
This is page 517
Printer: Opaque this

14
State Space Models

14.1 Introduction

The state space modeling tools in S+FinMetrics are based on the algo-
rithms in SsfPack 3.0 developed by Siem Jan Koopman and described in
Koopman, Shephard and Doornik (1999, 2001)1. SsfPack is a suite of C
routines for carrying out computations involving the statistical analysis of
univariate and multivariate models in state space form. The routines allow
for a variety of state space forms from simple time invariant models to
complicated time-varying models. Functions are available to put standard
models like ARMA and spline models in state space form. General rou-
tines are available for filtering, smoothing, simulation smoothing, likelihood
evaluation, forecasting and signal extraction. Full details of the statistical
analysis is provided in Durbin and Koopman (2001). This chapter gives an
overview of state space modeling and the reader is referred to the papers by
Koopman, Shephard and Doornik for technical details on the algorithms
used in the S+FinMetrics/SsfPack functions.
This chapter is organized as follows. Section 14.2 describes the gen-

eral state space model and state space representation required for the
S+FinMetrics/SsfPack state space functions. Subsections describe the
various S+FinMetrics/SsfPack functions for putting common time series
models into state space form. The process of simulating observations from
a given state space model is also covered. Section 14.3 summarizes the main

1Information about Ssfpack can be found at http://www.ssfpack.com.

518 14. State Space Models

algorithms used for the analysis of state space models. These include the
Kalman filter, Kalman smoother, moment smoothing, disturbance smooth-
ing and forecasting. Estimation of the unknown parameters in a state space
model is described in Section 14.4. The chapter concludes with a short dis-
cussion of simulation smoothing.
Textbook treatments of state space models are given in Harvey (1989,

1993), Hamilton (1994), West and Harrison (1997), and Kim and Nelson
(1999). Interesting applications of state space models in finance are given
in Engle and Watson (1987), Bomhoff (1994), Duan and Simonato (1999),
and Harvey, Ruiz and Shephard (1994), Carmona (2001) and Chan (2002).

14.2 State Space Representation

Many dynamic time series models in economics and finance may be rep-
resented in state space form. Some common examples are ARMA mod-
els, time-varying regression models, dynamic linear models with unob-
served components, discrete versions of continuous time diffusion processes,
stochastic volatility models, non-parametric and spline regressions. The lin-
ear Gaussian state space model may be represented as the system of equa-
tions

αt+1
m×1

= dt
m×1

+ Tt
m×m

· αt
m×1

+Ht
m×r

· ηt
r×1

(14.1)

θt
N×1

= ct
N×1

+ Zt
N×m

· αt
m×1

(14.2)

yt
N×1

= θt
N×1

+ Gt
N×N

· εt
N×1

(14.3)

where t = 1, . . . , n and

α1 ∼ N(a,P), (14.4)

ηt ∼ iid N(0, Ir) (14.5)

εt ∼ iid N(0, IN) (14.6)

and it is assumed that
E[εtη

0
t] = 0

In (14.4), a and P are fixed and known but that can be generalized. The
state vector αt contains unobserved stochastic processes and unknown fixed
effects and the transition equation (14.1) describes the evolution of the
state vector over time using a first order Markov structure. The measure-
ment equation (14.3) describes the vector of observations yt in terms of the
state vector αt through the signal θt and a vector of disturbances εt. It
is assumed that the innovations in the transition equation and the innova-
tions in the measurement equation are independent, but this assumption

14.2 State Space Representation 519

can be relaxed. The deterministic matrices Tt, Zt,Ht,Gt are called system
matrices and are usually sparse selection matrices. The vectors dt and ct
contain fixed components and may be used to incorporate known effects or
known patterns into the model; otherwise they are equal to zero.
The state space model (14.1)-(14.6) may be compactly expressed asµ

αt+1

yt

¶
= δt

(m+N)×1
+ Φt
(m+N)×m

· αt
m×1

+ ut
(m+N)×1

, (14.7)

α1 ∼ N(a,P) (14.8)

ut ∼ iid N(0,Ωt) (14.9)

where

δt =

µ
dt
ct

¶
,Φt =

µ
Tt

Zt

¶
,ut =

µ
Htηt
Gtεt

¶
,Ωt =

µ
HtH

0
t 0

0 GtG
0
t

¶
The initial value parameters are summarized in the (m+ 1)×m matrix

Σ =

µ
P
a0

¶
(14.10)

For multivariate models, i.e. N > 1, it is assumed that the N ×N matrix
GtG

0
t is diagonal. In general, the system matrices in (14.7) are time varying.

14.2.1 Initial Conditions

The variance matrix P of the initial state vector α1 is assumed to be of
the form

P = P∗ + κP∞ (14.11)

where P∞ and P∗ are symmetric m ×m matrices with ranks r∞ and r∗,
respectively, and κ is a large scalar value, e.g. κ = 106. The matrix P∗
captures the covariance structure of the stationary components in the ini-
tial state vector, and the matrix P∞ is used to specify the initial variance
matrix for nonstationary components. When the ith diagonal element of
P∞ is negative, the corresponding ith column and row of P∗ are assumed
to be zero, and the corresponding row and column of P∞ will be taken
into consideration. When some elements of state vector are nonstation-
ary, the S+FinMetrics/SsfPack algorithms implement an “exact diffuse
prior” approach as described in Durbin and Koopman (2001) and Koop-
man, Shephard and Doornik (2001).

14.2.2 State Space Representation in
S+FinMetrics/SsfPack

State space models in S+FinMetrics/SsfPack utilize the compact repre-
sentation (14.7) with initial value information (14.10). The following ex-

520 14. State Space Models

amples describe the specification of a state space model for use in the
S+FinMetrics/SsfPack state space modeling functions.

Example 92 State space representation of the local level model

Consider the following simple model for the stochastic evolution of the
logarithm of an asset price yt

αt+1 = αt + η∗t , η
∗
t ∼ iid N(0, σ2η) (14.12)

yt = αt + ε∗t , ε
∗
t ∼ iid N(0, σ2ε) (14.13)

α1 ∼ N(a, P) (14.14)

where it is assumed that E[ε∗t η∗t] = 0. In the above model, the observed
asset price yt is the sum of two unobserved components, αt and ε∗t . The
component αt is the state variable and represents the fundamental value
(signal) of the asset. The transition equation (14.12) shows that the fun-
damental values evolve according to a random walk. The component ε∗t
represents random deviations (noise) from the fundamental value that are
assumed to be independent from the innovations to αt. The strength of
the signal in the fundamental value relative to the random deviation is
measured by the signal-to-noise ratio of variances q = σ2η/σ

2
ε. The model

(14.12)-(14.14) is called the random walk plus noise model, signal plus noise
model or the local level model.2

The state space form (14.7) of the local level model has time invariant
parameters

δ =

µ
0
0

¶
,Φ =

µ
1
1

¶
,Ω =

µ
σ2η 0
0 σ2ε

¶
(14.15)

with errors σηηt = η∗t and σεεt = ε∗t . Since the state variable αt is I(1),
the unconditional distribution of the initial state α1 doesn’t have finite
variance. In this case, it is customary to set a = E[α1] = 0 and P = var(α1)
to some large positive number, e.g. P = 107, in (14.14) to reflect that no
prior information is available. Using (14.11), the initial variance is specified
with P∗ = 0 and P∞ = 1. Therefore, the initial state matrix (14.10) for the
local level model has the form

Σ =

µ −1
0

¶
(14.16)

where −1 implies that P∞ = 1.
In S+FinMetrics/SsfPack, a state space model is specified by creating

either a list variable with components giving the minimum components

2A detailed technical analysis of this model is given in Durbin and Koopman (2001),
chapter 2.

14.2 State Space Representation 521

State space parameter List component name
δ mDelta

Φ mPhi

Ω mOmega

Σ mSigma

TABLE 14.1. State space form list components

necessary for describing a particular state space form or by creating an
“ssf” object. To illustrate, consider creating a list variable containing the
state space parameters in (14.15)-(14.16), with ση = 0.5 and σε = 1

> sigma.e = 1

> sigma.n = 0.5

> a1 = 0

> P1 = -1

> ssf.ll.list = list(mPhi=as.matrix(c(1,1)),

+ mOmega=diag(c(sigma.n^2,sigma.e^2)),

+ mSigma=as.matrix(c(P1,a1)))

> ssf.ll.list

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

$mSigma:

[,1]

[1,] -1

[2,] 0

In the list variable ssf.ll.list, the component names match the state
space form parameters in (14.7) and (14.10). This naming convention, sum-
marized in Table 14.1, must be used for the specification of any valid state
space model. Also, notice the use of the coercion function as.matrix. This
ensures that the dimensions of the state space parameters are correctly
specified.
An “ssf” object may be created from the list variable ssf.ll.list

using the S+FinMetrics/SsfPack function CheckSsf:

> ssf.ll = CheckSsf(ssf.ll.list)

> class(ssf.ll)

[1] "ssf"

522 14. State Space Models

> names(ssf.ll)

[1] "mDelta" "mPhi" "mOmega" "mSigma" "mJPhi"

[6] "mJOmega" "mJDelta" "mX" "cT" "cX"

[11] "cY" "cSt"

> ssf.ll

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

$mSigma:

[,1]

[1,] -1

[2,] 0

$mDelta:

[,1]

[1,] 0

[2,] 0

$mJPhi:

[1] 0

$mJOmega:

[1] 0

$mJDelta:

[1] 0

$mX:

[1] 0

$cT:

[1] 0

$cX:

[1] 0

$cY:

[1] 1

14.2 State Space Representation 523

$cSt:

[1] 1

attr(, "class"):

[1] "ssf"

The function CheckSsf takes a list variable with a minimum state space
form, coerces the components to matrix objects and returns the full param-
eterization of a state space model used in many of the S+FinMetrics/SsfPack
state space modeling functions. See the online help for CheckSsf for de-
scriptions of the components of an “ssf” object.

