of the right-hand variable. This observation
should give a little more comfort to the result that bd ≈ 0 is a good
characterization of the data. The long-horizon return coefficient blr

r is
biased up, and more so for higher values of φ. Correspondingly, the long-
horizon dividend-growth coefficient blr

d is biased up as well. However, the
strong rejections of blr

r = 0 or equivalently blr
d = −1 mean that we can still

distinguish the biased null value blr
r = 0.24 − 0.43 from the sample value

b̂lr
r ≈ 1.
The probability values documented above do not ignore the fact that

coefficients are biased in small samples. They show that we can reject the
null hypothesis despite the biases, which are fully accounted for in the
small-sample test statistics documented above.

Table 7 documents biases under the unpredictable-return null, so it
does not really answer the question, ‘‘If we want to adjust for small-
sample biases, what point estimate should be our best guess of the
world?’’ (The question presumes we want an unbiased estimate, not, for
example, the maximum likelihood estimate, which we already have.) We
can, however, read a rough answer to this question from Table 7. The
size of the biases is about the same under the null presented in Table 7,
br ≈ 0, bd ≈ −0.05, φ ≈ 0.99, as it is under the alternative br ≈ 0.05,
bd ≈ 0, φ ≈ 0.99. Therefore, this latter set of parameters will produce,
on average, estimates close to those observed in our sample, b̂r = −0.10,
b̂d = 0, φ̂ ≈ 0.94.

Most importantly, this set of parameters implies blr
r ≈ 0.05/(1 − 0.99 ×

0.96) ≈ 1.0 and blr
d = 0. Thus, the ‘‘bias corrected’’ point estimates keep the

view that all dividend-yield volatility comes from return forecasts blr
r ≈ 1

and blr
d ≈ 0 intact. They imply that more of the long-run forecastability

comes from dividend-yield autocorrelation φ (the build-up of coefficients
with horizon) and less from one-period return forecastability br , but the
combination is unchanged.

8. Conclusion

If returns really are not forecastable, then dividend growth must be
forecastable in order to generate the observed variation in dividend-price
ratios. We should see that forecastability. Yet, even looking 25 years out,
there is not a shred of evidence that high market price-dividend ratios
are associated with higher subsequent dividend growth (Figure 7). Even
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if we convince ourselves that the return-forecasting evidence crystallized
in Fama and French (1988) regressions is statistically insignificant, we
still leave unanswered the challenge crystallized by Shiller (1981) volatility
tests: If not dividend growth or expected returns, what does move prices?

Setting up a null in which returns are not forecastable, and changes
in expected dividend growth explain the variation of dividend yields, I
can check both dividend-growth and return forecastability. I find that
the absence of dividend-growth forecastability in our data provides much
stronger evidence against this null than does the presence of one-year
return forecastability, with probability values in the 1–2% range rather
than in the 20% range.

The long-run coefficients best capture these observations in a single
number, and tie them to modern volatility tests. The point estimates are
squarely in the bull’s eye that all variation in market price-dividend ratios is
accounted for by time-varying expected returns, and none by time-varying
dividend-growth forecasts. Tests based on these long-run coefficients also
give 1–2% rejections.

Both long-run regressions and dividend-growth regressions exploit
the negative correlation between return-forecast and dividend-yield
autocorrelation coefficients, and prior knowledge that dividend-yield
autocorrelation cannot be too high, to produce more powerful tests.
Large long-run return forecasts result from large short-run return
forecasts together with large autocorrelations, but a null with a limited
autocorrelation and negative correlation between return-forecast and
autocorrelation estimates produces a large long-run return forecast only
infrequently.

Excess return forecastability is not a comforting result. Our lives would
be so much easier if we could trace price movements back to visible
news about dividends or cashflows. Failing that, it would be nice if high
prices forecast dividend growth, so we could think agents see cashflow
information that we do not see. Failing that, it would be lovely if high prices
were associated with low interest rates or other observable movements
in discount factors. Failing that, perhaps time-varying expected excess
returns that generate price variation could be associated with more easily
measurable time-varying standard deviations, so the market moves up
and down a mean-variance frontier with constant Sharpe ratio. Alas, the
evidence so far seems to be that most aggregate price/dividend variation
can be explained only by rather nebulous variation in Sharpe ratios. But
that is where the data have forced us, and they still do. The only good
piece of news is that observed return forecastability does seem to be just
enough to account for the volatility of price dividend ratios. If both return
and dividend-growth forecast coefficients were small, we would be forced
to conclude that prices follow a ‘‘bubble’’ process, moving only on news
(or, frankly, opinion) of their own future values.
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The implications of excess return forecastability have a reach throughout
finance and are only beginning to be explored. The literature has focused
on portfolio theory—the possibility that a few investors can benefit by
market-timing portfolio rules. Even here, the signals are slow moving,
really affecting the static portfolio choices of different generations rather
than dynamic portfolio choices of short-run investors, and parameter
uncertainty greatly reduces the potential benefits. Most seriously, all
portfolio theory calculations face a classic catch-22: if there is a substantial
number of agents who, on net, should take the advice, the phenomenon
will disappear.

Portfolio calculations are just the tip of the iceberg, however. If expected
excess returns really do vary by as much as their average levels, and if
all market price-dividend ratio variation comes from varying expected
returns and none from varying expected growth in dividends or earnings,
much of the rest of finance still needs to be rewritten. For example,
Mertonian state variables, long a theoretical curiosity but relegated to
the back shelf by an empirical view that investment opportunities are
roughly constant, should in fact be at center stage of cross-sectional asset
pricing. For example, much of the beta of a stock or portfolio reflects
covariation between firm and factor (e.g., market) discount rates rather
than reflecting the covariation between firm and market cash flows. For
example, a change in prices driven by discount rate changes does not
change how close the firm is to bankruptcy, justifying strikingly inertial
capital structures as documented by Welch (2004). For example, standard
cost-of-capital calculations featuring the CAPM and a steady 6% market
premium need to be rewritten, at least recognizing the dramatic variation
of the initial premium, and more deeply recognizing likely changes in that
premium over the lifespan of a project and the multiple pricing factors
that predictability implies.
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