
VAR Models and Cointegration

The Granger representation theorem links cointegra-

tion to error correction models. In a series of impor-

tant papers and in a marvelous textbook, Soren Jo-

hansen firmly roots cointegration and error correction

models in a vector autoregression framework. This

section outlines Johansen’s approach to cointegration

modeling.

The Cointegrated VAR

Consider the levels VAR(p) for the (n× 1) vector Yt

Yt = ΦDt +Π1Yt−1 + · · ·+ΠpYt−p + εt,

t = 1, . . . , T,

Dt = deterministic terms



Remarks:

• The VAR(p) model is stable if

det(In −Π1z − · · ·−Πpz
p) = 0

has all roots outside the complex unit circle.

• If there are roots on the unit circle then some or
all of the variables in Yt are I(1) and they may

also be cointegrated.

• If Yt is cointegrated then the VAR representation
is not the most suitable representation for anal-

ysis because the cointegrating relations are not

explicitly apparent.



The cointegrating relations become apparent if the

levels VAR is transformed to the vector error correc-

tion model (VECM)

∆Yt = ΦDt +ΠYt−1 + Γ1∆Yt−1
+ · · ·+ Γp−1∆Yt−p+1 + εt

Π = Π1 + · · ·+Πp − In

Γk = −
pX

j=k+1

Πj, k = 1, . . . , p− 1

• In the VECM, ∆Yt and its lags are I(0).

• The term ΠYt−1 is the only one which includes
potential I(1) variables and for ∆Yt to be I(0) it

must be the case thatΠYt−1 is also I(0). There-
fore, ΠYt−1 must contain the cointegrating re-
lations if they exist.



If the VAR(p) process has unit roots (z = 1) then

det(In −Π1 − · · ·−Πp) = 0

⇒ det(Π) = 0

⇒ Π is singular

If Π is singular then it has reduced rank; that is

rank(Π) = r < n.

There are two cases to consider:

1. rank(Π) = 0. This implies that

Π = 0

Yt ∼ I(1) and not cointegrated

The VECM reduces to a VAR(p−1) in first differences

∆Yt= ΦDt+Γ1∆Yt−1 + · · ·+Γp−1∆Yt−p+1+ εt.



2. 0 < rank(Π) = r < n. This implies that Yt

is I(1) with r linearly independent cointegrating vec-

tors and n−r common stochastic trends (unit roots).

Since Π has rank r it can be written as the product

Π
(n×n)

= α
(n×r)

β
(r×n)

0

where α and β are (n× r) matrices with rank(α) =

rank(β) = r. The rows of β0 form a basis for the r

cointegrating vectors and the elements of α distribute

the impact of the cointegrating vectors to the evolu-

tion of ∆Yt. The VECM becomes

∆Yt = ΦDt +αβ0Yt−1 + Γ1∆Yt−1
+ · · ·+ Γp−1∆Yt−p+1 + εt,

where β0Yt−1 ∼ I(0) since β0 is a matrix of cointe-
grating vectors.



Non-uniqueness

It is important to recognize that the factorizationΠ =

αβ0 is not unique since for any r × r nonsingular

matrix H we have

αβ0 = αHH−1β0= (aH)(βH−10)0= a∗β∗0

a∗ = aH, β∗ = βH−10

Hence the factorization Π = αβ0 only identifies the
space spanned by the cointegrating relations. To ob-

tain unique values of α and β0 requires further restric-
tions on the model.



Example: Consider the bivariate VAR(1) model for

Yt = (y1t, y2t)
0

Yt = Π1Yt−1 + ²t.

The VECM is

∆Yt = ΠYt−1 + εt

Π = Π1−I2
AssumingYt is cointegrated there exists a 2×1 vector
β = (β1, β2)

0 such that

β0Yt = β1y1t + β2y2t ∼ I(0)

Using the normalization β1 = 1 and β2 = −β the

cointegrating relation becomes

β0Yt = y1t − βy2t

This normalization suggests the stochastic long-run

equilibrium relation

y1t = βy2t + ut



Since Yt is cointegrated with one cointegrating vec-

tor, rank(Π) = 1 so that

Π = αβ0 =

Ã
α1
α2

!³
1 −β

´
=

Ã
α1 −α1β
α2 −α2β

!
.

The elements in the vector α are interpreted as speed

of adjustment coefficients. The cointegrated VECM

for ∆Yt may be rewritten as

∆Yt = αβ0Yt−1 + εt.

Writing the VECM equation by equation gives

∆y1t = α1(y1t−1 − βy2t−1) + ε1t,

∆y2t = α2(y1t−1 − βy2t−1) + ε2t.

