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INTERNATIONAL ECONOMIC REVIEW 
Vol. 39, No. 4, November 1998 

ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY 
MODELS DO PROVIDE ACCURATE FORECASTS* 

BY TORBEN G. ANDERSEN AND TIM BOLLERSLEVt' 

Northwestern University, U.S.A. 
Duke University and National Bureau of Economic Research, U. S.A. 

A voluminous literature has emerged for modeling the temporal dependen- 
cies in financial market volatility using ARCH and stochastic volatility models. 
While most of these studies have documented highly significant in-sample 
parameter estimates and pronounced intertemporal volatility persistence, tradi- 
tional ex-post forecast evaluation criteria suggest that the models provide 
seemingly poor volatility forecasts. Contrary to this contention, we show that 
volatility models produce strikingly accurate interdaily forecasts for the latent 
volatility factor that would be of interest in most financial applications. New 
methods for improved ex-post interdaily volatility measurements based on 
high-frequency intradaily data are also discussed. 

1. INTRODUCTION 

Volatility permeates finance. The variation in economy-wide risk factors is impor- 
tant for the pricing of financial securities, and return volatility is a key input to 
option pricing and portfolio allocation problems. As such, accurate measures and 
good forecasts of volatility are critical for the implementation and evaluation of 
asset and derivative pricing theories as well as trading and hedging strategies. It is 
also a well-established fact, dating back to Mandelbrot (1963) and Fama (1965), that 
financial returns display pronounced volatility clustering. However, only over the last 
decade have financial economists begun to seriously model these temporal depen- 
dencies. While the vast majority of the earlier studies relied on the Autoregressive 
Conditional Heteroskedastic (ARCH) framework pioneered by Engle (1982), there is 
now a large and diverse time-series literature on volatility modeling. Almost univer- 
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sally, reported results point towards a very high degree of intertemporal volatility 
persistence; see Bollerslev et al., (1992), Bollerslev et al., (1994), Ghysels et al., 
(1996), and Shephard (1996) for surveys. Yet, in spite of highly significant in-sample 
parameter estimates, numerous studies find that standard volatility models explain 
little of the variability in ex-post squared returns; see, Cumby et al., (1993), Figlewski 
(1997), and Jorion (1995, 1996). This has led to the suggestion that these models may 
be of limited practical value. In contrast, we show that well-specified volatility 
models provide strikingly accurate volatility forecasts. There is, in fact, no contradic- 
tion between good volatility forecasts and poor predictive power for daily squared 
returns. In a similar vein, we also demonstrate how high-frequency intraday data 
may be used constructively in forming more accurate and meaningful ex-post 
interdaily volatility measurements. 

The intuition behind the apparent poor predictive power of well-specified volatil- 
ity models is straightforward. Let the return innovation be written as rt= o=t-z, 

where zt denotes an independent mean zero, unit variance stochastic process, while 
the latent volatility, o-C, evolves in accordance with the particular model entertained.2 
A common approach for judging the practical relevance of any model is to compare 
the implied predictions with the subsequent realizations. Unfortunately, volatility is 
not directly observed so this approach is not immediately applicable for volatility 
forecast evaluation. Still, if the model for t is correctly specified, then E, 1(rt2) = 

Et 1(t2 z2) = o-t2, which appears to justify the use of the squared return innovation 
over the relevant horizon as a proxy for the ex-post volatility. However, while the 
squared innovation provides an unbiased estimate for the latent volatility factor, it 
may yield very noisy measurements due to the idiosyncratic error term, z72. This 
component typically displays a large degree of observation-by-observation variation 
relative to ot-, rendering the fraction of the squared return variation attributable to 
the volatility process low. Consequently, the poor predictive power of volatility 
models, when judged by standard forecast criteria using rt2 as a measure for ex-post 
volatility, is an inevitable consequence of the inherent noise in the return generating 
process.3 

This motivates a fundamentally different approach. Rather than seeking to perfect 
the forecast evaluation procedures-taking the noisy observations on volatility 
provided by fixed-horizon squared returns as given-it may prove fruitful to pursue 
alternative ex-post volatility measures. Specifically, building on the continuous-time 
stochastic volatility framework developed by Nelson (1990) and Drost and Werker 
(1996), we demonstrate how high-frequency data allow for the construction of vastly 
improved ex-post volatility measurements via cumulative squared intraday returns. 

2 Throughout, we shall refer to o-t and o-t interchangeably as volatility. This simplifies terminol- 
ogy and should cause no conceptual confusion, since the measures are linked by a simple monotonic 
transformation. 

3This is analogous to the difficulty confronting models of expected returns and risk premia in 
asset pricing theory based on past and current information. The notoriously low explanatory power 
for period-by-period returns neither invalidates the theories nor renders them economically irrele- 
vant. Genuine differences between the two scenario do nonetheless become evident later on, as we 
document that vastly improved empirical measures of ex-post daily volatility are feasible. No such 
remedies exist for the measurement of expected returns; see also Merton (1980). 
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In theory, as the observation frequency increases from a daily to an infinitesimal 
interval, this measure converges to genuine measurement of the latent volatility 
factor. In practice, this is infeasible because of data limitations and a host of market 
microstructure features, including nonsynchronous trading effects, discrete price 
observations, intraday periodic volatility patterns, and bid-ask spreads. Nonetheless, 
we find that the proposed volatility measures, based on high-frequency returns, 
provide a dramatic reduction in noise and a radical improvement in temporal 
stability relative to measures based on daily returns. Further, when evaluated against 
these improved volatility measurements, we find that daily volatility models perform 
well, readily explaining about half the variability in the volatility factor.4 These 
findings are directly in line with the existing evidence documenting that the stan- 
dardized residuals from estimated ARCH models are approximately i.i.d. through 
time; see Hsieh (1989). The 'hit sequence' proposed by Christoffersen (1998) and the 
integral transform of the series of density forecast analyzed by Diebold et al., (1998) 
similarly point towards the adequacy of standard interdaily volatility modeling and 
forecasting techniques. 