Example 93 State space representation of a time varying parameter re-
gression model

Consider the Capital Asset Pricing Model (CAPM) with time varying
intercept and slope

rt = αt + βtrM,t + νt, νt ∼ GWN(0, σ2ν) (14.17)

αt+1 = αt + ξt, ξt ∼ GWN(0, σ2ξ) (14.18)

βt+1 = βt + ςt, ςt ∼ GWN(0, σ2ς) (14.19)

where rt denotes the return on an asset in excess of the risk free rate,
and rM,t denotes the excess return on a market index. In this model, both
the abnormal excess return αt and asset risk βt are allowed to vary over
time following a random walk specification. Let αt = (αt, βt)

0, yt = rt,
xt = (1, rM,t)

0, Ht = diag(σξ, σς)
0 and Gt = σν . Then the state space form

(14.7) of (14.17) - (14.19) isµ
αt+1

yt

¶
=

µ
I2
x0t

¶
αt +

µ
Hηt
Gεt

¶
and has parameters

Φt =

µ
I2
x0t

¶
, Ω =

 σ2ξ 0 0

0 σ2ς 0
0 0 σ2ν

 (14.20)

Since αt is I(1) the initial state vector α1 doesn’t have finite variance so
it is customary to set a = 0 and P = κI2 where κ is large. Using (14.11),
the initial variance is specified with P∗ = 0 and P∞ = I2. Therefore, the
initial state matrix (14.10) for the time varying CAPM has the form

Σ =

 −1 0
0 −1
0 0



524 14. State Space Models

The state space parameter matrixΦt in (14.20) has a time varying system
element Zt= x

0
t. In S+FinMetrics/SsfPack, the specification of this time

varying element in Φt requires an index matrix JΦ and a data matrix
X to which the indices in JΦ refer. The index matrix JΦ must have the
same dimension as Φt. The elements of JΦ are all set to −1 except the
elements for which the corresponding elements of Φt are time varying. The
non-negative index value indicates the column of the data matrix X which
contains the time varying values.
The specification of the state space form for the time varying CAPM

requires values for the variances σ2ξ , σ
2
ς , and σ2ν as well as a data ma-

trix X whose rows correspond with Zt = x
0
t = (1, rM,t). For example, let

σ2ξ = (0.01)2, σ2ς = (0.05)2 and σ2ν = (0.1)2 and construct the data ma-
trix X using the excess return data in the S+FinMetrics “timeSeries”
excessReturns.ts

> X.mat = cbind(1,

+ as.matrix(seriesData(excessReturns.ts[,"SP500"]))

The state space form may be created using

> Phi.t = rbind(diag(2),rep(0,2))

> Omega = diag(c((.01)^2,(.05)^2,(.1)^2))

> J.Phi = matrix(-1,3,2)

> J.Phi[3,1] = 1

> J.Phi[3,2] = 2

> Sigma = -Phi.t

> ssf.tvp.capm = list(mPhi=Phi.t,

+ mOmega=Omega,

+ mJPhi=J.Phi,

+ mSigma=Sigma,

+ mX=X.mat)

> ssf.tvp.capm

$mPhi:

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.0001 0.0000 0.00

[2,] 0.0000 0.0025 0.00

[3,] 0.0000 0.0000 0.01

$mJPhi:

[,1] [,2]

14.2 State Space Representation 525

Parameter index matrix List component name
Jδ mJDelta

JΦ mJPhi

JΩ mJOmega

Time varying component data matrix List component name
X mX

TABLE 14.2. S+FinMetrics time varying state space components

[1,] -1 -1

[2,] -1 -1

[3,] 1 2

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mX:

numeric matrix: 131 rows, 2 columns.

SP500

1 1 0.002803

2 1 0.017566

...

131 1 -0.0007548

Notice in the specification of Φt the values associated with x
0
t in the third

row are set to zero. In the index matrix JΦ, the (3,1) element is 1 and
the (3,2) element is 2 indicating that the data for the first and second
columns of x0t come from the first and second columns of the component
mX, respectively.
In the general state space model (14.7), it is possible that all of the system

matrices δt, Φt and Ωt have time varying elements. The corresponding
index matrices Jδ, JΦ and JΩ indicate which elements of the matrices δt,Φt

and Ωt are time varying and the data matrix X contains the time varying
components. The naming convention for these components is summarized
in Table 14.2.

14.2.3 Missing Values

The S+FinMetrics/SsfPack state space modeling functions can handle
missing values in the vector of response variables yt in (14.3). Missing
values are not allowed in the state space system matrices Φt, Ωt, Σ and
δt. Missing values are represented by NA in S-PLUS.

526 14. State Space Models

In the S+FinMetrics/SsfPack state space functions, the observation vec-
tor yt with missing values will be be reduced to the vector y

†
t without

missing values and the measurement equation will be adjusted accordingly.
For example, the measurement equation yt= ct+Ztαt+Gtεt with

yt =


5

NA
3

NA

 , ct =


1
2
3
4

 , Zt =


Z1,t
Z2,t
Z3,t
Z4,t

 , Gt =


G1,t
G2,t
G3,t
G4,t


reduces to the measurement equation y†t= c

†
t+Z

†
tαt+G

†
tεt with

y†t =
µ
5
3

¶
, c†t =

µ
1
3

¶
, Z†t =

µ
Z1,t
Z3,t

¶
, G†

t =

µ
G1,t
G3,t

¶
The SsfPack algorithms in S+FinMetrics automatically replace the ob-
servation vector yt with y

†
t when missing values are encountered and the

system matrices are adjusted accordingly.

14.2.4 S+FinMetrics/SsfPack Functions for Specifying the
State Space Form for Some Common Time Series
Models

S+FinMetrics/SsfPack has functions for the creation of the state space
representation of some common time series models. These functions and
models are described in the following sub-sections.

ARMA Models

Following Harvey (1993, Section 4.4), the ARMA(p, q) model with zero
mean3

yt = φ1yt−1 + · · ·+ φpyt−p + ξt + θ1ξt−1 + · · ·+ θqξt−q (14.21)

may be put in state space form with transition and measurement equations

αt+1 = Tαt +Hξt, ξt ∼ N(0, σ2ε)

yt = Zαt

3Note that the MA coefficients are specified with positive signs, which is the opposite
of how the MA coefficients are specified for models estimated by the S-PLUS function
arima.mle.

14.2 State Space Representation 527

and time invariant system matrices

T =


φ1 1 0 · · · 0
φ2 0 1 0
...

. . .
...

φm−1 0 0 1
φm 0 0 · · ·

 , H =


1
θ1
...

θm−1
θm

 , (14.22)

Z =
¡
1 0 · · · 0 0

¢
where d, c and G of the state space form (14.1)-(14.3) are all zero and
m = max(p, q + 1). The state vector αt has the form

αt =


yt

φ2yt−1 + · · ·+ φpyt−m+1 + θ1ξt + · · ·+ θm−1ξt−m+2
φ3yt−1 + · · ·+ φpyt−m+2 + θ2ξt + · · ·+ θm−1ξt−m+3

...
φmyt−1 + θm−1ξt

 (14.23)

In compact state space form (14.7), the model isµ
αt+1

yt

¶
=

µ
T
Z

¶
αt +

µ
H
0

¶
ξt

= Φαt + ut

and

Ω =

µ
σ2ξHH

0 0

0 0

¶
If yt is stationary then αt ∼ N(0,V) is the unconditional distribution of
the state vector, and the covariance matrixV satisfiesV = TVT0+σ2ξHH

0,
which can be solved for the elements of V. The initial value parameters are
then

Σ =

µ
V
00

¶
The S+FinMetrics/SsfPack function GetSsfArma creates the state space

system matrices for any univariate stationary and invertible ARMA model.
The arguments expected by GetSsfArma are

> args(GetSsfArma)

function(ar = NULL, ma = NULL, sigma = 1, model = NULL)

where ar is the vector of p AR coefficients, ma is the vector of q MA coef-
ficients, sigma is the innovation standard deviation σξ, and model is a list
with components giving the AR, MA and innovation standard deviation.
If the arguments ar, ma, and sigma are specified, then model is ignored.
The function GetSsfArma returns a list containing the system matrices Φ,
Ω and the initial value parameters Σ.

528 14. State Space Models

Example 94 AR(1) and ARMA(2,1)

Consider the AR(1) model

yt = 0.75yt−1 + ξt, ξt ∼ GWN(0, (0.5)2)

The state space form may be computed using

> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)

> ssf.ar1

$mPhi:

[,1]

[1,] 0.75

[2,] 1.00

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 0

$mSigma:

[,1]

[1,] 0.5714

[2,] 0.0000

In the component mSigma, the unconditional variance of the initial state
α1 is computed as var(α1) = (0.5)

2/(1− 0.752) = 0.5714.
Next, consider the ARMA(2,1) model

yt = 0.6yt−1 + 0.2yt−2 + εt − 0.2εt−1, εt ∼ GWN(0, 0.9)

The state space system matrices may be computed using

> arma21.mod = list(ar=c(0.6,0.2),ma=c(-0.2),sigma=sqrt(0.9))

> ssf.arma21 = GetSsfArma(model=arma21.mod)

> ssf.arma21

$mPhi:

[,1] [,2]

[1,] 0.6 1

[2,] 0.2 0

[3,] 1.0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.90 -0.180 0

[2,] -0.18 0.036 0

[3,] 0.00 0.000 0

14.2 State Space Representation 529

$mSigma:

[,1] [,2]

[1,] 1.58571 0.01286

[2,] 0.01286 0.09943

[3,] 0.00000 0.00000

The unconditional variance of the initial state vector α1 = (α11, α12)
0 is in

the top 2× 2 block of mSigma and is

var(α1) =

µ
1.586 0.013
0.013 0.099

¶
.

