
1 Unit Root Tests

Consider the trend-cycle decomposition of a time se-

ries yt

yt = TDt + TSt + Ct = TDt + Zt

The basic issue in unit root testing is to determine if

TSt = 0. Two classes of tests, called unit root tests,

have been developed to answer this question:

• H0 : TSt 6= 0 (yt ∼ I(1)) vs. TSt = 0 (yt ∼
I(0))

• H0 : TSt = 0 (yt ∼ I(0)) vs. TSt 6= 0 (yt ∼
I(1))



1.1 Autoregressive unit root tests

These tests are based on the following set-up. Let

yt = φyt−1 + ut, ut ∼ I(0)

The null and alternative hypothesis are

H0 : φ = 1 (φ(z) = 0 has a unit root)

H1 : |φ| < 1 (φ(z) = 0 has root outside unit circle)

The most popular of these tests are the Dickey-Fuller

(ADF) test and the Phillips-Perron (PP) test. The

ADF and PP tests differ mainly in how they treat

serial correlation in the test regressions.

1. ADF tests use a parametric autoregressive struc-

ture to capture serial correlation

φ∗(L)ut = εt

φ∗(L) = 1− φ∗1L− · · ·− φ∗kL
k

2. PP tests use non-parametric corrections based on

estimates of the long-run variance of ∆yt.



1.2 Stationarity Tests

These tests can be interpreted in two equivalent ways.

The first is based on the Wold representation

∆yt = ψ∗(L)εt, εt ∼ iid(0, σ2)
The null and alternative hypotheses are

H0 : ψ∗(1) = 0 (ψ∗(z) = 0 has a unit root)
H1 : ψ∗(1) > 0 (ψ∗(z) = 0 has roots outside unit circle)

The second is based on the UC-ARIMA model

yt = μt + Ct

μt = μt−1 + εt, εt ∼ iid(0, σ2ε)
φ(L)Ct = θ(L)ηt, ηt ∼ iid(0, σ2η)

cov(εt, ηt) = 0

Here, the null and alternative hypotheses are

H0 : σ2ε = 0 (μt = μ0)

H1 : σ2ε > 0 (μt = μ0 +
tX

j=1

εj)



Result: Testing for a unit moving average root in

ψ∗(L) is equivalent to testing σ2ε = 0.

Intuition: Recall the random walk plus noise model.

The reduced form is an MA(1) model with moving

average root given by

θ =
−(q + 2) +

q
q2 + 4q

2

q =
σ2ε
σ2η

If σ2e = 0 then q = 0, θ = −1 and the reduced form
MA(1) model has a unit moving average root.

The most popular stationarity tests are the Kitawoski-

Phillips-Schmidt-Shin (KPSS) test and the Leyborne-

McCabe test. As with the ADF and PP tests the

KPSS and Leyborne-McCabe tests differ main in how

they treat serial correlation in the test regressions.



1.3 Statistical Issues with Unit Root Tests

Conceptually the unit root tests are straightforward.

In practice, however, there are a number of difficulties:

• Unit root tests generally have nonstandard and
non-normal asymptotic distributions.

• These distributions are functions of standard Brow-
nian motions, and do not have convenient closed

form expressions. Consequently, critical values

must be calculated using simulation methods.

• The distributions are affected by the inclusion of
deterministic terms, e.g. constant, time trend,

dummy variables, and so different sets of criti-

cal values must be used for test regressions with

different deterministic terms.



1.4 Distribution Theory for Unit Root Tests

Consider the simple AR(1) model

yt = φyt−1 + εt, where εt ∼WN(0, σ2)

The hypotheses of interest are

H0 : φ = 1 (unit root in φ(z) = 0)⇒ yt ∼ I(1)

H1 : |φ| < 1⇒ yt ∼ I(0)

The test statistic is

tφ=1 =
φ̂− 1
SE(φ̂)

φ̂ = least squares estimate

If {yt} is stationary (i.e., |φ| < 1) then

√
T (φ̂− φ)

d→ N(0, (1− φ2))

φ̂
A∼ N

µ
φ,
1

T
(1− φ2)

¶
tφ=φ0

A∼ N(0, 1)



However, under the null hypothesis of nonstationarity

the above result gives

φ̂
A∼ N (1, 0)

which clearly does not make any sense.

Problem: under the unit root null, {yt} is not station-
ary and ergodic, and the usual sample moments do not

converge to fixed constants. Instead, Phillips (1987)

showed that the sample moments of {yt} converge to
random functions of Brownian motion:

T−3/2
TX
t=1

yt−1
d→ σ

Z 1
0
W (r)dr

T−2
TX
t=1

y2t−1
d→ σ2

Z 1
0
W (r)2dr

T−1
TX
t=1

yt−1εt
d→ σ2

Z 1
0
W (r)dW (r)

whereW (r) denotes a standard Brownian motion (Wiener

process) defined on the unit interval.