The plan for the remainder of the paper is as follows. Notation and data sources 
are set forth in Section 2. Employing a daily sample of Deutschemark-U.S. Dollar 
(DM-$) and Japanese Yen-U.S. Dollar (Y-$) spot exchange rates along with the 
popular GARCH(1, 1) specification of Bollerslev (1986), Section 3 provides a brief 
empirical illustration of the highly significant ARCH parameter estimates typically 
obtained in-sample, and the associated poor out-of-sample forecasting performance 
vis-a-vis daily squared returns. Section 4 rationalizes the empirical findings in the 
context of a continuous-time stochastic volatility model. It also initiates the more 
constructive aspects of our analysis, as we show how the use of high-frequency data 
may reduce the measurement error involved in quantifying the ex-post latent 
volatility. Utilizing a one-year sample of five-minute returns, the empirical analysis 
in Section 5 highlights how the improved high-frequency based volatility measures 
give rise to radically different conclusions regarding the accuracy of the daily 
volatility forecasts for the two exchange rates discussed in Section 3. Section 6 
concludes with suggestions for future research. 

2. NOTATION AND DATA 

To set forth notation, let Pt denote the time t ? 0 logarithmic price for a financial 
asset, with the unit interval corresponding to one day. The discretely observed time 
series process of continuously compounded returns with m observations per day, or 
a return horizon of 1/m, is then defined by, 

(1) r(mn),t-Pt Pt- 1/m, 

4 In a related context, Hsieh (1991) and Fung and Hsieh (1991) report R2's between 34 and 55 
per cent when modeling volatility by autoregressions for daily sample standard deviations based on 
15-minute equity, currency, and bond returns. 
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where t = 1/m, 2/m,.. In line with this convention, conditional and unconditional 
expectations are indexed by the observation frequency of the variables in the 
information set, and are denoted by E(m) t() and E(m)( ), respectively, while the 
corresponding variance operators are given by Var(m) t( ) and Var(,)(). We further 
refer to the continuous-time instantaneous returns process by rt t dpt, while 
the instantaneous variance is denoted -t27. Likewise, the conditional expectation 
adapted to the continuous-time sample-path filtration, o-(p,, T < t), is referred to by 
Et(-), whereas the corresponding unconditional expectation is denoted E(). To 
facilitate comparison, all reported population figures and model estimates are scaled 
to reflect daily percentage returns. 

The model estimates underlying the continuous-time simulations are based on 
daily returns, or r(l) t, for the DM-$ and the Y-$ spot exchange rates from October 1, 
1987, through September 30, 1992. Meanwhile, the empirical out-of-sample forecast 
analysis is based on temporal aggregates of the five-minute returns, or r(288), t for the 
same two exchange rates from October 1, 1992, through September 30, 1993. These 
intraday returns are constructed from the linearly interpolated logarithmic midpoint 
of the continuously-recorded bid and ask quotes that appeared on the interbank 
Reuters network over the one-year sample. Due to the extremely low market activity 
over the weekends, the returns from Friday 21:00 Greenwich Mean Time (G.M.T.) 
through Sunday 21:00 G.M.T. are excluded, resulting in a total of 74,880 five-minute 
returns spanning 260 days. For a more detailed discussion of the data construction 
we refer to Andersen and Bollerslev (1997a, 1998), where the identical five-minute 
DM-$ return series is analyzed from a different perspective. 

3. INTERDAILY VOLATILITY MODELING AND FORECAST EVALUATION 

The existence of volatility clustering in speculative returns is ubiquitous. Econo- 
metric modeling of this volatility clustering phenomenon has been a very active area 
of research over the past decade. Many of these studies find that the simple 
GARCH(1, 1) model provides a good first approximation to the observed temporal 
dependencies in daily data; see Baillie and Bollerslev (1989), Bollerslev (1987), Engle 
and Bollerslev (1986), and Hsieh (1989) for some of the early evidence. 

3.1. Daily Volatility Modeling. In order to formally define the GARCH(1, 1) 
model, let (om ) t denote the conditional variance of r(m) t based on information up 
through time t - 1/m. With a sampling frequency of m observations per day, the 
volatility model for r(,), t is then given by the following system, 

(2) r(fn)t = t ((n),t Z(ni),t 

and 

(3) -(rM),t Pj(tn) + 0(m)* (((nz),t- /m Z(tn),t-i/r) + m(nz) (),t-1/rn 

where r(m) > 0, %n) ?0 ?3(m) ? 0, and z(nt)t is i.i.d. with mean zero and variance 
one. 
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TABLE 1 
DAILY GARCH(1, 1) MODEL ESTIMATES* 

DM-$ y-$ 

~fr(1) 0.022 0.026 
(0.009) (0.008) 

a(,) 0.068 0.104 
(0.016) (0.026) 

13(1) 0.898 0.844 
(0.023) (0.032) 

*Reports Quasi-Maximum Likelihood estimates (QMLE) 
for the GARCH(1, 1) model defined in equation (3) based on 
the daily percentage returns for the Deutschemark-U.S. Dol- 
lar and Japanese Yen-U.S. Dollar spot exchange rates from 
October 1, 1987, through September 30, 1992. The QMLE are 
obtained under the assumption of conditional normality. Ro- 
bust standard errors, as described in Bollerslev and Wooldridge 
(1992), are reported in parentheses. 

The parameter estimates for the two daily exchange rates, corresponding to 
m = 1, are reported in Table 1.5 The estimates for the conditional variance parame- 
ters are all highly significant, and the robust Wald tests for no ARCH effects, 
a(l) = I8(1) = 0, overwhelmingly reject for both rates. The Ljung-Box portmanteau 
tests for up to thirtieth-order serial correlation in the standardized squared residu- 
als, z<)2 equal 29.1 and 24.7, respectively, indicating that the GARCH(1, 1) model 
does a good job of tracking the short-run interdaily volatility dependencies. Consis- 
tent with the prior literature, the estimates for ^(1) + .3(1) are close to unity, as in the 
IGARCH(1, 1) model of Engle and Bollerslev (1986).6 This high degree of volatility 
persistence, coupled with the significant parameter estimates, observed almost 
universally across different speculative returns, suggests that financial market volatil- 
ity is highly predictable. Nonetheless, as we confirm in the following section, when 
judged by standard criteria, the model appears to provide poor forecasts, even over 
the immediate one-day-ahead horizon. 