Structural Time Series Models

The basic univariate unobserved components structural time series model
(STSM) for a time series yt has the form

yt = µt + γt + ψt + ξt (14.24)

where µt represents the unobserved trend component, γt represents the
unobserved seasonal component, ψt represents the unobserved cycle com-
ponent, and ξt represents the unobserved irregular component.
The nonstationary trend component µt has the form of a local linear

trend :

µt+1 = µt + βt + ηt, ηt ∼ GWN(0, σ2η) (14.25)

βt+1 = βt + ςt, ςt ∼ GWN(0, σ2ς) (14.26)

with µ1 ∼ N(0, κ) and β1 ∼ N(0, κ) where κ is a large number, e.g. κ = 106.
If σ2ς = 0 then µt follows a random walk with drift β1. If both σ2ς = 0 and
σ2η = 0 then µt follows a linear deterministic trend.
The stochastic seasonal component γt has the form

S(L)γt = ωt, ωt ∼ GWN(0, σ2ω) (14.27)

S(L) = 1 + L+ · · ·+ Ls−1

where s gives the number of seasons. When σ2ω = 0, the seasonal component
becomes fixed.
The stochastic cycle component ψt is specified asµ

ψt+1
ψ∗t+1

¶
= ρ

µ
cosλc sinλc
− sinλc cosλc

¶µ
ψt
ψ∗t

¶
+

µ
χt
χ∗t

¶
, (14.28)µ

χt
χ∗t

¶
∼ GWN

µµ
0
0

¶
, σ2ψ(1− ρ2)I2

¶
where ψ0 ∼ N(0, σ2ψ), ψ

∗
0 ∼ N(0, σ2ψ) and cov(ψ0, ψ

∗
0) = 0. The parameter

ρ ∈ (0, 1] is interpreted as a damping factor. The frequency of the cycle

530 14. State Space Models

Argument STSM parameter
irregular ση
level σξ
slope σς
seasonalDummy s
seasonalTrig σω, s
seasonalHS σω, s
cycle0 σψ, λc, ρ
...

...
cycle9 σψ, λc, ρ

TABLE 14.3. Arguments to the S+FinMetrics function GetSsfStsm

is λc = 2π/c and c is the period. When ρ = 1 the cycle reduces to a
deterministic sine-cosine wave.
The S+FinMetrics/SsfPack function GetSsfStsm creates the state space

system matrices for the univariate structural time series model (14.24). The
arguments expected by GetSsfStsm are

> args(GetSsfStsm)

function(irregular = 1, level = 0.1, slope = NULL,

seasonalDummy = NULL, seasonalTrig = NULL, seasonalHS

= NULL, cycle0 = NULL, cycle1 = NULL, cycle2 = NULL,

cycle3 = NULL, cycle4 = NULL, cycle5 = NULL, cycle6 =

NULL, cycle7 = NULL, cycle8 = NULL, cycle9 = NULL)

These arguments are explained in Table 14.3.

Example 95 Local level model

The state space for the local level model (14.12)-(14.14) may be con-
structed using

> ssf.stsm = GetSsfStsm(irregular=1, level=0.5)

> class(ssf.stsm)

[1] "list"

> ssf.stsm

$mPhi:

[,1]

[1,] 1

[2,] 1

$mOmega:

[,1] [,2]

[1,] 0.25 0

[2,] 0.00 1

14.2 State Space Representation 531

$mSigma:

[,1]

[1,] -1

[2,] 0

The arguments irregular=1 and level=0.5 specify σε = 1 and ση = 1 in
(14.13) and (14.14), respectively.

Regression Models

The linear regression model

yt= x
0
tβ+ξt, ξt ∼ GWN(0, σ2ξ),

where xt is a k × 1 data matrix and β is a k × 1 fixed parameter vector,
may be put in the state spaceµ

αt+1

yt

¶
=

µ
Ik
x0t

¶
αt +

µ
0

σξεt

¶
(14.29)

The state vector satisfies αt+1= αt= β. The state space system matrices
are Tt = Ik, Zt = x0t, Gt = σξ and Ht = 0. The coefficient vector β
is fixed and unknown so that the initial conditions are α1 ∼ N(0, κIk)
where κ is large. An advantage of analyzing the linear regression model in
state space form is that recursive least squares estimates of the regression
coefficient vector β are readily computed. Another advantage is that it is
straightforward to allow some or all of the regression coefficients to be time
varying.
The linear regression model with time varying parameters may be intro-

duced by setting Ht not equal to zero in (14.29). For example, to allow all
regressors to evolve as random walks set

Ht =

 σβ1
...

σβk


so that the state equation becomes

αt+1= αt+Htηt (14.30)

More explicitly, since αi,t+1 = αi,t = βi,t the state equation (14.30) implies

βi,t+1 = βi,t + σβi · ηi,t, i = 1, . . . , k
If σβi = 0 then βi is constant.
The S+FinMetrics/SsfPack function GetSsfReg creates the state space

system matrices for the linear regression model. The arguments expected
by GetSsfReg are

532 14. State Space Models

> args(GetSsfReg)

function(mX)

where mX is a rectangular data object which represents the regressors in the
model. The function GetSsfReg returns a list with components describing
the minimal state space representation of the linear regression model.

Example 96 Time trend regression model

Consider the time trend regression model

yt = µ+ δt+ ξt, ξt ∼ GWN(0, σ2ξ)

The state space form for a sample of size n = 10 is computed using

> ssf.reg = GetSsfReg(cbind(1,1:10))

> class(ssf.reg)

[1] "list"

> names(ssf.reg)

[1] "mPhi" "mOmega" "mSigma" "mJPhi" "mX"

> ssf.reg

$mPhi:

[,1] [,2]

[1,] 1 0

[2,] 0 1

[3,] 0 0

$mOmega:

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[3,] 0 0 1

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

[,1] [,2]

[1,] -1 -1

[2,] -1 -1

[3,] 1 2

$mX:

[,1] [,2]

14.2 State Space Representation 533

[1,] 1 1

[2,] 1 2

[3,] 1 3

[4,] 1 4

[5,] 1 5

[6,] 1 6

[7,] 1 7

[8,] 1 8

[9,] 1 9

[10,] 1 10

Since the system matrix Zt= x
0
t, the parameter Φt is time varying and

the index matrix JΦ, represented by the component mJPhi, determines the
association between the time varying data in Zt and the data supplied in
the component mX.
To specify a time trend regression with a time varying slope of the form

δt+1 = δt + ζt, ζt ∼ GWN(0, σ2ζ) (14.31)

one needs to specify a non-zero value for σ2ζ in Ωt. For example, if σ
2
ζ = 0.5

then

> ssf.reg.tvp = ssf.reg

> ssf.reg.tvp$mOmega[2,2] = 0.5

> ssf.reg.tvp$mOmega

[,1] [,2] [,3]

[1,] 0 0.0 0

[2,] 0 0.5 0

[3,] 0 0.0 1

modifies the state space form for the time trend regression to allow a time
varying slope of the form (14.31).

Regression Models with ARMA Errors

The ARMA(p, q) models created with GetSsfArma do not have determinis-
tic terms (e.g., constant, trend, seasonal dummies) or exogenous regressors
and are therefore limited. The general ARMA(p, q) model with exogenous
regressors has the form

yt = x
0
tβ + ξt

where ξt follows an ARMA(p, q) process of the form (14.21). Let αt be
defined as in (14.23) and let

α∗t =
µ
αt

βt

¶
(14.32)

534 14. State Space Models

where βt= β. Writing the state equation implied by (14.32) as α∗t+1 =
T∗α∗t +H

∗ηt and let

T∗ =

·
T 0
0 Ik

¸
, H∗ =

·
H
0

¸
,

Z∗t = (1 0 . . . 0 x0t)

where T and H are defined in (14.23). Then the state space form of the
regression model with ARMA errors isµ

αt+1

yt

¶
=

µ
T∗

Z∗t

¶
α∗t +

µ
H∗ηt
0

¶
The S+FinMetrics/SsfPack function GetSsfRegArma creates the state

space system matrices for the linear regression model with ARMA errors.
The arguments expected by GetSsfRegArma are

> args(GetSsfRegArma)

function(mX, ar = NULL, ma = NULL, sigma = 1, model = NULL)

where mX is a rectangular data object which represents the regressors in the
model, and the remaining arguments are the same as those for GetSsfArma.
The function GetSsfRegArma returns a list with components describing the
minimal state space representation of the linear regression model.

Example 97 Time trend regression with AR(2) errors

The state space form of the time trend regression with AR(2) errors

yt = µ+ δt+ ξt,

ξt = φ1ξt−1 + φ2ξt−2 + νt, νt ∼ GWN(0, σ2ξ)

may be computed using

> ssf.reg.ar2 = GetSsfRegArma(cbind(1,1:10),

+ ar=c(1.25,-0.5))

> ssf.reg.ar2

$mPhi:

[,1] [,2] [,3] [,4]

[1,] 1.25 1 0 0

[2,] -0.50 0 0 0

[3,] 0.00 0 1 0

[4,] 0.00 0 0 1

[5,] 1.00 0 0 0

$mOmega:

[,1] [,2] [,3] [,4] [,5]

[1,] 1 0 0 0 0

14.2 State Space Representation 535

[2,] 0 0 0 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

$mSigma:

[,1] [,2] [,3] [,4]

[1,] 4.364 -1.818 0 0

[2,] -1.818 1.091 0 0

[3,] 0.000 0.000 -1 0

[4,] 0.000 0.000 0 -1

[5,] 0.000 0.000 0 0

$mJPhi:

[,1] [,2] [,3] [,4]

[1,] -1 -1 -1 -1

[2,] -1 -1 -1 -1

[3,] -1 -1 -1 -1

[4,] -1 -1 -1 -1

[5,] -1 -1 1 2

$mX:

[,1] [,2]

[1,] 1 1

[2,] 1 2

...