The stability conditions for the bivariate VECM are re-

lated to the stability conditions for the disequilibrium

error β0Yt.



It is straightforward to show that β0Yt follows an

AR(1) process

β0Yt = (1+ β0α)β0Yt−1 + β0εt

or

ut = φut−1 + vt, ut = β0Yt

φ = 1 + β0α = 1 + (α1 − βα2)

vt = β0εt = u1t − βu2t

The AR(1) model for ut is stable as long as

|φ| = |1 + (α1 − βα2)| < 1

For example, suppose β = 1. Then the stability con-

dition is

|φ| = |1 + (α1 − α2)| < 1

which is satisfied if

α1 − α2 < 0 and α1 − α2 > −2.



Johansen’s Methodology for Modeling Cointegra-

tion

The basic steps in Johansen’s methodology are:

1. Specify and estimate a VAR(p) model for Yt.

2. Construct likelihood ratio tests for the rank of Π

to determine the number of cointegrating vectors.

3. If necessary, impose normalization and identifying

restrictions on the cointegrating vectors.

4. Given the normalized cointegrating vectors esti-

mate the resulting cointegrated VECM by maximum

likelihood.



Likelihood Ratio Tests for the Number of Cointe-

grating Vectors

The unrestricted cointegrated VECM is denotedH(r).

The I(1) model H(r) can be formulated as the con-

dition that the rank of Π is less than or equal to r.

This creates a nested set of models

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(n)

H(0) = non-cointegrated VAR

H(n) = stationary VAR(p)

This nested formulation is convenient for developing

a sequential procedure to test for the number r of

cointegrating relationships.



Remarks:

• Since the rank of the long-run impact matrix Π
gives the number of cointegrating relationships

in Yt, Johansen formulates likelihood ratio (LR)

statistics for the number of cointegrating relation-

ships as LR statistics for determining the rank of

Π.

• These LR tests are based on the estimated eigen-
values λ̂1 > λ̂2 > · · · > λ̂n of the matrix Π.

These eigenvalues also happen to equal the squared

canonical correlations between ∆Yt and Yt−1
corrected for lagged ∆Yt and Dt and so lie be-

tween 0 and 1.

• Recall, the rank of Π is equal to the number of

non-zero eigenvalues of Π.



Johansen’s Trace Statistic

Johansen’s LR statistic tests the nested hypotheses

H0(r) : r = r0 vs. H1(r0) : r > r0

The LR statistic, called the trace statistic, is given by

LRtrace(r0) = −T
nX

i=r0+1

ln(1− λ̂i)

• If rank(Π) = r0 then λ̂r0+1, . . . , λ̂n should all

be close to zero and LRtrace(r0) should be small

since ln(1− λ̂i) ≈ 0 for i > r0.

• In contrast, if rank(Π) > r0 then some of λ̂r0+1, . . . , λ̂n

will be nonzero (but less than 1) and LRtrace(r0)

should be large since ln(1 − λ̂i) << 0 for some

i > r0.



Result: The asymptotic null distribution of LRtrace(r0)

is not chi-square but instead is a multivariate version

of the Dickey-Fuller unit root distribution which de-

pends on the dimension n−r0 and the specification of
the deterministic terms. Critical values for this distri-

bution are tabulated in Osterwald-Lenum (1992) for

n− r0 = 1, . . . , 10.



Sequential Procedure for Determining the Number

of Cointegrating Vectors

1. First test H0(r0 = 0) against H1(r0 > 0). If

this null is not rejected then it is concluded that

there are no cointegrating vectors among the n

variables in Yt.

2. If H0(r0 = 0) is rejected then it is concluded

that there is at least one cointegrating vector and

proceed to test H0(r0 = 1) against H1(r0 > 1).

If this null is not rejected then it is concluded that

there is only one cointegrating vector.

3. If the H0(r0 = 1) is rejected then it is concluded

that there is at least two cointegrating vectors.

4. The sequential procedure is continued until the

null is not rejected.



Johansen’s Maximum Eigenvalue Statistic

Johansen also derives a LR statistic for the hypotheses

H0(r0) : r = r0 vs. H1(r0) : r0 = r0 + 1

The LR statistic, called the maximum eigenvalue statis-

tic, is given by

LRmax(r0) = −T ln(1− λ̂r0+1)

As with the trace statistic, the asymptotic null dis-

tribution of LRmax(r0) is not chi-square but instead

is a complicated function of Brownian motion, which

depends on

• the dimension n− r0

• the specification of the deterministic terms.

Critical values for this distribution are tabulated in

Osterwald-Lenum (1992) for n− r0 = 1, . . . , 10.