A Wiener process W (·) is a continuous-time stochas-
tic process, associating each date r ∈ [0, 1] a scalar
random variable W (r) that satisfies:

1. W (0) = 0

2. For any dates 0 ≤ t1 ≤ · · · ≤ tk ≤ 1 the changes
W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tk)−W (tk−1)
are independent normal with

W (s)−W (t) ∼ N(0, (s− t))

3. W (s) is continuous in s.

Intuition: A Wiener process is the scaled continuous-

time limit of a random walk



Using the above results Phillips showed that under the

unit root null H0 : φ = 1

T (φ̂− 1) d→
R 1
0 W (r)dW (r)R 1
0 W (r)2dr

tφ=1
d→

R 1
0 W (r)dW (r)³R 1
0 W (r)2dr

´1/2
For example,

φ̂− 1 =

⎛⎝ TX
t=1

y2t−1

⎞⎠−1 TX
t=1

yt−1εt

⇒ T (φ̂− 1) =
⎛⎝T−2 TX

t=1

y2t−1

⎞⎠−1 T−1 TX
t=1

yt−1εt

d→
ÃZ 1
0
W (r)2dr

!−1 Z 1
0
W (r)dW (r)



Phillips’ derivations yield some surprising results:

• φ̂ is super-consistent; that is, φ̂
p→ φ at rate T

instead of the usual rate T 1/2.

• φ̂ is not asymptotically normally distributed, and

tφ=1 is not asymptotically standard normal.

• The limiting distribution of tφ=1 is called the Dickey-
Fuller (DF) distribution and does not have a closed

form representation. Consequently, quantiles of

the distribution must be computed by numerical

approximation or by simulation.

• Since the normalized bias T (φ̂ − 1) has a well

defined limiting distribution that does not depend

on nuisance parameters it can also be used as a

test statistic for the null hypothesis H0 : φ = 1.



Quantiles of standard normal and DF distribution

> qnorm(c(0.01,0.05,0.10))

[1] -2.326 -1.645 -1.282

> qunitroot(c(0.01,0.05,0.10), trend="nc")

[1] -2.565 -1.941 -1.617

The usual one-sided 5% critical value for standard nor-

mal is −1.645

The one-sided 5% critical value for the DF distribution

is −1.941

Note: −1.645 is the 9.45% quantile of the DF distri-

bution



1.5 Trend Cases

When testing for unit roots, it is crucial to specify

the null and alternative hypotheses appropriately to

characterize the trend properties of the data at hand.

• If the observed data does not exhibit an increasing
or decreasing trend, then the appropriate null and

alternative hypotheses should reflect this.

• The trend properties of the data under the alter-
native hypothesis will determine the form of the

test regression used.

• The type of deterministic terms in the test regres-
sion will influence the asymptotic distributions of

the unit root test statistics.



1.5.1 Case I: Constant Only

The test regression is

yt = c+ φyt−1 + εt

and includes a constant to capture the nonzero mean

under the alternative. The hypotheses to be tested

are

H0 : φ = 1, c = 0 ⇒ yt ∼ I(1) without drift

H1 : |φ| < 1⇒ yt ∼ I(0) with nonzero mean

This formulation is appropriate for non-trending eco-

nomic and financial series like interest rates, exchange

rates, and spreads.



The test statistics tφ=1 and T (φ̂ − 1) are computed
from the above regression. Under H0 : φ = 1, c =

0 the asymptotic distributions of these test statistics

are influenced by the presence, but not the coefficient

value, of the constant in the test regression:

T (φ̂− 1) ⇒
R 1
0 W

μ(r)dW (r)R 1
0 W

μ(r)2dr

tφ=1 ⇒
R 1
0 W

μ(r)dW (r)³R 1
0 W

μ(r)2dr
´1/2

where

Wμ(r) =W (r)−
Z 1
0
W (r)dr

is a “de-meaned” Wiener process. That is,Z 1
0
Wμ(r) = 0

Note: derivation requires special trick from Sims, Stock

and Watson (1989) ECTA.



Quantiles of DF Distribution with Constant

Note: inclusion of a constant pushes the distributions

of tφ=1 and T (φ̂− 1) to the left:

> qunitroot(c(0.01,0.05,0.10), trend="c")

[1] -3.430 -2.861 -2.567

> qunitroot(c(0.01,0.05,0.10), trend="c",

+ statistic="n")

[1] -20.62 -14.09 -11.25

Note: −1.645 is the 45.94% quantile of the DFμ dis-

tribution!