[10,] 1 10

Nonparametric Cubic Spline Model

Suppose the continuous time process y(t) is observed at discrete time points
t1, . . . , tn. Define δi = ti − ti−1 ≥ 0 as the time duration between obser-
vations. The goal of the nonparametric cubic spline model is to estimate a
smooth signal µ(t) from y(t) using

y(t) = µ(t) + ε(t)

where ε(t) is a stationary error. The signal µ(t) is extracted by minimizing

nX
i=1

(y(ti)− µ(ti))
2 + q−1

Z µ
∂2µ(t)

∂t2

¶2
dt

536 14. State Space Models

where the second term is a penalty term that forces µ(t) to be “smooth”4,
and q may be interpreted as a signal-to-noise ratio. The resulting function
µ(t) may be expressed as the structural time series model

µ(ti+1) = µ(ti) + δiβ(ti) + η(ti) (14.33)

β(ti+1) = β(ti) + ς(ti)

where µ
η(ti)
ς(ti)

¶
˜N

·µ
0
0

¶
, σ2ς δi

µ
1
3δ
2
i

1
2δi

1
2δi 1

¶¸
Combining (14.33) with the measurement equation

y(ti) = µ(ti) + ε(ti)

where ε(ti) ∼ N(0, σ2ε) and is independent of η(ti) and ς(ti), gives the
state space form for the nonparametric cubic spline model. The state space
system matrices are

Φt =

 1 δi
0 1
1 0

 , Ωt =

 qδ2t
3

qδ2t
2 0

qδ2t
2 qδt 0
0 0 1


When the observations are equally spaced, δi is constant and the above
system matrices are time invariant.
The S+FinMetrics/SsfPack function GetSsfSpline creates the state

space system matrices for the nonparametric cubic spline model. The ar-
guments expected by GetSsfSpline are

> args(GetSsfSpline)

function(snr = 1, delta = 0)

where snr is the signal-to-noise ratio q, and delta is a numeric vector
containing the time durations δi (i = 1, . . . , n). If delta=0 then δi is as-
sumed to be equal to unity and the time invariant form of the model is
created. The function GetSsfSpline returns a list with components de-
scribing the minimal state space representation of the nonparametric cubic
spline model.

Example 98 State space form of non-parametric cubic spline model

The default non-parametric cubic spline model with δt = 1 is created
using

4This process can be interpreted as an interpolation technique and is similar to the
technique used in the S+FinMetrics functions interpNA and hpfilter. See also the
smoothing spline method described in chapter sixteen.

14.2 State Space Representation 537

> GetSsfSpline()

$mPhi:

[,1] [,2]

[1,] 1 1

[2,] 0 1

[3,] 1 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.3333 0.5 0

[2,] 0.5000 1.0 0

[3,] 0.0000 0.0 1

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

NULL

$mJOmega:

NULL

$mX:

NULL

For unequally spaced observations

> t.vals = c(2,3,5,9,12,17,20,23,25)

> delta.t = diff(t.vals)

and q = 0.2, the state space form is

> GetSsfSpline(snr=0.2,delta=delta.t)

$mPhi:

[,1] [,2]

[1,] 1 1

[2,] 0 1

[3,] 1 0

$mOmega:

[,1] [,2] [,3]

[1,] 0.06667 0.1 0

[2,] 0.10000 0.2 0

[3,] 0.00000 0.0 1

538 14. State Space Models

$mSigma:

[,1] [,2]

[1,] -1 0

[2,] 0 -1

[3,] 0 0

$mJPhi:

[,1] [,2]

[1,] -1 1

[2,] -1 -1

[3,] -1 -1

$mJOmega:

[,1] [,2] [,3]

[1,] 4 3 -1

[2,] 3 2 -1

[3,] -1 -1 -1

$mX:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 1.00000 2.0000 4.000 3.0 5.000 3.0 3.0 2.0000

[2,] 0.20000 0.4000 0.800 0.6 1.000 0.6 0.6 0.4000

[3,] 0.10000 0.4000 1.600 0.9 2.500 0.9 0.9 0.4000

[4,] 0.06667 0.5333 4.267 1.8 8.333 1.8 1.8 0.5333

14.2.5 Simulating Observations from the State Space Model

Once a state space model has been specified, it is often interesting to draw
simulated values from the model. The S+FinMetrics/SsfPack function
SsfSim may be used for such a purpose. The arguments expected from
SsfSim are

> args(SsfSim)

function(ssf, n = 100, mRan = NULL, a1 = NULL)

where ssf represents either a list with components giving a minimal state
space form or a valid “ssf” object, n is the number of simulated obser-
vations, mRan is user-specified matrix of disturbances, and a1 is the initial
state vector. The use of SsfSim is illustrated with the following examples.

Example 99 Simulating observations from the local level model

To generate 250 observations on the state variable αt+1 and observations
yt in the local level model (14.12) - (14.14) use

> set.seed(112)

14.2 State Space Representation 539

0 50 100 150 200 250

-6
-4

-2
0

2
4

6
State
Response

FIGURE 14.1. Simulated values from local level model created using the
S+FinMetrics function SsfSim.

> ll.sim = SsfSim(ssf.ll.list,n=250)

> class(ll.sim)

[1] "matrix"

> colIds(ll.sim)

[1] "state" "response"

The function SsfSim returns a matrix containing the simulated state vari-
ables αt+1 and observations yt. These values are illustrated in Figure 14.1
created using

> tsplot(ll.sim)

> legend(0,4,legend=c("State","Response"),lty=1:2)

Example 100 Simulating observations from CAPM with time varying
parameters

When simulating observations from a state space form with a data matrix
component mX using the function SsfSim, the number of simulated values
must match the number of rows of mX. The state space form for the CAPM
with time varying parameters created earlier uses a data matrix mX with
n = 131 observations

> nrow(ssf.tvp.capm$mX)

[1] 131

540 14. State Space Models

Time varying intercept

al
ph

a(
t)

0 20 40 60 80 100 120

-0
.1

5
-0

.0
5

Time varying slope

be
ta

(t)

0 20 40 60 80 100 120

0.
2

0.
6

1.
0

Simulated returns

re
tu

rn
s

0 20 40 60 80 100 120

-0
.4

-0
.2

0.
0

FIGURE 14.2. Simulated state and response values from the CAPM with time
varying parameters state space form ssf.tvp.

The state variables are the time varying intercept αt+1 and the time varying
βt+1. Natural initial values for these parameters are α1 = 0 and β1 = 1.
Using these initial values, n = 131 observations are generated from the
CAPM with time varying parameters using

> set.seed(444)

> tvp.sim = SsfSim(ssf.tvp.capm,n=nrow(X.mat),a1=c(0,1))

> colIds(tvp.sim)

[1] "state.1" "state.2" "response"

The simulated state and response variables are illustrated in Figure 14.2
created using

> par(mfrow=c(3,1))

> tsplot(tvp.sim[,"state.1"],main="Time varying intercept",

+ ylab="alpha(t)")

> tsplot(tvp.sim[,"state.2"],main="Time varying slope",

+ ylab="beta(t)")

> tsplot(tvp.sim[,"response"],main="Simulated returns",

+ ylab="returns")

14.3 Algorithms 541

14.3 Algorithms

14.3.1 Kalman Filter

The Kalman filter is a recursive algorithm for the evaluation of moments
of the normally distributed state vector αt+1 conditional on the observed
data Yt = (y1, . . . , yt). To describe the algorithm, let at = E[αt|Yt−1]
denote the conditional mean of αt based on information available at time
t− 1 and let Pt = var(αt|Yt−1) denote the conditional variance of αt.
The filtering or updating equations of the Kalman filter compute at|t =

E[αt|Yt] and Pt|t = var(αt|Yt) using

at|t = at+Ktvt (14.34)

Pt|t = Pt−PtZ0tK0
t (14.35)

where

vt = yt−ct − Ztat (14.36)

Ft = ZtPtZ
0
t+GtG

0
t (14.37)

Kt = PtZ
0
tF
−1
t (14.38)

The variable vt is themeasurement equation innovation or prediction error,
Ft = var(vt) and Kt is the Kalman gain matrix.
The prediction equations of the Kalman filter compute at+1 and Pt+1

using

at+1 = Ttat|t (14.39)

Pt+1 = TtPt|tT0t+HtH
0
t (14.40)

In the Kalman filter recursions, if there are missing values in yt then
vt= 0, F

−1
t = 0 and Kt = 0. This allows out-of-sample forecasts of αt and

yt to be computed from the updating and prediction equations.

14.3.2 Kalman Smoother

The Kalman filtering algorithm is a forward recursion which computes one-
step ahead estimates at+1 and Pt+1 based on Yt for t = 1, . . . , n. The
Kalman smoothing algorithm is a backward recursion which computes the
mean and variance of specific conditional distributions based on the full
data set Yn = (y1, . . . , yn). The smoothing equations are

r∗t = T
0
trt, N

∗
t = TtNtT

0
t, K

∗
t =N

∗
tKt (14.41)

et = F
−1
t vt −K0

tr
∗
t , Dt= F

−1
t +KtK

∗0
t

and the backwards updating equations are

rt−1 = Z0tet + r
∗
t , Nt−1 = Z0tDtZt− < K∗tZt > +N

∗
t (14.42)

542 14. State Space Models

for t = n, . . . , 1 with initializations rn = 0 and Nn = 0. For any square
matrix A, the operator < A >= A+A0. The values rt are called state
smoothing residuals and the values et are called response smoothing residu-
als. The recursions (14.41) and (14.42) are somewhat non-standard. Durbin
and Koopman (2001) show how they may be re-expressed in more standard
form.

