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1 Forecasting

Let {yt} be a covariance stationary are ergodic process, e.g. an ARMA(p, q) process
with Wold representation

yt = µ+
∞X
j=0

ψjεt−j, εt ˜WN(0, σ2) (1)

= µ+ εt + ψ1εt−1 + ψ2εt−2 + · · · (2)

and let It = {yt, yt−1, . . .} denote the information set available at time t. Recall, the
mean and variance of yt are

E[yt] = µ

var(yt) = σ2
∞X
j=0

ψ2j

Define yt+h|t as the forecast of yt+h based on It and knowledge of the parameters in
(1). The forecast error is

εt+h|t = yt+h − yt+h|t

and the mean squared error of the forecast is

MSE(εt+h|t) = E[ε2t+h|t]

= E[(yt+h − yt+h|t)2]

Theorem 1 The minimum MSE forecast (best forecast) of yt+h based on It is

yt+h|t = E[yt+h|It]

Proof. See Hamilton pages 72-73.
Remarks
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• The computation of E[yt+h|It] depends on the distribution of {εt} and may be
a very complicated nonlinear function of the history of {εt}. Even if {εt} is an
uncorrelated process (e.g. white noise) it may be the case that

E[εt+1|It] 6= 0

• If {εt} is independent white noise, then E[εt+1|It] = 0 and E[yt+h|It] will be a
simple linear function of {εt}

yt+h|t = µ+ ψhεt + ψh+1εt−1 + · · ·

1.0.1 Linear Predictors

A linear predictor of yt+h|t is a linear function of the variables in It.

Theorem 2 The minimum MSE linear forecast (best linear predictor) of yt+h based
on It is

yt+h|t = µ+ ψhεt + ψh+1εt−1 + · · ·

Proof. See Hamilton page 74.
The forecast error of the best linear predictor is

εt+h|t = yt+h − yt+h|t
= µ+ εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1 + ψhεt + · · ·
−(µ+ ψhεt + ψh+1εt−1 + · · · )

= εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1

and the MSE of the forecast error is

MSE(εt+h|t) = σ2(1 + ψ21 + · · ·+ ψ2h−1)

Remarks

• E[εt+h|t] = 0

• εt+h|t is uncorrelated with any element in It

• The form of yt+h|t is closely related to the IRF

• MSE(εt+h|t) = var(εt+h|t) < var(yt)

• limh→∞ yt+h|t = µ

• limh→∞MSE(εt+h|t) = var(yt)
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1.0.2 Prediction Confidence Intervals

If {εt} is Gaussian then
yt+h|It ∼ N(yt+h|t, σ2(1 + ψ21 + · · ·+ ψ2h−1))

A 95% confidence interval for the h−step prediction has the form

yt+h|t ± 1.96 ·
q
σ2(1 + ψ21 + · · ·+ ψ2h−1)

1.0.3 Predictions with Estimated Parameters

The best linear predictor with estimated parameters is denoted ŷt+h|t and is given by

ŷt+h|t = µ̂+ ψ̂hε̂t + ψ̂h+1ε̂t−1 + · · ·
where ε̂t is the estimated residual from the fitted model. The forecast error with
estimated parameters is

ε̂t+h|t = yt+h − ŷt+h|t

= εt+h + ψ̂1εt+h−1 + · · ·+ ψ̂h−1εt+1

Because ψ̂1, . . . , ψ̂h−1 are random variables,

MSE(ε̂t+h|t) 6=MSE(εt+h|t) = σ2(1 + ψ21 + · · ·+ ψ2h−1)

1.1 Computing the Best Linear Predictor

The best linear predictor yt+h|t may be computed in many different but equivalent
ways. The algorithm for computing yt+h|t from an AR(1) model is particularly simple
and the methodology allows the computation of forecasts for general ARMA models
as well as multivariate models.

1.1.1 AR(1) Model

Consider the AR(1) model

yt − µ = φ(yt−1 − µ) + εt

εt ˜WN(0, σ2)

where the parameters µ, φ and σ2 are initially known. The Wold representation is (1)
with ψj = φj. Starting at t and iterating forward h periods gives

yt+h = µ+ φh(yt − µ) + εt+h + φεt+h−1 + · · ·+ φh−1εt+1
= µ+ φh(yt − µ) + εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1
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The best linear forecasts of yt+1, yt+2, . . . , yt+h are computed using the chain-rule of
forecasting (law of iterated projections)

yt+1|t = µ+ φ(yt − µ)

yt+2|t = µ+ φ(yt+1|t − µ) = µ+ φ(φ(yt − µ)) = µ+ φ2(yt − µ)
...

yt+h|t = µ+ φ(yt+h−1|t − µ) = µ+ φh(yt − µ)

The corresponding forecast errors are

εt+1|t = yt+1 − yt+1|t = εt+1

εt+2|t = yt+2 − yt+2|t = εt+2 + φεt+1 = εt+2 + ψ1εt+1
...