3.2. Daily Volatility Forecast Evaluation. The majority of the volatility forecast 
evaluations reported in the literature rely on some MSE criteria involving the 
ex-post squared or absolute returns over the relevant forecast horizon.7 One particu- 

sThe estimates are quasi-maximum likelihood (QMLE) under the assumption that Z(1) t is 
normally distributed, with robust standard errors in parentheses; see Bollerslev and Wooldridge 
(1992). The models also allow for intercepts in the conditional mean equations, but these estimates 
are indistinguishably different from zero and consequently not reported. 

6 Recent evidence suggest that the long-run dependencies in financial market volatility may be 
better characterized by a fractionally integrated, or FIGARCH, model; see Andersen and Bollerslev 
(1997b), Baillie et al., (1996), and Bollerslev and Mikkelsen (1996). Since the present analysis is 
focused exclusively on short-term volatility forecasting, we shall not pursue these more complicated 
specifications any further here. 

7Although MSE is a natural choice when evaluating traditional forecasts for the mean, it is less 
obvious in a heteroskedastic nonlinear environment; see Bollerslev et al., (1994), Engle et al., (1993), 
Diebold and Mariano (1995), Diebold and Christoffersen (1997), Diebold et al., (1998), Lopez (1995), 
and West et al., (1993). We explicitly do not pursue any of these more complex forecast evaluation 
criteria here. 
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larly popular metric is obtained via the ex-post squared return-volatility regression, 

2 a +b *2 
(4) rnm), t+ l/m = (m) + b(m) *(rm),t+ /m + U(n1),t+1/m1M 

where t = 0,1/m, 2/m,.... This regression equation provides an analog to a com- 
mon procedure for evaluating forecasts for the conditional mean, termed the 
Mincer-Zarnowitz regression following Mincer and Zarnowitz (1969). If the model 
for the conditional variance is correctly specified and E(m), t(r(n),t+1/m) = 2t+1/rn 

it follows that, in population, a(nm) and b(m) equals zero and unity, respectively.8'9 Of 
course, in practice the values for r(m)t +? /nZ are subject to estimation error, 
resulting in a standard errors-in-variables problem and a downward bias in the 
regression estimate for b(M).10 Nonetheless, the coefficient of multiple determina- 
tion, or R 2 ), from the regression in (4) provides a direct assessment of the 
variability in the ex-post returns, as measured by rm), t + 1/rmI that is explained by the 
particular estimates of r(m)t+1M2 The R(M) is therefore often interpreted as a 
simple gauge of the degree of predictability in the volatility process, and hence of 
the potential economic significance of the volatility forecasts. 

The use of this R m) as a guide to the accuracy of volatility forecasts is, however, 
problematic. Rational financial decision making hinges on the anticipated future 
volatility and not the subsequent realized squared returns. Under the null hypothesis 
that the estimated GARCH(1, 1) model constitutes the correct specification, the true 
return variance is, by definition, identical to the GARCH volatility forecast. The 
regression in (4) relies on the observed squared returns as a measure of realized 
volatility. This is justified to the extent that they provide unbiased estimators of the 
underlying latent volatility. However, realized squared returns are poor estimators of 
day-by-day movements in volatility, as the idiosyncratic component of daily returns is 
large. It is therefore impossible to interpret the resulting R(M), unless we establish a 
benchmark for the value expected under the null hypothesis of correct model 
specification."1 

To illustrate these points, consider the GARCH(1, 1) estimates for the daily DM-$ 
and Y-$ exchange rates. The R(1)'s from the one-step-ahead return volatility regres- 
sions in (4) for the 260 weekday returns over the subsequent year from October 1, 

8 This assumes that the conditional mean of r(m),t iS zero. Otherwise, replace r2 in equation 
(4) by (r(,,1) t- /L(m) t)2 where /L(m) t denotes the conditional mean; Pagan and Ullah (1988) and 
Pagan and Sabau (1992) analyze the complications that arise when the conditional mean depends on 
the conditional variance. At the daily horizon, any predictability in the mean is of second order 
importance. 

A closely related regression, I r(m),t+ 1/nl = c(nI + d + v(in), t+ l/n n has been em- 
ployed in a number of studies; e.g., Jorion (1995). However, unlike b(m), the population value of d(m) 
hinges on distributional assumptions. For simplicity we therefore concentrate exclusively on the 
squared return-volatility regression in (4) in the present analysis. 

10 If the forecasts are unbiased in population, the downward bias in the estimate for b(,,,) is given 
as - Var(m)(P(m), t) [Var(,..)( P(m), t) + Var(,,)( o-(2) )]- ',where P( ... t denotes the measurement error 
in o(2m) t; e.g., Chow (1983). Christensen and Prabhala (1998) explicitly recognize this bias within the 
context of evaluating variance forecasts based on implied volatilities from options prices. 

11 The predication on R2 as a convenient measure for summarizing predictable changes in 
returns is underscored by Roll (1988) in his 1987 Presidential Address to the American Finance 
Association, succinctly entitled 'R2.' 
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1992 through September 30, 1993, equal 0.047 and 0.026, respectively.12 These 
'disappointingly' low R(1)'s are in line with the evidence in the extant literature for 
other speculative returns and sample periods.13 For instance, on evaluating the 
predictive power of a GARCH(1, 1) model for weekly returns on the S & P100 stock 
index from 1983-1989, Day and Lewis (1992) report R(/5) = 0.039, while Pagan and 
Schwert (1990) find R = 0.067 with a GARCH(1,2) model for monthly aggre- 
gate U.S. stock market returns from 1835-1925. Jorion (1996) uses the same 
GARCH(1, 1) specification as here, but a longer seven-year sample of daily DM-$ 
returns from 1985-1992, to obtain R21) = 0.024. Modeling weekly stock and bond 
market volatility in the U.S. and Japan from 1977-1990 by an EGARCH model, 
Cumby et al., (1993) report R2/5)'s ranging from 0.003 to 0.106, while West and Cho 
(1995) find R2'/5)s ranging from 0.001 to 0.045 with a GARCH(1, 1) model for five 
different weekly U.S. dollar exchange rates from 1973-1989. Closely related results 
have been reported by Akgiray (1989), Boudoukh et al., (1997), Brailsford and Faff 
(1996), Canina and Figlewski (1993), Dimson and Marsh (1990), Frennberg and 
Hansson (1996), Figlewski (1997), Heynen and Kat (1994), Jorion (1995), Schwert 
(1989, 1990a), and Schwert and Seguin (1990). Predictably, these systematically low 
R(M )'s reported throughout the literature have led to the perception that standard 
volatility models may be seriously misspecified and provide poor volatility forecasts, 
and consequently be of limited, if any, practical use. 