14.3.3 Smoothed State and Response Estimates

The smoothed estimates of the state vector αt and its variance matrix
are denoted α̂t = E[αt|Yn] and var(α̂t|Yn), respectively. The smoothed
estimate α̂t is the optimal estimate of αt using all available information
Yn, whereas the filtered estimate ât|t is the optimal estimate only using
information available at time t,Yt. The computation of α̂t and its variance
from the Kalman smoother algorithm is described in Durbin and Koopman
(2001).
The smoothed estimate of the response yt and its variance are computed

using

ŷt = θ̂t = E[θt|Yn] = ct+Ztα̂t

var(ŷt|Yn) = Ztvar(α̂t|Yn)Z
0
t

14.3.4 Smoothed Disturbance Estimates

The smoothed disturbance estimates are the estimates of the measure-
ment equations innovations εt and transition equation innovations ηt based
on all available information Yn, and are denoted ε̂t = E[εt|Yn] and
η̂t = E[ηt|Yn], respectively. The computation of ε̂t and η̂t from the
Kalman smoother algorithm is described in Durbin and Koopman (2001).
These smoothed disturbance estimates are useful for parameter estimation
by maximum likelihood and for diagnostic checking. See chapter seven in
Durbin and Koopman (2001) for details.

14.3.5 Forecasting

The Kalman filter prediction equations (14.39) - (14.40) produces one-step
ahead predictions of the state vector, at+1 = E[αt+1|Yt], along with pre-
diction variance matrices Pt+1. Out of sample predictions, together with
associated mean square errors, can be computed from the Kalman filter
prediction equations by extending the data set y1, . . . ,yn with a set of
missing values. When yτ is missing, the Kalman filter reduces to the pre-
diction step described above. As a result, a sequence of m missing values
at the end of the sample will produce a set of h-step ahead forecasts for
h = 1, . . . ,m.

14.3 Algorithms 543

14.3.6 S+FinMetrics/SsfPack Implementation of State
Space Modeling Algorithms

The S+FinMetrics/SsfPack function KalmanFil implements the Kalman
filter forward recursions in a computationally efficient way, see Koopman,
Shephard and Doornik (2001). It produces an object of class “KalmanFil”
for which there are print and plot methods. The S+FinMetrics/SsfPack
function KalmanSmo computes the Kalman smoother backwards recursions,
and produces an object of class “KalmanSmo” for which there are print
and plot methods. The functions KalmanFil and KalmanSmo are primarily
used by other S+FinMetrics/SsfPack state space functions that require
the output from the Kalman filter and Kalman smoother.
Filtered and smoothed estimates of αt and yt, with estimated variances,

as well as smoothed estimates of εt and ηt, with estimated variances, are
computed using the S+FinMetrics/SsfPack function SsfMomentEst. The
result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plot method. The function SsfMomentEst may also be used
to compute out-of-sample forecasts and forecast variances of αt and yt.
The use of the S+FinMetrics/SsfPack functions for implementing the

state space algorithms are illustrated with the following examples.

Example 101 State space algorithms applied to local level model

Consider the simulated data for the local level model (14.12) - (14.14) in
the object ll.sim computed earlier. The response variable yt is extracted
using

> y.ll = ll.sim[,"response"]

Kalman Filter

The Kalman filter recursions for the simulated data from the local level
model are obtained using the S+FinMetrics/SsfPack function KalmanFil
with the optional argument task="STFIL" (which stands for state filtering)

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STFIL")

> class(KalmanFil.ll)

[1] "KalmanFil"

The function KalmanFil takes as input a vector of response data and either
a list describing the minimal state space form or a valid “ssf” object. The
result of KalmanFil is an object of class “KalmanFil” with components

> names(KalmanFil.ll)

[1] "mOut" "innov" "std.innov"

[4] "mGain" "loglike" "loglike.conc"

[7] "dVar" "mEst" "mOffP"

[10] "task" "err" "call"

544 14. State Space Models

A complete explanation of the components of a “KalmanFil” object is given
in the online help for KalmanFil. These components are mainly used by
other S+FinMetrics/SsfPack functions and are only briefly discussed here.
The component mOut contains the basic Kalman filter output.

> KalmanFil.ll$mOut

numeric matrix: 250 rows, 3 columns.

[,1] [,2] [,3]

[1,] 0.00000 1.0000 0.0000

[2,] -1.28697 0.5556 0.4444

...

[250,] -1.6371 0.3904 0.6096

The first column of mOut contains the prediction errors vt, the second col-
umn contains the Kalman gains, Kt, and the last column contains the
inverses of the prediction error variances, F−1t . Since task="STFIL" the
filtered estimates at|t and yt|t = Ztat|t are in the component mEst

> KalmanFil.ll$mEst

numeric matrix: 250 rows, 4 columns.

[,1] [,2] [,3] [,4]

[1,] 1.10889 1.10889 1.0000 1.0000

[2,] 0.39390 0.39390 0.5556 0.5556

...

[250,] 4.839 4.839 0.3904 0.3904

The plotmethod allows for a graphical analysis of the Kalman filter output

> plot(KalmanFil.ll)

Make a plot selection (or 0 to exit):

1: plot: all

2: plot: innovations

3: plot: standardized innovations

4: plot: innovation histogram

5: plot: normal QQ-plot of innovations

6: plot: innovation ACF

Selection:

The standardized innovations vt/Ft are illustrated in Figure 14.3.

Kalman Smoother

The Kalman smoother backwards recursions for the simulated data from
the local level model are obtained using the S+FinMetrics/SsfPack func-
tion KalmanSmo

> KalmanSmo.ll = KalmanSmo(KalmanFil.ll,ssf.ll)

14.3 Algorithms 545

-2

-1

0

1

2

0 50 100 150 200 250

innovations

Va
lu

es

Standardized Prediction Errors

FIGURE 14.3. Standardized innovations from Kalman filter applied to simulated
data from local level model.

> class(KalmanSmo.ll)

[1] "KalmanSmo"

The function KalmanSmo takes as input an object of class “KalmanFil” and
an associated list variable containing the state space form used to produce
the “KalmanFil” object. The result of KalmanSmo is an object of class
“KalmanSmo” with components

> names(KalmanSmo.ll)

[1] "state.residuals" "response.residuals"

[3] "state.variance" "response.variance"

[5] "aux.residuals" "scores"

[7] "call"

The component state.residuals contains the smoothing residuals from
the state equation, response.residuals contains the smoothing residu-
als from the measurement equation. The corresponding variances of these
residuals are in the components state.variance and response.variance.
A multi-panel timeplot of the standardized residuals in the component
aux.residuals, illustrated in Figure 14.4, is created with the plotmethod

> plot(KalmanSmo.ll,layout=c(1,2))

546 14. State Space Models

-3
-2

-1
0

1
2

0 50 100 150 200 250

response

-2
-1

0
1

2
3 state

R
es

id
ua

ls

Standardized Smoothing Residuals

FIGURE 14.4. Standardized smoothing residuals from Kalman smoother recur-
sions computed from simulated data from local level model.

Filtered and Smoothed Moment Estimates

Filtered and smoothed estimates of αt and yt with corresponding estimates
of variances may be computed using the S+FinMetrics/SsfPack function
SsfMomentEst. To compute filtered estimates, call SsfMomentEst with the
argument task="STFIL" (which stands for state filtering)

> FilteredEst.ll = SsfMomentEst(y.ll,ssf.ll,task="STFIL")

> class(FilteredEst.ll)

[1] "SsfMomentEst"

> names(FilteredEst.ll)

[1] "state.moment" "state.variance"

[3] "response.moment" "response.variance"

[5] "task"

The function SsfMomentEst takes as input a vector of response data and
either a list describing the minimal state space form or a valid “ssf” object.
The result of SsfMomentEst is an object of class “SsfMomentEst” for which
there is only a plotmethod. The filtered estimates at|t and yt|t = ct+Ztat|t
are in the components state.moment and response.moment, respectively,
and the corresponding filtered variance estimates are in the components
state.variance and response.variance. From the measurement equa-
tion (14.13) in the local level model, at|t = yt|t

14.3 Algorithms 547

-4
-2

0
2

4

0 50 100 150 200 250

response

-4
-2

0
2

4

state

Va
lu

es

State Filtering

FIGURE 14.5. Filtered estimates of αt and yt computed from simulated data
from local level model.

> FilteredEst.ll$state.moment[1:5]

[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461

> FilteredEst.ll$response.moment[1:5]

[1] 1.1089 0.3939 -0.1389 -0.1141 0.3461

The plot method creates a multi-panel timeplot, illustrated in Figure 14.5,
of the estimates of αt and yt

> plot(FilteredEst.ll,layout=c(1,2))

A plot of the filtered state estimates with 95% confidence intervals may be
created using

> upper.state = FilteredEst.ll$state.moment +

+ 2*sqrt(FilteredEst.ll$state.variance)

> lower.state = FilteredEst.ll$state.moment -

+ 2*sqrt(FilteredEst.ll$state.variance)

> tsplot(FilteredEst.ll$state.moment,upper.state,lower.state,

+ lty=c(1,2,2),ylab="filtered state")

and is shown in Figure 14.6.
The smoothed estimates α̂t and ŷt along with estimated variances may

be computed using SsfMomentEst with task="STSMO" (state smoothing)

> SmoothedEst.ll = SsfMomentEst(y.ll,ssf.ll.list,task="STSMO")

548 14. State Space Models

fil
te

re
d

st
at

e

0 50 100 150 200 250

-6
-4

-2
0

2
4

6

FIGURE 14.6. Filtered estimates of αt with 95% confidence intervals computed
from simulated values from local level model.