Specification of Deterministic Terms

Following Johansen (1995), the deterministic terms in

are restricted to the form

ΦDt = μt = μ0 + μ1t

If the deterministic terms are unrestricted then the

time series in Yt may exhibit quadratic trends and

there may be a linear trend term in the cointegrating

relationships. Restricted versions of the trend param-

eters μ0 and μ1 limit the trending nature of the series

in Yt. The trend behavior of Yt can be classified into

five cases:



1. Model H2(r): μt = 0 (no constant):

∆Yt = αβ0Yt−1
+Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt,

and all the series in Yt are I(1) without drift and

the cointegrating relations β0Yt have mean zero.

2. Model H∗1(r): μt = μ0 = αρ0 (restricted con-

stant):

∆Yt = α(β0Yt−1 + ρ0)

+Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt,

the series in Yt are I(1) without drift and the

cointegrating relations β0Yt have non-zero means

ρ0.



3. Model H1(r): μt = μ0 (unrestricted constant):

∆Yt = μ0 +αβ0Yt−1
+Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt

the series in Yt are I(1) with drift vector μ0 and

the cointegrating relations β0Yt may have a non-

zero mean.

4. Model H∗(r): μt = μ0+αρ1t (restricted trend).

The restricted VECM is

∆Yt = μ0 +α(β0Yt−1 + ρ1t)

+Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt

the series in Yt are I(1) with drift vector μ0
and the cointegrating relations β0Yt have a linear

trend term ρ1t.



5. Model H(r): μt = μ0 + μ1t (unrestricted con-

stant and trend). The unrestricted VECM is

∆Yt = μ0 + μ1t+αβ0Yt−1
+Γ1∆Yt−1 + · · ·+ Γp−1∆Yt−p+1 + εt,

the series inYt are I(1) with a linear trend (quadratic

trend in levels) and the cointegrating relations

β0Yt have a linear trend.



Maximum Likelihood Estimation of the Cointegrated
VECM

If it is found that rank(Π) = r, 0 < r < n, then the

cointegrated VECM

∆Yt = ΦDt +αβ0Yt−1 + Γ1∆Yt−1
+ · · ·+ Γp−1∆Yt−p+1 + εt,

becomes a reduced rank multivariate regression. Jo-

hansen derived the maximum likelihood estimation

of the parametes under the reduced rank restriction

rank(Π) = r (see Hamilton for details). He shows

that

• β̂mle = (v̂1, . . . , v̂r),where v̂i are the eigenvec-
tors associated with the eigenvalues λ̂i,

• The MLEs of the remaining parameters are ob-
tained by least squares estimation of

∆Yt = ΦDt +αβ̂
0
mleYt−1 + Γ1∆Yt−1

+ · · ·+ Γp−1∆Yt−p+1 + εt,



Normalized Estimates of α and β

• The factorization

Π̂mle= α̂mleβ̂
0
mle

is not unique

• The columns of β̂mle may be interpreted as lin-

ear combinations of the underlying cointegrating

relations.

• For interpretations, it is often convenient to nor-
malize or identify the cointegrating vectors by

choosing a specific coordinate system in which

to express the variables.



Johansen’s normalized MLE

• An arbitrary normalization, suggested by Johansen,
is to solve for the triangular representation of the

cointegrated system (default method in Eviews).

The resulting normalized cointegrating vector is

denoted β̂c,mle. The normalization of the MLE

for β to β̂c,mle will affect the MLE of α but not

the MLEs of the other parameters in the VECM.

• Let β̂c,mle denote the MLE of the normalized

cointegrating matrix βc. Johansen (1995) showed

that

T (vec(β̂c,mle)− vec(βc))

is asymptotically (mixed) normally distributed

• β̂c,mle is super consistent



Testing Linear Restrictions on β

The Johansen MLE procedure only produces an esti-

mate of the basis for the space of cointegrating vec-

tors. It is often of interest to test if some hypothesized

cointegrating vector lies in the space spanned by the

estimated basis:

H0 : β
(r×n)

0 =

Ã
β00
φ0

!
β00 = s× n matrix of hypothesized cv’s

φ0 = (r − s)× n matrix of remaining unspecified cv’s

Result: Johansen (1995) showed that a likelihood ra-

tio statistic can be computed, which is asymptotically

distributed as a χ2 with s(n− r) degrees of freedom.



Cointegration and the BN Decomposition

• The Granger Representation Theorem (GRT) pro-
vides an explicit link between the VECM form of

a cointegrated VAR and the Wold or moving av-

erage representation.

• The GRT also provides insight into the Beveridge-
Nelson decomposition of a cointegrated time se-

ries.