To highlight the fallacy of such a conclusion, we derive the population R2 under 
the null hypothesis that the returns are generated by a GARCH(1, 1) model as in 
equations (2) and (3). Letting K(,) =E(m) t(Z(n), t) denote the conditional kurtosis of 
the standardized innovations, it is straightforward to show that, provided the uncon- 
ditional kurtosis for r(m) t is finite, or K(m)- a2) + 13(2) + 2- ag(m) *P1(m) < 1 (see Boller- 
slev 1986), we have 

Var(m)(r) t) = K(m) - 1) * (1 -_3(2J2) - 2a(m) 13(m)) 

Km)- 'a2 
- 

2 -2 a 

* ( -Ctm)-("I) 1() (m 

a3(m) 

and, 

Var(m)( m(rn),t) = (m) (K(m)- 1) a(rn) (1 - K(m) * (" 13m) -2 a(13())- 

( al(m) ;13(m)) 

12 Consistent with the results in Table 1, all our out-of-sample predictions use daily returns 
measured at 12:00 G.M.T. While the reported figures do reflect the actual definition of the daily 
return interval, the qualitative conclusions are robust. For instance, on measuring the daily returns 
at 0:00 G.M.T., the one-year out-of-sample RG)'s equal 0.021 and 0.012, respectively. 

13 Whereas the results for the DM-$ and Y-$ exchange rates reported here are truly out-of-sam- 
ple, most of the results reported in the literature rely on in-sample parameter estimates. If anything, 
this is likely to bias the R2n)'s upward. 
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Thus, the (true) population R t) from the regression in equation (4) equals, 

(5) R Var(t)(o4l),t) Var(z)(r,, ) a) 
2 

= 8Qm)- (1- -(2- ?(m) 13(m)) 

By the implicit assumption of a finite unconditional fourth-order moment underlying 
the squared return-volatility regression, the coefficient of multiple determination 
cannot exceed K?%). In particular, with conditional Gaussian errors the R 2 ) from a 
correctly specified GARCH(1, 1) model is bounded from above by 3, while with 
conditional fat-tailed errors the upper bound is even lower. Moreover, with realistic 
parameter values for a(m) and 3(,,), the population value for the R(m) statistic is 
significantly below this upper bound. In other words, low R2's are not an anomaly, 
but rather a direct implication of standard volatility models. 

Consider again the daily DM-$ and Y-$ GARCH(1, 1) parameter estimates for a(l) 
and 13(1) in Table 1. The population R 2)'s equal 0.064 and 0.096, respectively. While 
these R(1)'s are slightly higher than the actual one-year out-of-sample statistics 
calculated above, the values are in close accordance with the R 2)'s reported in the 
extant literature.14 Thus, even for a correctly specified model with E(m) {( )t+ 1/r) 

j2 to a,t11 
= 

(n), t + 1/m nit is naive to expect a 'high' R(m) from the squared return-volatility 
regression in (4). 

The fact that the daily GARCH(1, 1) model do not explain much of the variability 
in the squared DM-$ returns is also evident from Figure 1, which graphs the 260 
one-day-ahead volatility forecasts from October 1, 1992 through September 30, 1993, 
along with the corresponding realized daily squared returns. The variability in (-) t 
is diminutive compared to the variability in r2) t. The next section further explores 
this issue within the context of a continuous-time stochastic volatility model. 

4. CONTINUOUS-TIME VOLATILITY MODELING AND 

FORECAST EVALUATION 

The previous section demonstrates that the low R2 measures are consistent with (in) 
standard volatility models. However, this finding does not settle the underlying 
fundamental issue of whether these models actually provide meaningful volatility 
forecasts. To address this question, we adopt a continuous-time diffusion framework 
with the property that all discretely sampled time series obey so-called weak-form 
GARCH(1, 1) models. This approach has the added advantage that many asset 
pricing models and most derivatives pricing theories are cast in a similar framework. 

Specifically, we assume that the instantaneous returns are generated by the 
continuous-time martingale, 

(6) dpt=otdWp' , 

14 By ignoring the higher volatility following market closures, the GARCH(1, 1) models reported 
in Table 1 systematically over-estimate volatility on regular trading days, possibly explaining part of 
the discrepancy between the actual and population R 2)'s; see Baillie and Bollerslev (1989) and 
Andersen and Bollerslev (1998) for a detailed analysis of day-of-the-week and holiday effects in the 
foreign exchange market. For simplicity, we do not pursue this additional complication here. 
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FIGURE 1 

DAILY SQUARED RETURNS AND GARCH(1, 1) FORECASTS. THE SOLID LINE GRAPHS THE DAILY 
ONE-STEP-AHEAD GARCH(1, 1) VOLATILITY FORECASTS FOR THE DEUTSCHEMARK-U.S. DOLLAR EX- 
CHANGE RATE GIVEN BY EQUATION (3) WITH m 1 AND THE PARAMETER VALUES IN TABLE 1. THE 
DOT-FED LINE REFERS TO THE CORRESPONDING REALIZED DAILY SQUARED RETURNS, r1) t' THE SAMPLE 
PERIOD EXTENDS FROM OCTOBER 1, 1992 THROUGH SEPTEMBER 29, 1993. 

where W_ denotes a standard Wiener process.15 By Ito's Lemma, the minimum 
MSE forecast for the conditional variance for the one-day returns, or r() t+ 1 Pt +1 
-Pt, is then readily expressed as, 

(7) Et(rJ2) t+,) =Et(f r7+ dT) =Et(f 27 dT) = E t Et(uT) dT. 