In the local level model, α̂t = ŷt

> SmoothedEst.ll$state.moment[1:5]

[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455

> SmoothedEst.ll$response.moment[1:5]

[1] 0.24281 0.02629 -0.13914 -0.13925 -0.15455

The smoothed state estimates with 95% confidence bands are illustrated
in Figure 14.7. Compared to the filtered state estimates, the smoothed
estimates are “smoother” and the confidence bands are slightly smaller.
Smoothed estimates of αt and yt without estimated variances may be

obtained using the S+FinMetrics/SsfPack function SsfCondDens with the
argument task="STSMO" (which stands for state smoothing)

> smoothedEst.ll = SsfCondDens(y.ll,ssf.ll.list,task="STSMO")

> class(smoothedEst.ll)

[1] "SsfCondDens"

> names(smoothedEst.ll)

[1] "state" "response" "task"

The object smoothedEst.ll is of class “SsfCondDens” with components
state, giving the smoothed state estimates α̂t, response, which gives the
smoothed response estimates ŷt, and task, naming the task performed. The

14.3 Algorithms 549

sm
oo

th
ed

 s
ta

te

0 50 100 150 200 250

-4
-2

0
2

4
6

FIGURE 14.7. Smoothed estimates of αt with 95% confidence intervals computed
from simulated values from local level model.

smoothed estimates ŷt and α̂t may be visualized using the plot method
for “SsfCondDens” objects

> plot(smoothedEst.ll)

The resulting plot has the same format at the plot shown in Figure 14.5.

Smoothed Disturbance Estimates

The smoothed disturbance estimates ε̂t and η̂t may be computed using
SsfMomentEst with the optional argument task="DSSMO" (which stands
for disturbance smoothing)

> disturbEst.ll = SsfMomentEst(y.ll,ssf.ll,task="DSSMO")

> names(disturbEst.ll)

[1] "state.moment" "state.variance"

[3] "response.moment" "response.variance"

[5] "task"

The estimates η̂t are in the component state.moment, and the estimates ε̂t
are in the component response.moment. These estimates may be visualized
using the plot method.

550 14. State Space Models

Koopman, Shephard and Doornik (1999) point out that, in the local level
model, the standardized smoothed disturbances

η̂tpdvar(η̂t) , ε̂tpdvar(ε̂t) (14.43)

may be interpreted as t-statistics for impulse intervention variables in the
transition and measurement equations, respectively. Consequently, large
values of (14.43) indicate outliers and/or structural breaks in the local
level model.

Forecasting

To produce out-of-sample h-step ahead forecasts yt+h|t for h = 1, . . . , 5 a
sequence of 5 missing values is appended to the end of the response vector
y.ll

> y.ll.new = c(y.ll,rep(NA,5))

The forecast values and mean squared errors are computed using the
function SsfMomentEst with the argument task="STPRED"

> PredictedEst.ll = SsfMomentEst(y.ll.new,ssf.ll,task="STPRED")

> y.ll.fcst = PredictedEst.ll$response.moment

> fcst.var = PredictedEst.ll$response.variance

The actual values, forecasts and 95% confidence bands are illustrated in
Figure 14.8 created by

> upper = y.ll.fcst + 2*sqrt(fcst.var)

> lower = y.ll.fcst - 2*sqrt(fcst.var)

> upper[1:250] = lower[1:250] = NA

> tsplot(y.ll.new[240:255],y.ll.fcst[240:255],

+ upper[240:255],lower[240:255],lty=c(1,2,2,2))

14.4 Estimation of State Space Models

14.4.1 Prediction Error Decomposition of Log-Likelihood

The prediction error decomposition of the log-likelihood function for the
unknown parameters ϕ of a state space model may be conveniently com-
puted using the output of the Kalman filter

lnL(ϕ|Yn) =
nX
t=1

ln f(yt|Yt−1;ϕ) (14.44)

= −nN
2
ln(2π)− 1

2

nX
t=1

¡
ln |Ft|+ v0tF−1t vt

¢

14.4 Estimation of State Space Models 551

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3
4

5
6

7

FIGURE 14.8. Actual values, h-step forecasts and 95% confidence intervals for
yt from local level model.

where f(yt|Yt−1;ϕ) is a conditional Gaussian density implied by the state
space model (14.1) - (14.6). The vector of prediction errors vt and pre-
diction error variance matrices Ft are computed from the Kalman filter
recursions.
A useful diagnostic is the estimated variance of the standardized predic-

tion errors for a given value of ϕ:

σ̂2(ϕ) =
1

Nn

nX
t=1

v0tF
−1
t vt (14.45)

As mentioned by Koopman, Shephard and Doornik (1999), it is helpful to
choose starting values for ϕ such that σ̂2(ϕstart) ≈ 1. For well specified
models, σ̂2(ϕ̂mle) should be very close to unity.

Concentrated Log-likelihood

In some models, e.g. ARMA models, it is possible to solve explicitly for one
scale factor and concentrate it out of the log-likelihood function (14.44).
The resulting log-likelihood function is called the concentrated log-likelihood
or profile log-likelihood and is denoted lnLc(ϕ|Yn). Following Koopman,
Shephard and Doornik (1999), let σ denote such a scale factor, and let

yt= θt +G
c
tε

c
t

552 14. State Space Models

with εct ∼ iid N(0, σ2I) denote the scaled version of the measurement
equation (14.3). The state space form (14.1) - (14.3) applies but with Gt =
σGc

t and Ht = σHc
t . This formulation implies that one non-zero element

of σGc
t or σH

c
t is kept fixed, usually at unity, which reduces the dimension

of the parameter vector ϕ by one. The solution for σ2 from (14.44) is given
by

σ̃2(ϕ) =
1

Nn

nX
t=1

v0t (F
c
t)
−1
vt

and the resulting concentrated log-likelihood function is

lnLc(ϕ|Yn) = −
nN

2
ln(2π)− nN

2
ln
¡
σ2(ϕ) + 1

¢− 1
2

nX
t=1

ln |Fct | (14.46)

14.4.2 Fitting State Space Models Using the
S+FinMetrics/SsfPack Function SsfFit

The S+FinMetrics/SsfPack function SsfFit may be used to compute
MLEs of the unknown parameters in the state space model (14.1)-(14.6)
from the prediction error decomposition of the log-likelihood function (14.44).
The arguments expected by SsfFit are

> args(SsfFit)

function(parm, data, FUN, conc = F, scale = 1, gradient =

NULL, hessian = NULL, lower = - Inf, upper = Inf,

trace = T, control = NULL, ...)

where parm is a vector containing the starting values of the unknown pa-
rameters ϕ, data is a rectangular object containing the response variables
yt, and FUN is a character string giving the name of the function which takes
parm together with the optional arguments in ... and produces an “ssf”
object representing the state space form. The remaining arguments control
aspects of the S-PLUS optimization algorithm nlminb. An advantage of us-
ing nlminb is that box constraints may be imposed on the parameters of
the log-likelihood function using the optional arguments lower and upper.
See the online help for nlminb for details. A disadvantage of using nlminb
is that the value of the Hessian evaluated at the MLEs is returned only if
an analytic formula is supplied to compute the Hessian. The use of SsfFit
is illustrated with the following examples.

Example 102 Exact maximum likelihood estimation of AR(1) model

Consider estimating by exact maximum likelihood the AR(1) model dis-
cussed earlier. First, n = 250 observations are simulated from the model

> ssf.ar1 = GetSsfArma(ar=0.75,sigma=.5)

> set.seed(598)

14.4 Estimation of State Space Models 553

> sim.ssf.ar1 = SsfSim(ssf.ar1,n=250)

> y.ar1 = sim.ssf.ar1[,"response"]

Least squares estimation of the AR(1) model, which is equivalent to MLE
conditional on the first observation, gives

> OLS(y.ar1~tslag(y.ar1)-1)

Call:

OLS(formula = y.ar1 ~tslag(y.ar1) - 1)

Coefficients:

tslag(y.ar1)

0.7739

Degrees of freedom: 249 total; 248 residual

Residual standard error: 0.4921

The S+FinMetrics/SsfPack function SsfFit requires as input a func-
tion which takes the unknown parameters ϕ = (φ, σ2)0 and produces the
state space form for the AR(1). One such function is

> ar1.mod = function(parm) {

+ phi = parm[1]

+ sigma2 = parm[2]

+ ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))

+ CheckSsf(ssf.mod)

+ }

In addition, starting values for ϕ are required. Somewhat arbitrary starting
values are

> ar1.start = c(0.5,1)

> names(ar1.start) = c("phi","sigma2")

The prediction error decomposition of the log-likelihood function evalu-
ated at the starting values ϕ = (0.5, 1)0 may be computed using the
S+FinMetrics/SsfPack function KalmanFil with task="KFLIK"

> KalmanFil(y.ar1,ar1.mod(ar1.start),task="KFLIK")

Call:

KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.start), task =

"KFLIK")

Log-likelihood: -265.5222

Prediction error variance: 0.2851

Sample observations: 250

554 14. State Space Models

Standardized Innovations:

Mean Std.Error

-0.0238 0.5345

Notice that the standardized prediction error variance (14.45) is 0.285, far
below unity, which indicates that the starting values are not very good.
The MLEs for ϕ = (φ, σ2)0 using SsfFit are computed as

> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod",

+ lower=c(-.999,0),upper=c(0.999,Inf))

Iteration 0 : objective = 265.5

Iteration 1 : objective = 282.9

...