1.5.2 Case II: Constant and Time Trend

The test regression is

yt = c+ δt+ φyt−1 + εt

and includes a constant and deterministic time trend

to capture the deterministic trend under the alterna-

tive. The hypotheses to be tested are

H0 : φ = 1, δ = 0 ⇒ yt ∼ I(1) with drift

H1 : |φ| < 1⇒ yt ∼ I(0) with deterministic time trend

This formulation is appropriate for trending time se-

ries like asset prices or the levels of macroeconomic

aggregates like real GDP. The test statistics tφ=1 and

T (φ̂− 1) are computed from the above regression.



Under H0 : φ = 1, δ = 0 the asymptotic distributions

of these test statistics are influenced by the presence

but not the coefficient values of the constant and time

trend in the test regression.

T (φ̂− 1) ⇒
R 1
0 W

τ(r)dW (r)R 1
0 W

τ(r)2dr

tφ=1 ⇒
R 1
0 W

τ(r)dW (r)³R 1
0 W

τ(r)2dr
´1/2

where

Wτ(r) =Wμ(r)− 12(r − 1
2
)
Z 1
0
(s− 1

2
)W (s)ds

is a “de-meaned” and “de-trended” Wiener process.



The inclusion of a constant and trend in the test re-

gression further shifts the distributions of tφ=1 and

T (φ̂− 1) to the left.

> qunitroot(c(0.01,0.05,0.10), trend="ct")

[1] -3.958 -3.410 -3.127

> qunitroot(c(0.01,0.05,0.10), trend="ct",

+ statistic="n")

[1] -29.35 -21.70 -18.24

Note: −1.645 is the 77.52% quantile of the DFτ dis-

tribution!



1.6 Dickey-Fuller Unit Root Tests

• The unit root tests described above are valid if the
time series yt is well characterized by an AR(1)

with white noise errors.

• Many economic and financial time series have a
more complicated dynamic structure than is cap-

tured by a simple AR(1) model.

• Said and Dickey (1984) augment the basic au-
toregressive unit root test to accommodate gen-

eral ARMA(p, q) models with unknown orders and

their test is referred to as the augmented Dickey-

Fuller (ADF) test

Basic model

yt = β0Dt + φyt−1 + ut

φ(L)ut = θ(L)εt, εt ∼WN(0, σ2)



The ADF test tests the null hypothesis that a time se-

ries yt is I(1) against the alternative that it is I(0), as-

suming that the dynamics in the data have an ARMA

structure. The ADF test is based on estimating the

test regression

yt = β0Dt + φyt−1 +
pX

j=1

ψj∆yt−j + εt

Dt = deterministic terms

∆yt−j captures serial correlation

The ADF t-statistic and normalized bias statistic are

ADFt = tφ=1 =
φ̂− 1
SE(φ)

ADFn =
T (φ̂− 1)

1− ψ̂1 − · · ·− ψ̂p

Result: ADFt,ADFn have same asymptotic distribu-

tions as tφ=1 and T (φ̂ − 1) under white noise errors
provided p is selected appropriately.



Intuition: Re-parameterize AR(2) model

yt = φ1yt−1 + φ2yt−2 + εt

= φ1yt−1 + (φ2yt−1 − φ2yt−1) + φ2yt−2 + εt

= (φ1 + φ2)yt−1 − φ2∆yt−1 + εt

= φyt−1 + ψ∆yt−1 + εt

where

φ = (φ1 + φ2)

ψ = −φ2
Remarks:

• yt−1 ∼ I(1)⇒ φ̂ has non-normal distribution

• ∆yt−1 ∼ I(0)⇒ ψ̂ has normal distribution!

• Derivation requires trick from Sims, Stock and

Watson (1989) ECTA



Important results:

• In the AR(2) model with a unit root

yt = φ1yt−1 + φ2yt−2 + εt

the model may be reparameterized such that φ2
is the coefficient on an I(0) variable

yt = (φ1 + φ2)yt−1 − φ2∆yt−1 + εt

The Sims, Stock and Watson trick then shows

that φ̂2 has an asymptotic normal distribution.

• The model cannot be reparameterized such that
φ = φ1+φ2 is the coefficient on an I(0) variable.

It is the coefficient on an I(1) variable. Therefore,

φ̂ has an asymptotic “unit root” distribution.



Alternative formulation of the ADF test regression:

∆yt = β0Dt + πyt−1 +
pX

j=1

ψj∆yt−j + εt

π = φ− 1

Under the null hypothesis,

∆yt ∼ I(0)⇒ π = 0.

The ADF t-statistic and normalized bias statistics are

ADFt = tπ=0 =
π̂

SE(φ)

ADFn =
T π̂

1− ψ̂1 − · · ·− ψ̂p

and these are equivalent to the previous statistics.