Of course, with time-varying volatility it is generally the case that E(1) t(r2), t +) 1) 

E(rj) t+ 1). Thus, any discrete-time daily ARCH forecast is necessarily inefficient in 
a MSE sense relative to the optimal forecast based on the continuous sample path. 
Meanwhile, it is evident that the relevant notion of daily volatility in this setting 
becomes Jf o-t27 dT. This quantity is also of central importance for the pricing of 

15Any mean predictability could easily be incorporated into the subsequent analysis, but the 
assumption of serially uncorrelated mean-zero returns in (6) greatly simplifies the notation. This 
assumption is also consistent with the empirical evidence for the two exchange rates analyzed 
throughout. 
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derivative securities under stochastic volatility; see Hull and White (1987), Melino 
(1994), Scott (1987), and Wiggins (1987). Equation (7) shows that rJ)t+1 continues 
to provide an unbiased, albeit noisy, estimator of the relevant latent volatility factor 
for daily returns, generalizing the results from the discrete-time setting discussed 
earlier. 

4.1. Continuous Time Modeling of Daily Volatility. In our setting, the natural 
continuous-time model for the volatility process is given by the diffusion limit of the 
GARCH(1, 1) process, as developed in Nelson (1990).16 It takes the form, 

(8) d -2 = o(w - 0-t2)dt + (2AO)l/2 t2o-dW,J< t, 

where w> O, 0> 0, 0 < A < 1, and the Wiener processes, WP t and W,J t are 
independent. 

With the notable exception of the model in Meddahi and Renault (1997), exact 
discretization for stochastic volatility models are typically not available in closed 
form. However, following Drost and Nijman (1993) and Drost and Werker (1996) the 
discretely sampled returns defined by equations (6) and (8), r(,) -Pt=Pt-p1/rnm 
satisfy the weak GARCH(1, 1) model restrictions, 

(9) ((nI) t =P(m) + (m)*r(m),t - 1/in + /(m) m),t - 1/m 

where 2m t refers to the linear projection of 2 
) ton the Hilbert space spanned by 

1 'km),t-1/rn' Ikm),t-2/m* and r2 t-/m,r)t2/ m. Although the formal 
interpretations differ, the recursions for the weak GARCH model defined by (9) and 
the conditional variance in (3) obviously result in identical numerical values for ; 2 (m), t 

and (O4m) We therefore refer to the one-day-ahead weak GARCH(1, 1) projections 
as a2 instead of S(2) t, in the sequel. However, insofar as E(1) t(r)() t 2(1), t the 
results for the daily GARCH(1, 1) forecasts provided only a lower bound on the 
predictability afforded by higher-order discrete-time ARCH approximations. 
Nonetheless, given the weak GARCH(1, 1) interpretation of the diffusion approxi- 
mation in (9), more complicated stochastic differential equations should at best 
result in minor improvements relative to the findings below. 

The exact one-to-one relationship between the discrete-time weak GARCH(1, 1) 
parameters and the continuous-time stochastic volatility parameters in equation (8) 
is conveniently expressed by, 

(10) 0 = - m * log( a(m) + (m)), 

(11) f = m * (m)- (1 - (m) - (m)) a 

16 Note, however, that many other properly designed ARCH filters will yield consistent estimates 
for the same (rt process as the sampling frequency increases; see Nelson (1996) and Nelson and 
Foster (1994). 
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TABLE 2 
IMPLIED CONTINUOUS TIME GARCH(1, 1): MODEL ESTIMATES* 

DM-$ y-$ 

0 0.035 0.054 
co 0.636 0.476 
A 0.296 0.480 

*Gives the parameters for the continuous-time stochastic 
volatility model defined by equations (6) and (8), implied by 
the discrete-time daily GARCH(1, 1) model estimates re- 
ported in Table 1. The formal relationship between the 
continuous- and discrete-time parameters is detailed in 
equations (10), (11), and (12). 

and 

(12) 

A 2 (mn)* log2( a(m) + f3(m)) [1 - 13(m) a((m) + 13(m))] 

(IZ1 - (ax(m) + 13(m))2] (1 -_(m)) -a(m) [1 - I(n) (ca(m) + 13(m))] 

*[6 -log( a(m) + 13(m)) + 2- log2 (a(m) + f3(m)) + 4 (1 - a(m) - 3(m))]) 

Equation (10) implies that limm n(a(m) + 8(m)) = 1, so the weak GARCH(1, 1) 
model converges to the IGARCH(1, 1) case of Engle and Bollerslev (1986) as the 
sampling frequency increases. 

The continuous-time parameters implied by the daily, or m = 1, GARCH(1, 1) 
estimates for the exchange rates reported in Table 1 are listed in Table 2. These 
parameters correspond quite closely to those implied by the daily GARCH(1, 1) 
estimates reported in Baillie and Bollerslev (1989), as inferred by Drost and Werker 
(1996). The parameters in Table 2 are also in line with the results reported 
elsewhere in the literature for other stochastic volatility models; see Andersen 
(1994), Jacquier et al., (1994), Shephard (1996) and the collection of papers in Rossi 
(1996). As such, the findings for the diffusion parameterizations in Table 2 may serve 
as a yardstick for the degree of predictability afforded by daily discrete-time ARCH 
approximations to the continuous-time specifications employed throughout the theo- 
retical asset pricing literature.17 

17 While continuous-time diffusions provide a convenient framework for asset pricing, the 
specifications in (6) and (8) ignore pertinent market microstructure features. For instance, nonsyn- 
chronous trading induces negative serial correlation in individual returns, whereas index returns 
become positively correlated. Similarly, the bid-ask spread on organized exchanges, as well as the 
systematic positioning of quotes in dealer markets, cause the observed returns to be negatively 
serially correlated. Moreover, the return variances differ over trading versus nontrading periods, and 
there are pronounced intraday volatility patterns in financial markets. Several studies also argue for 
the simultaneous importance of jumps and time-varying volatility. The specification of richer 
continuous-time stochastic volatility models that accommodate some or all of the above features 
would be very interesting, but beyond the scope of the present analysis. See Goodhart and O'Hara 
(1997) for a recent survey of the relevant empirical literature. 
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4.2. Continuous Time Measurement of Volatility. The relevant gauge for the 
performance of daily volatility forecasts in the diffusion context is given by fJ o t2 d-r. 
Although the corresponding daily squared returns, j4l .+2 constitute an unbiased 
estimator of this quantity, it is also an extremely noisy estimator. Specifically, for the 
diffusions in Table 2, the population values of E[(fJ ot27T dT-r -) t+ 1)2] equal 1.138 
and 0.842, respectively, while the variances for the one-day-ahead latent volatility 
factor, Var(f JO +2 T dr), equal 0.166 and 0.191. The population values for the daily 
volatility variance are thus orders of magnitude less than the corresponding MSE's 
for the daily squared returns.18 