Iteration 18 : objective = 176.9

RELATIVE FUNCTION CONVERGENCE

In the call to SsfFit, the stationarity condition −1 < φ < 1 and the
positive variance condition σ2 > 0 is imposed in the estimation. The result
of SsfFit is a an object of class “SsfFit” with components

> names(ar1.mle)

[1] "parameters" "objective" "message" "grad.norm" "iterations"

[6] "f.evals" "g.evals" "hessian" "scale" "aux"

[11] "call" "vcov"

The exact MLEs for ϕ = (φ, σ2)0 are

> ar1.mle

Log-likelihood: -176.9

250 observations

Parameter Estimates:

phi sigma2

0.77081 0.2402688

and the MLE for σ is

> sqrt(ar1.mle$parameters["sigma2"])

sigma2

0.4902

These values are very close to the least squares estimates. Standard errors
and t-statistics are displayed using

> summary(ar1.mle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

phi 0.7708 0.03977 19.38

sigma2 0.2403 0.02149 11.18

14.4 Estimation of State Space Models 555

Convergence: RELATIVE FUNCTION CONVERGENCE

A summary of the log-likelihood evaluated at the MLEs is

> KalmanFil(y.ar1,ar1.mod(ar1.mle$parameters),

+ task="KFLIK")

Call:

KalmanFil(mY = y.ar1, ssf = ar1.mod(ar1.mle$parameters),

task = "KFLIK")

Log-likelihood: -176.9359

Prediction error variance: 1

Sample observations: 250

Standardized Innovations:

Mean Std.Error

-0.0213 1.0018

Notice that the estimated variance of the standardized prediction errors is
equal to 1.

Example 103 Exact maximum likelihood estimation of AR(1) model us-
ing re-parameterization

An alternative function to compute the state space form of the AR(1) is

ar1.mod2 = function(parm) {

phi = exp(parm[1])/(1 + exp(parm[1]))

sigma2 = exp(parm[2])

ssf.mod = GetSsfArma(ar=phi,sigma=sqrt(sigma2))

CheckSsf(ssf.mod)

}

In the above model, a stationary value for φ between 0 and 1 and a
positive value for σ2 is guaranteed by parameterizing the log-likelihood
in terms of γ0 = ln(φ/(1 − φ)) and γ1 = ln(σ2) instead of φ and σ2.

By the invariance property of maximum likelihood estimation, φ̂mle =
exp(γ̂0,mle)/(1 + exp(γ̂0,mle)) and σ̂2mle = exp(γ̂1,mle) are the MLEs for
φ and σ2. The MLEs for ϕ = (γ0, γ1)

0 computed using SsfFit are

> ar1.start = c(0,0)

> names(ar1.start) = c("ln(phi/(1-phi))","ln(sigma2)")

> ar1.mle = SsfFit(ar1.start,y.ar1,"ar1.mod2")

Iteration 0 : objective = 265.5222

...

Iteration 10 : objective = 176.9359

556 14. State Space Models

RELATIVE FUNCTION CONVERGENCE

> summary(ar1.mle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

ln(phi/(1-phi)) 1.213 0.22510 5.388

ln(sigma2) -1.426 0.08945 -15.940

Convergence: RELATIVE FUNCTION CONVERGENCE

The MLEs for φ and σ2, and estimated standard errors computed using
the delta method, are5

> ar1.mle2 = ar1.mle

> tmp = coef(ar1.mle)

> ar1.mle2$parameters[1] = exp(tmp[1])/(1 + exp(tmp[1]))

> ar1.mle2$parameters[2] = exp(tmp[2])

> dg1 = exp(-tmp[1])/(1 + exp(-tmp[1]))^2

> dg2 = exp(tmp[2])

> dg = diag(c(dg1,dg2))

> ar1.mle2$vcov = dg%*%ar1.mle2$vcov%*%dg

> summary(ar1.mle2)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

ln(phi/(1-phi)) 0.7708 0.03977 19.38

ln(sigma2) 0.2403 0.02149 11.18

Convergence: RELATIVE FUNCTION CONVERGENCE

and exactly match the previous MLEs.

Example 104 Exact maximum likelihood estimation of AR(1) model us-
ing concentrated log-likelihood

In the AR(1) model, the variance parameter σ2 can be analytically con-
centrated out of the log-likelihood. The advantages of concentrating the
log-likelihood are to reduce the number of parameters to estimate, and to
improve the numerical stability of the optimization. A function to compute
the state space form for the AR(1) model, as a function of φ only, is

ar1.modc = function(parm) {

5Recall, if
√
n(θ̂−θ) d→ N(θ, V) and g is a continuous function then

√
n(g(θ̂)−g(θ)) d→

N(0, ∂g
∂θ0 V

∂g
∂θ0

0
).

14.4 Estimation of State Space Models 557

phi = parm[1]

ssf.mod = GetSsfArma(ar=phi)

CheckSsf(ssf.mod)

}

By default, the function GetSsfArma sets σ2 = 1 which is required for the
computation of the concentrated log-likelihood function from (14.46). To
maximize the concentrated log-likelihood function (14.46) for the AR(1)
model, use SsfFit with ar1.modc and set the optional argument conc=T :

> ar1.start = c(0.7)

> names(ar1.start) = c("phi")

> ar1.cmle = SsfFit(ar1.start,y.ar1,"ar1.modc",conc=T,

+ lower=0,upper=0.999)

Iteration 0 : objective = 178.506

...

Iteration 4 : objective = 176.9359

RELATIVE FUNCTION CONVERGENCE

> summary(ar1.cmle)

Log-likelihood: -176.936

250 observations

Parameters:

Value Std. Error t value

phi 0.7708 0.03977 19.38

Convergence: RELATIVE FUNCTION CONVERGENCE

Notice that with the concentrated log-likelihood, the optimizer converges
in only four interations. The values of the log-likelihood and the MLE for
φ are the same as found previously. The MLE for σ2 may be recovered by
running the Kalman filter and computing the variance of the prediction
errors:

> ar1.KF = KalmanFil(y.ar1,ar1.mod(ar1.cmle$parameters),

+ task="KFLIK")

> ar1.KF$dVar

[1] 0.2403

One disadvantage of using the concentrated log-likelihood is the lack of an
estimated standard error for σ̂2.

Example 105 Maximum likelihood estimation of CAPM with time vary-
ing parameters

Consider estimating the CAPM with time varying coefficients (14.17) -
(14.19) using monthly data on Microsoft and the S&P 500 index over the pe-
riod February, 1990 through December, 2000 contained in the S+FinMetrics
“timeSeries” excessReturns.ts. The parameters of the model are the

558 14. State Space Models

variances of the innovations to the transition and measurement equations;
σ2ξ , σ

2
ς and σ2ν . Since these variances must be positive the log-likelihood

is parameterized using ϕ = (ln(σ2ξ), ln(σ
2
ς), ln(σ

2
ν))

0. Since the state space
form for the CAPM with time varying coefficients requires a data matrix X
containing the excess returns on the S&P 500 index, the function SsfFit
requires as input a function which takes both ϕ and X and returns the
appropriate state space form. One such function is

tvp.mod = function(parm,mX=NULL) {

parm = exp(parm) # 3 x 1 vector containing log variances

ssf.tvp = GetSsfReg(mX=mX)

diag(ssf.tvp$mOmega) = parm

CheckSsf(ssf.tvp)

}

Starting values for ϕ are specified as

> tvp.start = c(0,0,0)

> names(tvp.start) = c("ln(s2.alpha)","ln(s2.beta)","ln(s2.y)")

The maximum likelihood estimates for ϕ based on SsfFit are computed
using

> tvp.mle = SsfFit(tvp.start,msft.ret,"tvp.mod",mX=X.mat)

Iteration 0 : objective = 183.2

...

Iteration 22 : objective = -123

RELATIVE FUNCTION CONVERGENCE

The MLEs for ϕ = (ln(σ2ξ), ln(σ
2
ς), ln(σ

2
ν))

0 are

> summary(tvp.mle)

Log-likelihood: 122.979

131 observations

Parameters:

Value Std. Error t value

ln(s2.alpha) -12.480 2.8030 -4.452

ln(s2.beta) -5.900 3.0890 -1.910

ln(s2.y) -4.817 0.1285 -37.480

Convergence: RELATIVE FUNCTION CONVERGENCE

The estimates for the standard deviations σξ, σς and σν as well as estimated
standard errors, from the delta method, are:

> tvp2.mle = tvp.mle

> tvp2.mle$parameters = exp(tvp.mle$parameters/2)\qquad \qquad

> names(tvp2.mle$parameters) = c("s.alpha","s.beta","s.y")

> dg = diag(tvp2.mle$parameters/2)

14.4 Estimation of State Space Models 559

> tvp2.mle$vcov = dg%*%tvp.mle$vcov%*%dg

> summary(tvp2.mle)

Log-likelihood: 122.979

131 observations

Parameters:

Value Std. Error t value

s.alpha 0.001951 0.002734 0.7135

s.beta 0.052350 0.080860 0.6474

s.y 0.089970 0.005781 15.5600

Convergence: RELATIVE FUNCTION CONVERGENCE

It appears that the estimated standard deviations for the time varying
parameter CAPM are close to zero, suggesting a constant parameter model.
The smoothed estimates of the time varying parameters αt and βt as

well as the expected returns may be extracted and plotted using

> smoothedEst.tvp = SsfCondDens(y.capm,

+ tvp.mod(tvp.mle$parameters,mX=X.mat),

+ task="STSMO")

> plot(smoothedEst.tvp,strip.text=c("alpha(t)",

+ "beta(t)","Expected returns"),main="Smoothed Estimates",scales="free")

These estimates are illustrated in Figure 14.9. Notice the increase in β̂t and
decrease in α̂t over the sample.

14.4.3 Quasi-Maximum Likelihood Estimation

The S+FinMetrics function SsfFitFast is a fast version of SsfFit that
also computes the sandwhich covariance matrix estimate which is appro-
priate for QMLE. This matrix is given in the r.vcov component of the
“SsfFit” object returned by SsfFitFast.