εt+h|t = yt+h − yt+h|t = εt+h + φεt+h−1 + · · ·+ φh−1εt+1
= εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1

The forecast error variances are

var(εt+1|t) = σ2

var(εt+2|t) = σ2(1 + φ2) = σ2(1 + ψ21)
...

var(εt+h|t) = σ2(1 + φ2 + · · ·+ φ2(h−1)) = σ2
1− φ2h

1− φ2

= σ2(1 + ψ21 + · · ·+ ψ2h−1)

Clearly,

lim
h→∞

yt+h|t = µ = E[yt]

lim
h→∞

var(εt+h|t) =
σ2

1− φ2

= σ2
∞X
h=0

ψ2h = var(yt)

1.1.2 AR(p) Models

Consider the AR(p) model

φ(L)(yt − µ) = εt, εt ∼WN(0, σ2)

φ(L) = 1− φ1L− · · ·φpLp
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The forecasting algorithm for the AR(p) models is essentially the same as that for
AR(1) models one we put the AR(p) model in state space form as a vector AR(1)
model. The AR(p) in state space form is

yt − µ
yt−1 − µ

...
yt−p+1 − µ

 =


φ1 φ2 · · · φp
1 0 · · · 0

. . .
...

0 1 0




yt−1 − µ
yt−2 − µ

...
yt−p − µ

+


εt
0
...
0


or

ξt = Fξt−1+wt

var(wt) = Σw

Starting at t and iterating forward h periods gives

ξt+h = F
hξt +wt+h + Fwt+h−1 + · · ·+ Fh−1wt+1

Then the best linear forecasts of yt+1, yt+2, . . . , yt+h are computed using the chain-rule
of forecasting (law of iterated projections) are

ξt+1|t = Fξt

ξt+2|t = Fξt+1|t= F
2ξt

...

ξt+1|t = Fξt+h−1|t= F
hξt

The forecast for yt+h is given by µ plus the first row of ξt+1|t = F
hξt.

The forecast errors are given by

wt+1|t = ξt+1 − ξt+1|t = wt+1

wt+2|t = ξt+2 − ξt+2|t = wt+2 + Fwt+1

...

wt+h|t = ξt+h − ξt+h|t = wt+h + Fwt+h−1 + · · ·+ Fh−1wt+1

and the corresponding forecast MSE matrices are

var(wt+1|t) = var(wt) = Σw

var(wt+2|t) = var(wt+2) + Fvar(wt+1)F
0

= Σw + FΣwF
0

...

var(wt+h|t) =
h−1X
j=0

FjΣwF
j0

Notice that
var(wt+h|t) = Σw + Fvar(wt+h−1|t)F0

5



2 The Diebold-Mariano Statistic for Comparing

Predictive Accuracy

Let {yt} denote the series to be forecast and let y1t+h|t and y2t+h|t denote two competing
forecasts of yt+h based on It. For example, y

1
t+h|t could be computed from an AR(p)

model and y2t+h|t could be computed from an ARMA(p,q) model. The forecast errors
from the two models are

ε1t+h|t = yt+h − y1t+h|t
ε2t+h|t = yt+h − y2t+h|t

The h−step forecasts are assumed to be computed for t = t0, . . . , T for a total of T0
forecasts giving

{ε1t+h|t}Tt0 , {ε2t+h|t}Tt0
Because the h-step forecasts use overlapping data the forecast errors in {ε1t+h|t}Tt0 and
{ε2t+h|t}Tt0 will be serially correlated.
The accuracy of each forecast is measured by a particular loss function

L(yt+h, y
i
t+h|t) = L(εit+h|t), i = 1, 2

Some popular loss functions are

• Squared error loss: L(εit+h|t) =
³
εit+h|t

´2
• Absolute error loss: L(εit+h|t) =

¯̄̄
εit+h|t

¯̄̄
To determine if one model predicts better than another we may test null hy-
potheses

H0 : E[L(ε
1
t+h|t)] = E[L(ε2t+h|t)]

against the alternative

H1 : E[L(ε
1
t+h|t)] 6= E[L(ε2t+h|t)]

The Diebold-Mariano test is based on the loss differential

dt = L(ε1t+h|t)− L(ε2t+h|t)

The null of equal predictive accuracy is then

H0 : E[dt] = 0

The Diebold-Mariano test statistic is

S =
d̄¡davar(d̄)¢1/2 = d̄³ dLRV d̄/T

´1/2
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where

d̄ =
1

T0

TX
t=t0

dt

LRVd̄ = γ0 + 2
∞X
j=1

γj, γj = cov(dt, dt−j)

and dLRV d̄ is a consistent estimate of the asymptotic (long-run) variance of√
T d̄. The long-run variance is used in the statistic because the sample of loss

differentials {dt}Tt0 are serially correlated for h > 1. Diebold and Mariano (1995)
show that under the null of equal predictive accuracy

S
A

˜ N(0, 1)

So we reject the null of equal predictive accuracy at the 5% level if

|S| > 1.96

One sided tests may also be computed.
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