To further illustrate the pitfalls in using the squared daily returns for ex-post 
volatility forecast evaluation, consider the following decomposition of the ideal 
one-day-ahead latent volatility forecast error for the GARCH(1, 1) model, 

(13) 

E [( 2- f l7+T dT)] = Er(2 r(l)t)] +E[(r )t f0*t-l+ dT)] 

+ 2*E [(t)t r(l)) *(r)t - f + dT t O )] - 

The prediction error calculated in practice using squared daily returns is given by 
the first term on the right-hand-side of equation (13). For the diffusions in Table 2, 
this term equals 1.221 and 0.944, respectively. In contrast, the ideal MSE for each of 
the daily weak-form GARCH(1, 1) models, given by the left-hand-side of equation 
(13), equal 0.084 and 0.097. This glaring discrepancy reflects the impact of the 
measurement error, comprised of the second and third term on the right-hand-side 
of equation (13). Thus, whereas the population R(1)'s from the daily squared 
return-volatility regressions in equation (4) suggest that the true GARCH(1, 1) 
model only explains between five and ten per cent of the daily variability, when 
measured by the more appropriate statistic 

(14) R 1 -1-E 0_( (1 0- dT- Var 1 d- 

18 The numbers reported here, and throughout the remainder of the paper, are based on 
numerical simulations of the continuous-time model in equations (6) and (8) using a standard Euler 
discretization scheme; i.e., Pt+ A =Pt +? t l/2wpt and ot2A=0 a)A?+t2_(1- A A+[2-A 0 
A]1/2 w,,t), where wp,t and w,,t denote independent standard normal variables. In the actual 
implementation we took A = 1/2,880, corresponding to 10 observations per five-minute interval, 
while the N(0, 1) random variables were generated by the RNDNS routine in the GAUSS computer 
language. The sample size was fixed at 1,000,000 'daily' observations, which along with the use of 
antithetic variates based on -wp,t and -w ,t was deemed sufficient to reduce the sampling 
variation beyond the reported decimal points for all relevant summary statistics; see Geweke (1995) 
for a recent discussion of simulation-based methods in econometrics. 
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both of the weak GARCH(1, 1) models account for close to fifty per cent (1 - 
0.084/0.166 - and 1 - 0.097/0.191 ~-) of the variance in the one-day-ahead 
volatility factors. These findings underscore the importance of proper ex-post 
evaluation criteria when assessing volatility forecasts. 

Of course, the sample path realization for the volatility process is inherently 
unobservable, rendering the computation of the sample equivalent of the R j)2. 
statistic in equation (14) infeasible in practice. However, if the discretely sampled 
returns are serially uncorrelated, and the sample path for o( is continuous, it follows 
by the theory of quadratic variation (see Karatzas and Shreve 1988), that, 

plim 
2 d- 

-1=1 = 0. pim n --- |o 0t + T d tE r(M), t+ jlm) 

This result is noteworthy because it shows that the daily volatility factor, in principle, 
is observable from the sample path realization of the returns process. In reality, 
because of discontinuities in the price process and a plethora of market microstruc- 
ture effects, we do not obtain a continuous reading from a diffusion process, so the 
limiting result cannot apply literally. Nonetheless, it suggests that the cumulative 
sum of squared intraday returns may greatly improve the ex-post volatility measure- 
ment, in turn resulting in more meaningful volatility forecast evaluations. 

To illustrate the potential benefits from the use of the high-frequency data, 
consider again the measurement errors for the two continuous-time diffusions, or 
E([Jl (t2 T- d.-r()tEj/m]2), reported in Table 3. As previously noted, 
with daily returns, or m = 1, the measurement errors equal 1.138 and 0.842. 
Increasing the sampling frequency to eight hours, or m = 3, lowers the measurement 
errors to 0.381 and 0.289. Further reducing the return interval to one hour, or 
m = 24, yield 0.048 and 0.036. For five-minute returns, or m = 288, the measurement 

TABLE 3 
IMPLIED CONTINUOUS TIME GARCH(1, 1): VOLATILITY MEASUREMENT ERRORS* 

m DM-$ y-$ 

1 1.138 0.842 
3 0.381 0.289 
24 0.048 0.036 
288 0.004 0.003 

*Reports the measurement errors using the sum of squared intraday 
returns as a measure for true daily latent volatility; i.e., E([l J 2u d - 

j=j m 1. z) t+jln1]2). The returns are generated by the stochastic volatility 
model in equations (6) and (8) with the parameter values in Table 2. The 
aggregation frequencies m = 1, 3, 24, 288, correspond to daily, 8-hours, hourly, 
and 5-minute returns, respectively. All figures are based on simulations using 
antithetic variates and 1,000,000 'daily' observations. 
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errors of 0.004 and 0.003, are both less than 2.5 per cent of the daily variability in the 
latent volatility factor.19'20 

Motivated by these findings, consider the one-day-ahead squared return-volatility 
regression obtained by replacing the squared daily returns on the left-hand-side of 
equation (4) with the sum of the corresponding squared intraday returns, 

(15) E r(m), I m = a(l)m + b(l)m * 0-(l)l t+1 + 
U(l)n,t+1' 

m 

where t = 0, 1, .. ., and by definition a(,), a(1), b(1)- b(l), and u(1)1 t+ 1 u(i), t + 1 
Regardless of the sampling frequency m, if the conditional variance is correctly 
specified, the population values of a(l)m and b(l)m equal zero and unity, respectively.21 
However, the improved volatility measurement afforded by the intraday returns 
allows for more meaningful qualitative assessments of the daily forecasts, o(JJ)1 ?t+ 

when judged by the resulting coefficient of multiple determination, R2)m. 
The numerical results for the two continuous-time diffusions are reported in 