Let yt be cointegrated with r cointegrating vectors

captured in the r × n matrix β0 so that β0yt is I(0).
Suppose ∆yt has the Wold representation

∆yt = μ+Ψ(L)ut

Ψ(L) =
∞X
k=0

ΨkL
k and Ψ0 = In



Using Ψ(L) = Ψ(1) + (1−L)Ψ̃(L), The BN decom-

position of yt is given by

yt = y0 + μt+Ψ(1)
tX

k=1

ut + ũt − ũ0

ut = Ψ̃(L)ut

Multiply both sides by β0 to give

β0yt = β0μt+ β0Ψ(1)
tX

k=1

ut + β0(y0 + ũt − ũ0)

Since β0yt is I(0) we must have that

β0Ψ(1) = 0

Ψ(1) is singular and has rank n− r

The singularity of Ψ(1) implies that the long-run co-

variance of ∆yt

Ψ(1)ΣΨ(1)0

is singular and has rank n− r.



Now suppose that yt has the VECM representation

Γ(L)∆yt = c+ Πyt−1 + ut

Π = αβ0

where the n× r matrices α and β both have rank r.

The Granger Representation Theorem (GRT) gives an

explicit mapping from the BN decomposition to the

parameters of the VECM. Define the n× (n− r) full

rank matrices α⊥ and β⊥ such that

• α0α⊥ = 0, β0β⊥ = 0

• rank(α,α⊥) = n, rank(β, β⊥) = n

• (α0⊥Γ(1)β⊥)−1 exists where Γ(1) = In−
Pp−1
i=1 Γi

• β⊥(α0⊥Γ(1)β⊥)
−1α0⊥+α0(α0⊥Γ(1)β⊥)

−1β0 = In



Theorem (GRT). If det(A(z)) = 0 implies that |z|
> 1 or z = 1 and rank(Π) = r < n, then there exist

n× r matrices α and β of rank r such that

Π = αβ0.

A necessary and sufficient for β0yt to be I(0) is that

α0⊥Γ(1)β⊥

has full rank. Then the BN decomposition of yt has

the representation

yt = μt+Ψ(1)
tX

k=1

ut + y0 + ũt − ũ0

where

Ψ(1) = β⊥(α
0
⊥Γβ⊥)

−1α0⊥

yt is a cointegrated process with cointegrating vectors

given by the rows of β0.



The main part of the GRT is the explicit representa-

tion for Ψ(1) :

Ψ(1) = β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥.

Notice that

β0Ψ(1) = β0β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥ = 0
Ψ(1)α = β⊥(α

0
⊥Γ(1)β⊥)

−1α0⊥α = 0

The common trends in yt are extracted using

TSt = Ψ(1)
tX

k=1

ut

= β⊥(α
0
⊥Γ(1)β⊥)

−1α0⊥
tX

k=1

ut

= ξα0⊥
tX

k=1

ut

where ξ = β⊥(α0⊥Γ(1)β⊥)
−1. Hence the common

trends are the linear combinations

α0⊥
tX

k=1

ut



The GRT in a Cointegrated Bivariate VAR(1) Model

To illustrate the GRT, consider the simple cointe-

grated bivariate VECM

∆yt = αβ0yt−1 + ut.

where α = (−0.1, 0.1)0 and β = (1,−1)0. Here there
is one cointegrating vector and one common trend. It

may be easily deduced that

Γ(1) = I2,

α⊥ = (1, 1)0,

β⊥ = (1, 1)0,

α0⊥Γ(1)β⊥ = 2.

The common trend is then given by

TSt = α0⊥
tX

k=1

ut = (1, 1)

Ã Pt
k=1 u1tPt
k=1 u2t

!
=

tX
k=1

u1t+
tX

k=1

u2t

and the loadings on the common trend are

ξ = β⊥(α
0
⊥Γ(1)β⊥)

−1 =

Ã
1
2
1
2

!
.



Now suppose that α = (−0.1, 0)0 so that y2t is weakly
and strongly exogenous exogenous. The VECM has

the simplified form

∆y1t = −0.1 · β0yt−1 + u1t

∆y2t = u2t

Then

Γ(1) = I2,

α⊥ = (0, 1)0,

β⊥ = (1, 1)0,

α0⊥Γ(1)β⊥ = 1.

Interestingly, the common trend is simply y2t :

TSt = α0⊥
tX

k=1

ut = (0, 1)

Ã Pt
k=1 u1tPt
k=1 u2t

!
=

tX
k=1

u2t = y2t

The loadings on the common trend are

ξ = β⊥(α
0
⊥Γ(1)β⊥)

−1 =

Ã
1
1

!
.