Example 106 Quasi-maximum likelihood estimation of a stochastic volatil-
ity model

Let rt denote the continuously compounded return on an asset between
times t − 1 and t. Following Harvey, Ruiz and Shephard (1994), hereafter
HRS, a simple discrete-time stochastic volatility (SV) model has the form

rt = σtεt, εt ∼ iid N(0, 1) (14.47)

ht = lnσ2t = γ + φht−1 + ηt, ηt ∼ iid N(0, σ2η)

E[εtηt] = 0

560 14. State Space Models

-0
.2

-0
.1

0.
0

0.
1

0 20 40 60 80 100 120

Expected returns

0.
01

0
0.

01
5

0.
02

0
0.

02
5

alpha(t)

1.
4

1.
5

1.
6

1.
7

1.
8 beta(t)

M
ea

n

Smoothed Estimates

FIGURE 14.9. Smoothed estimates of αt and βt from CAPM with time varying
parameter fit to the monthly excess returns on Microsoft.

Defining yt = ln r
2
t , and noting that E[ln ε

2
t] = −1.27 and var(ln ε2t) = π2/2

an unobserved components state space representation for yt has the form

yt = −1.27 + ht + ξt, ξt ∼ iid (0, π2/2)
ht = γ + φht−1 + ηt, ηt ∼ iid N(0, σ2η)

E[ξtηt] = 0

If ξt were iid Gaussian then the parameters ϕ = (γ, σ2η, φ)
0 of the SV

model could be efficiently estimated by maximizing the prediction error
decomposition of the log-likelihood function constructed from the Kalman
filter recursions. However, since ξt = ln ε

2
t is not normally distributed the

Kalman filter only provides minimum mean squared error linear estimators
of the state and future observations. Nonetheless, HRS point out that even
though the exact log-likelihood cannot be computed from the prediction
error decomposition based on the Kalman filter, consistent estimates of
ϕ = (γ, σ2η, φ)

0 can still be obtained by treating ξt as though it were iid
N(0, π2/2) and maximizing the quasi log-likelihood function constructed
from the prediction error decomposition.
The state space representation of the SV model has system matrices

δ =

µ
γ
−1.27

¶
, Φ =

µ
φ
1

¶
, Ω =

µ
σ2η 0
0 π2/2

¶

14.4 Estimation of State Space Models 561

Assuming that |φ| < 1, the initial value matrix has the form

Σ =

µ
σ2η/(1− φ2)
γ/(1− φ)

¶
If φ = 1 then use

Σ =

µ −1
0

¶
A function to compute the state space form of the SV model given a

vector of parameters, assuming |φ| < 1, is
sv.mod = function(parm) {

g = parm[1]

sigma2.n = exp(parm[2])

phi = parm[3]

ssf.mod = list(mDelta=c(g,-1.27),

mPhi=as.matrix(c(phi,1)),

mOmega=matrix(c(sigma2.n,0,0,0.5*pi^2),2,2),

mSigma=as.matrix(c((sigma2.n/(1-phi^2)),g/(1-phi))))

CheckSsf(ssf.mod)

}

Notice that an exponential transformation is utilized to ensure a positive
value for σ2η. A sample of T = 1000 observations are simulated from the
SV model using the parameters γ = −0.3556, σ2η = 0.0312 and φ = 0.9646:
> parm.hrs = c(-0.3556,log(0.0312),0.9646)

> nobs = 1000

> set.seed(179)

> e = rnorm(nobs)

> xi = log(e^2)+1.27

> eta = rnorm(nobs,sd=sqrt(0.0312))

> sv.sim = SsfSim(sv.mod(parm.hrs),

+ mRan=cbind(eta,xi),a1=(-0.3556/(1-0.9646)))

The first 250 simulated squared returns, r2t , and latent squared volatilities,
σ2t , are shown in Figure 14.10.
Starting values for the estimation of ϕ = (γ, lnσ2η, φ)

0 are values close to
the true values:

> sv.start = c(-0.3,log(0.03),0.9)

> names(sv.start) = c("g","ln.sigma2","phi")

Using SsfFitFast, the quasi-maximum likelihood (QML) estimates are

> low.vals = c(-Inf,-Inf,-0.999)

> up.vals = c(Inf,Inf,0.999)

> sv.mle = SsfFitFast(sv.start,sv.sim[,2],"sv.mod",

562 14. State Space Models

Simulated values from SV model

0 50 100 150 200 250

0.
0

0.
00

02
0.

00
04

0.
00

06

volatility
squared returns

FIGURE 14.10. Simulated values from SV model.

+ lower=low.vals,upper=up.vals)

Iteration 0 : objective = 5.147579

...

Iteration 15 : objective = 2.21826

RELATIVE FUNCTION CONVERGENCE

To show the estimates with the QMLE standard errors use summary with
the optional argument method=\qmle"

> summary(sv.mle,method="qmle")

Log-likelihood: -2218.26

1000 observations

Parameters:

Value QMLE Std. Error t value

g -0.4810 0.18190 -2.644

ln.sigma2 -3.5630 0.53020 -6.721

phi 0.9509 0.01838 51.740

Convergence: RELATIVE FUNCTION CONVERGENCE

Using the delta method, the QMLE and estimated standard error for σ2η
are 0.02834 and 0.01503, respectively.
The filtered and smoothed estimates of log-volatility are computed using

> ssf.sv = sv.mod(sv.mle2$parameters)

14.5 Simulation Smoothing 563

Log-Volatility

0 50 100 150 200 250

-1
1

-1
0

-9
-8

actual
filtered
smoothed

FIGURE 14.11. Log-volatility along with filtered and smoothed estimates from
SV model.

> filteredEst.sv = SsfMomentEst(sv.sim[,2],ssf.sv,task="STFIL")

> smoothedEst.sv = SsfCondDens(sv.sim[,2],ssf.sv,task="STSMO")

The first 250 estimates along with actual log-volatility are illustrated in
Figure 14.11

14.5 Simulation Smoothing

The simulation of state and response vectors αt and yt or disturbance
vectors ηt and εt conditional on the observations Yn is called simula-
tion smoothing. Simulation smoothing is useful for evaluating the appro-
priateness of a proposed state space model and for the Bayesian analysis of
state space models using Markov chain Monte Carlo (MCMC) techniques.
The S+FinMetrics/SsfPack function SimSmoDraw generates random draws
from the distributions of the state and response variables or from the dis-
tributions of the state and response disturbances. The arguments expected
by SimSmoDraw are

> args(SimSmoDraw)

function(kf, ssf, task = "DSSIM", mRan = NULL, a1 = NULL)

564 14. State Space Models

where kf is a “KalmanFil” object, ssf is a list which either contains the
minimal necessary components for a state space form or is a valid “ssf”
object and task determines whether the state smoothing (“STSIM”) or
disturbance smoothing (“DSSIM”) is performed.

Example 107 Simulation smoothing from the local level model

Simulated state and response values from the local level model may be
generated using

> KalmanFil.ll = KalmanFil(y.ll,ssf.ll,task="STSIM")

> ll.state.sim = SimSmoDraw(KalmanFil.ll,ssf.ll,

+ task="STSIM")

> class(ll.state.sim)

[1] "SimSmoDraw"

> names(ll.state.sim)

[1] "state" "response" "task"

The resulting simulated values may be visualized using

> plot(ll.state.sim,layout=c(1,2))

To simulate disturbances from the state and response equations, set
task="DSSIM" in the calls to KalmanFil and SimSmoDraw.

14.6 References

[1] Bomhoff, E. J. (1994). Financial Forecasting for Business and Eco-
nomics. Academic Press, San Diego.

[2] Carmona, R. (2001). Statistical Analysis of Financial Data, with an
implementation in Splus. Textbook under review.

[3] Chan, N.H. (2002). Time Series: Applicatios to Finance. John Wiley
& Sons, New York.

[4] Durbin, J. and S.J. Koopman (2001). Time Series Analysis by
State Space Methods. Oxford University Press, Oxford.

[5] Duan, J.-C. and J.-G. Simonato (1999). “Estimating Exponential-
Affine Term Structure Models by Kalman Filter,” Review of Quanti-
tative Finance and Accounting, 13, 111-135.

[6] Hamilton, J.D. (1994). Time Series Analysis. Princeton University
Press, Princeton.

[7] Harvey, A. C. (1989). Forecasting, Structural Time Series Models
and the Kalman Filter. Cambridge University Press, Cambridge.

14.6 References 565

[8] Harvey, A.C. (1993). Time Series Models, 2nd edition. MIT Press,
Cambridge.

[9] Harvey, A.C., E. Ruiz and N. Shephard (1994). “Multivariate
Stochastic Variance Models,” Review of Economic Studies, 61, 247-
264.

[10] Kim, C.-J., and C.R. Nelson (1999). State-Space Models with
Regime Switching. MIT Press, Cambridge.

[11] Koopman, S.J., N. Shephard, and J.A. Doornik (1999). “Sta-
tistical Algorithms for State Space Models Using SsfPack 2.2,” Econo-
metrics Journal, 2, 113-166.

[12] Koopman, S.J., N. Shephard, and J.A. Doornik (2001). “Ssf-
Pack 3.0beta: Statistical Algorithms for Models in State Space,” un-
published manuscript, Free University, Amsterdam.

[13] Engle, R.F. and M.W. Watson (1987). “The Kalman Filter: Ap-
plications to Forecasting and Rational Expectations Models,” in T.F.
Bewley (ed.) Advances in Econometrics: Fifth World Congress, Vol-
ume I. Cambridge University Press, Cambridge.

[14] West, M. and J. Harrison (1997). Bayesian Forecasting and Dy-
namic Models, 2nd edition. Springer-Verlag, New York.

[15] Zivot, E., Wang, J. and S.J. Koopman (2004). “State Space
Models in Economics and Finance Using SsfPack in S+FinMetrics,”
chapter 14 in Unobserved Components Models (A. Harvey, S.J. Koop-
man, and N. Shephard eds.), Cambridge University Press.