Table 4. The R 21's confirm that the weak GARCH(1, 1) forecasts explain little of 
the ex-post variability.22 Meanwhile, the population R2 )m's increase monotonically 
with sampling frequency towards the much larger Rh2 's defined in equation (14). 
For instance, using the cumulative hourly squared returns on the left-hand-side of 
equation (15), the R 2)'s equal 0.383 and 0.419. Going to five-minute returns result 

19 Note that the measurement errors are almost perfectly inversely related to m. Hence, the 
findings effectively extend the theoretical developments in Merton (1980), which show that the 
variance of the sample variance of a homoskedastic diffusion is inversely related to the sampling 
frequency, whereas the accuracy of the estimate for the drift in the logarithmic price process only 
depends on the span of the data. A similar idea for more efficiently estimating the daily volatility of 
a homoskedastic diffusion allowing for measurement noise in the observed high-frequency price 
process has been explored by Zhou (1996). The results in Table 3 may also be seen as a practical 
guide to the applicability of the continuous-record asymptotics for rolling regressions formally 
developed by Foster and Nelson (1996). 

20 While high-frequency intradaily data have only recently become readily available, intraday 
high-low prices (the intraday range) have long been recorded daily for some equity markets. Given 
the availability of these statistics Garman and Klass (1980), Parkinson (1980), Ball and Torous 
(1984), and Kunitomo (1992), among others argued for the use of the intraday range in order to 
develop more accurate daily volatility estimates for homoskedastic diffusions. The properties of 
extreme value estimators in continuous-time models allowing for jumps are analyzed by Rogers and 
Satchell (1991) and Maheswaran (1996). Meanwhile, the autocorrelations in Fung and Hsieh (1991) 
and the time-series models estimated in Hsieh (1993) show that the intraday range is strongly serially 
correlated. Although the high-low range is not an unbiased estimator for the latent volatility over 
the day, it follows by numerical simulation that the MSE for the correspondingly scaled unbiased 
estimator, E[(y [maxo<,<lpt+T- minO <T<lpt? - O t2 dT I)2], equal 0.103 and 0.114 for the 
two stochastic volatility models in Table 2. Thus, compared to the measurement errors reported in 
Table 3, this puts the accuracy of the high-low estimator around that afforded by the intraday 
sample variance based on two- or three-hour returns. 

21 The same errors-in-variables problem that plagues the estimation of b in equation (4) will 
result in a downward bias in the estimate for b(l),m formally given by -Var(m)( V(l) ) -[Var(,l)( v() t) 
+ Var(rn)( (1)t)]1. 

Note that the numerical values for the R(1)1's from the daily weak GARCH(1, 1) approxima- 
tions in Table 4 are slightly lower than the implied R )'s from the daily strong GARCH(1, 1) model 
with the same conditional variance parameters which, by equation (5), equal 0.064 and 0.096, 
respectively. 
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TABLE 4 
IMPLIED CONTINUOUS TIME GARCH(1, 1): PREDICTIVE R2 'S* 

m DM-$ y-$ 

1 0.063 0.089 
3 0.151 0.198 
24 0.383 0.419 
288 0.483 0.488 
00 0.495 0.495 

*Reports the population R2 from the squared return-volatility regression in 
equation (15); R 2 = 1 - Var(tz,)(E.j= 1...,m 

2 
- j2, ) 

2 (1) )m7 1 (m), tj]/m (t 1)1,t? 
1 

Var(,,)(j 1 _,7 r(), t +j/ tn)- The returns are generated by the stochastic 
volatility model in equations (6) and (8) with the parameter values in Table 2. The 
daily GARCH(1, 1) forecasts, o-()1 t+ 1' are based on equation (3) with m 1 and 
the parameter values in Table 1. The rows m = 1,3, 24,288 correspond to daily, 
8-hours, hourly, and five-minute returns, respectively. The population R 2 1- 

Var(Jf J d- o(1)l ,+ )Var(Jf o-2 d)-1 is reported in the row labelled 
m = cc. All figures are based on simulations using antithetic variates and 1,000,000 
'daily' observations. 

in R )288's of 0.483 and 0.488, both of which are extremely close to the ideal Rh2's 
of 0.495 for each of the rates. These findings highlight the theoretical advantages 
associated with the use of high-frequency intraday returns in the construction of 
interdaily volatility forecast evaluation criteria. The next section explores whether 
these advantages actually manifest themselves in empirical work. 

5. INTRADAY RETURNS AND INTERDAILY VOLATILITY 

FORECAST EVALUATION 

The computation of daily return variances from high-frequency intraday returns 
parallels the use of daily returns in calculating monthly ex-post volatility, as exempli- 
fied by Schwert (1989, 1990a) and Schwert and Seguin (1990). This idea has 
previously been applied by, among others, Hsieh (1991) and Schwert (1990b) in 
measuring daily equity market volatility from the sample standard deviations of 
intraday returns, while Fung and Hsieh (1991) analyze daily sample standard 
deviations for bonds and currencies. The estimation of standard time series models 
for these ex-post volatility measures tend to confirm the very high degree of 
intertemporal volatility dependencies documented in the ARCH literature. How- 
ever, the connection between volatility modeling and forecasting on the one hand 
and the ex-post volatility measurements on the other has hitherto not been formally 
explored. 

5.1. Improved Daily Volatility Forecast Evaluation. Direct interpretation of the 
low R )'s for the one-day-ahead GARCH(1, 1) DM-$ and Y-$ volatility forecasts 
suggests that the models perform poorly, explaining less than five per cent of the 
ex-post variability in either rate. However, increasing the sampling frequency of the 
ex-post squared returns on the left-hand-side of equation (15) dramatically modifies 
this conclusion. For instance, with hourly sampling the R )24's reported in Table 5 
equal 0.331 and 0.237. Further increasing the sampling frequency results in still 
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TABLE 5 
DAILY GARCH(1, 1) PREDICTIVE R2 S 

m DM-$ y-$ 

1 0.047 0.025 
3 0.133 0.095 
24 0.331 0.237 
288 0.479 0.392 

*Reports the R 2 from the squared-volatility regression in equation 
(15). The returns are calculated from continuously recorded quotations for 
the Deutschemark-U.S. Dollar and Japanese Yen-U.S. Dollar spot ex- 
change rates from October 1, 1992, through September 29, 1993. Quotes 
from Friday 21:00 G.M.T. through Sunday 21:00 G.M.T. are excluded, 
resulting in a total of 260 weekdays, or 74,880 observations for the five- 
minute return interval. The daily GARCH(1, 1) volatility forecasts, o(1)1,,+ 1, 
are based on equation (3) with m 1 evaluated at the parameters in Table 
1. The rows labelled m = 1,3,24,288 give the results for daily, 8-hours, 
hourly, and five-minute sampling frequencies, respectively. 

higher correlations, with R )288's at the five-minute level of 0.479 and 0.392. These 
latter statistics signify more than a tenfold increase in the explanatory power of the 
GARCH(1, 1) models relative to the conventional R 2)l's reported in the existing 
literature. 

The reduced measurement error is also apparent in Figure 2, which graphs the 
one-step-ahead volatility forecasts for the daily DM-$ rate, JJ)1 2+l, along with 
the ex-post volatility measures based on the five-minute squared returns, Ej =.288 

2 t2 Clearly, the cumulative five-minute squared returns correlates much r(288), t +j/28 
more closely with the daily GARCH(1,1) predictions than do the squared daily 
returns in Figure 1, and except for a few isolated episodes, the one-day-ahead 
predictions do a remarkable job of tracking the ex-post volatility measures. Combin- 
ing these findings with the drastic improvement in the stability of the intraday 
volatility measure as sampling frequency increases in effect endows the notion of a 
latent volatility factor with concrete empirical content. 

A particularly noteworthy result is the close correspondence between the implied 
continuous-time GARCH(1, 1) predictive R )2 's in Table 4 and the actual empirical 
results for the DM-$ rate in Table 5. It suggests that the market microstructure 
rigidities and pronounced intraday volatility patterns not accommodated by the 
continuous-time process in equations (6) and (8) are annihilated at the daily level. 
Moreover, it indicates that the simple GARCH(1, 1) model does a good job of 
characterizing the volatility clustering for the DM-$ rate over the ex-post sample 
period. Meanwhile, the out-of-sample R )2 's for the Y-$ rate in Table 5 are all 
slightly below the corresponding theoretical values for the Y-$ diffusion in Table 4. 
However, the discrepancy between the empirical and theoretical Y-$ results is in 
part attributable to a few pronounced appreciations that occurred during the 
out-of-sample period.23 Eliminating the two largest ex-post volatility measures, the 
value of R 2 for the Y-$ rate increases from 0.392 to 0.456. 

23 An analysis of the economic determinants behind these large rate changes is beyond the scope 
of the present paper. 
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FIGURE 2 

DAILY CUMULATIVE 5-MINUTE SQUARED RETURNS AND GARCH(1, 1) FORECASTS. THE SOLID LINE 

GRAPHS THE DAILY ONE-STEP-AHEAD GARCH(1, 1) VOLATILITY FORECASTS FOR THE 

DEUTSCHEMARK-U.S. DOLLAR EXCHANGE RATE GIVEN BY EQUATION (3) WITH M F 1 AND THE 

PARAMETER VALUES IN TABLE 1. THE DOTTFED LINE REFERS TO THE EX-POST DAILY SAMPLE VARIANCE 

BASED ON THE CUMULATIVE FIVE-MINUTE SQUARED RETURNS; I.E., F-=,..288r 28)tj2 

SAMPLE PERIOD EXTENDS FROM OCTOBER 1, 1992 THROUGH SEPTEMBER 29, 1993. 

6. CONCLUDING REMARKS 

Numerous studies have suggested that ARCH and stochastic volatility models 
provide poor volatility forecasts. Contrary to this perception, both the theoretical 
and empirical analysis in this paper demonstrate that, for empirically relevant 
specifications, the volatility forecasts correlate closely with the future latent volatility 
factor that is of interest in most practical applications, typically accounting for close 
to fifty per cent of the variability in ex-post volatility. Yes, ARCH and stochastic 
volatility models do provide good volatility forecasts! 

Several important questions remain. First, it is of interest to further explore the 
role of model misspecification. The formal conditions developed by Nelson (1992) 
and Nelson and Foster (1995) pertaining to the use of misspecified ARCH models in 
forecasting, along with the robustness results in Nelson and Foster (1994), should 
provide a useful guide for future work along these lines. 

It would also be of immediate interest, and of great importance for current issues 
in financial risk management, to extend the present analysis to assess the forecasting 
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ability of volatility models at alternative forecast horizons. However, when lengthen- 
ing the forecast horizon beyond one day, issues related to the proper modeling of 
long-term volatility dependencies become especially important; see Baillie et al., 
(1996). 

Our main results hinge on the effective use of frequently sampled data in 
constructing more accurate ex-post volatility measurements. A closely related ques- 
tion pertains to the precision of the volatility forecasts as a function of the sampling 
frequency. Do the additional costs and complications in model construction and data 
gathering warrant the use of intraday data for volatility forecasting as well? 

The volatility forecasts analyzed above are based solely on ad-hoc time-series 
models. There is a voluminous literature on alternative ways in which to extract 
information about the latent volatility factor from sources other than, or in addition 
to, the corresponding squared or absolute returns. They include implied volatilities 
extracted from options prices, as in the recent work of Canina and Figlewski (1993), 
Jorion (1995), and Lamoureux and Lastrapes (1993), along with information pro- 
vided by the joint distribution of return and trading volume, as in the work by 
Andersen (1996), and Gallant et al., (1992). The evaluation criteria proposed here 
should allow for more meaningful comparisons of these structural methods for 
estimating volatility. 

Most of the volatility forecast comparisons in the literature rely on some variant 
of the squared return-volatility regression analyzed here. While such evaluation 
criteria may be natural when evaluating forecasts for the conditional mean, they are 
less obvious when evaluating volatility forecasts; see the discussion in Diebold and 
Christoffersen (1997), Diebold et al., (1998), Engle et al., (1993), West et al., (1993) 
and Lopez (1995). Our results suggest that further analysis along these lines may 
similarly benefit from the use of high-frequency data. All of these issues await future 
research. 
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