
Cointegration

• The VAR models discussed so fare are appropri-
ate for modeling I(0) data, like asset returns or

growth rates of macroeconomic time series.

• Economic theory, however, often implies equilib-
rium relationships between the levels of time se-

ries variables that are best described as being

I(1).

• Similarly, arbitrage arguments imply that the I(1)
prices of certain financial time series are linked.

• The statistical concept of cointegration is required
to make sense of regression models and VAR mod-

els with I(1) data.



Spurious Regression

If some or all of the variables in a regression are I(1)
then the usual statistical results may or may not hold.
One important case in which the usual statistical re-
sults do not hold is spurious regression, when all the
regressors are I(1) and not cointegrated. That is,
there is no linear combination of the variables that is
I(0).

Example: Granger-Newbold JOE 1974

Consider two independent and not cointegrated I(1)
processes y1t and y2t

yit = yit−1 + εit,

εit ∼ GWN(0, 1), i = 1, 2

Estimated levels and differences regressions

y1 = 6.74
(0.39)

+ 0.40
(0.05)

· y2, R2 = 0.21

∆y1 = −0.06
(0.07)

+ 0.03
(0.06)

·∆y2, R
2 = 0.00



Statistical Implications of Spurious Regression

Let Yt = (y1t, . . . , ynt)
0 denote an (n × 1) vector of

I(1) time series that are not cointegrated. Write

Yt = (y1t,Y
0
2t)
0,

and consider regressing of y1t on Y2t giving

y1t = β̂
0
2Y2t + ût

Since y1t is not cointegrated with Y2t

• true value of β2 is zero

• The above is a spurious regression and ût ∼ I(1).



The following results about the behavior of β̂2 in the
spurious regression are due to Phillips (1986):

• β̂2 does not converge in probability to zero but
instead converges in distribution to a non-normal

random variable not necessarily centered at zero.

This is the spurious regression phenomenon.

• The usual OLS t-statistics for testing that the

elements of β2 are zero diverge to ±∞ as T →
∞. Hence, with a large enough sample it will

appear that Yt is cointegrated when it is not if

the usual asymptotic normal inference is used.

• The usual R2 from the regression converges to

unity as T →∞ so that the model will appear to

fit well even though it is misspecified.

• Regression with I(1) data only makes sense when
the data are cointegrated.



Intuition

Recall, with I(1) data sample moments converge to

functions of Brownian motion. Consider two indepen-

dent and not cointegrated I(1) processes y1t and y2t :

yit = yit−1 + εit, εit ∼WN(0, σ2i ), i = 1, 2

Then

T−2
TX
t=1

y2it ⇒ σ2i

Z 1
0
Wi(r)

2dr, i = 1, 2

T−2
TX
t=1

y1ty2t ⇒ σ1σ2

Z 1
0
W1(r)W2(r)dr

where W1(r) and W2(r) are independent Wiener pro-

cesses.



In the regression

y1t = β̂y2t + ût

Phillips derived the following convergence result using

the FCLT and the CMT:

β̂ =

⎛⎝T−2 TX
t=1

y22t

⎞⎠−1 T−2 TX
t=1

y1ty2t

⇒
Ã
σ22

Z 1
0
W2(r)

2dr

!−1
σ1σ2

Z 1
0
W1(r)W2(r)dr

Therefore,

β̂
p9 0

β̂ ⇒ random variable



Cointegration

Let Yt = (y1t, . . . , ynt)
0 denote an (n × 1) vector of

I(1) time series. Yt is cointegrated if there exists an

(n× 1) vector β = (β1, . . . , βn)0 such that

β0Yt = β1y1t + · · ·+ βnynt ∼ I(0)

In words, the nonstationary time series in Yt are coin-

tegrated if there is a linear combination of them that

is stationary or I(0).

• The linear combination β0Yt is often motivated

by economic theory and referred to as a long-run

equilibrium relationship.

• Intuition: I(1) time series with a long-run equilib-
rium relationship cannot drift too far apart from

the equilibrium because economic forces will act

to restore the equilibrium relationship.



Normalization

The cointegration vector β is not unique since for any

scalar c

c · β0Yt = β∗0Yt ∼ I(0)

Hence, some normalization assumption is required to

uniquely identify β. A typical normalization is

β = (1,−β2, . . . ,−βn)0

so that

β0Yt = y1t − β2y2t − · · ·− βnynt ∼ I(0)

or

y1t = β2y2t + · · ·+ βnynt + ut

ut ∼ I(0) = cointegrating residual

In long-run equilibrium, ut = 0 and the long-run equi-

librium relationship is

y1t = β2y2t + · · ·+ βnynt



Multiple Cointegrating Relationships

If the (n× 1) vector Yt is cointegrated there may be
0 < r < n linearly independent cointegrating vectors.
For example, let n = 3 and suppose there are r = 2
cointegrating vectors

β1 = (β11, β12, β13)
0

β2 = (β21, β22, β23)
0

Then

β01Yt = β11y1t + β12y2t + β13y3t ∼ I(0)

β02Yt = β21y1t + β22y2t + β23y3t ∼ I(0)

and the (3× 2) matrix

B0 =

Ã
β01
β02

!
=

Ã
β11 β12 β13
β21 β22 β33

!
forms a basis for the space of cointegrating vectors.
The linearly independent vectors β1 and β2 in the
cointegrating basis B are not unique unless some nor-
malization assumptions are made. Furthermore, any
linear combination of β1 and β2, e.g. β3 = c1β1 +
c2β2 where c1 and c2 are constants, is also a cointe-
grating vector.



Examples of Cointegration and Common Trends in

Economics and Finance

Cointegration naturally arises in economics and fi-

nance. In economics, cointegration is most often asso-

ciated with economic theories that imply equilibrium

relationships between time series variables:

• The permanent income model implies cointegra-
tion between consumption and income, with con-

sumption being the common trend.

• Money demand models imply cointegration be-
tween money, income, prices and interest rates.

• Growth theory models imply cointegration between
income, consumption and investment, with pro-

ductivity being the common trend.



• Purchasing power parity implies cointegration be-
tween the nominal exchange rate and foreign and

domestic prices.

• Covered interest rate parity implies cointegration
between forward and spot exchange rates.

• The Fisher equation implies cointegration between
nominal interest rates and inflation.

• The expectations hypothesis of the term struc-

ture implies cointegration between nominal inter-

est rates at different maturities.

• The present value model of stock prices states
that a stock’s price is an expected discounted

present value of its expected future dividends or

earnings.



Remarks:

• The equilibrium relationships implied by these eco-
nomic theories are referred to as long-run equilib-

rium relationships, because the economic forces

that act in response to deviations from equilibri-

ium may take a long time to restore equilibrium.

As a result, cointegration is modeled using long

spans of low frequency time series data measured

monthly, quarterly or annually.

• In finance, cointegration may be a high frequency
relationship or a low frequency relationship. Coin-

tegration at a high frequency is motivated by ar-

bitrage arguments.

— The Law of One Price implies that identical

assets must sell for the same price to avoid

arbitrage opportunities. This implies cointe-

gration between the prices of the same asset

trading on different markets, for example.



— Similar arbitrage arguments imply cointegra-

tion between spot and futures prices, and spot

and forward prices, and bid and ask prices.

Here the terminology long-run equilibrium relationship

is somewhat misleading because the economic forces

acting to eliminate arbitrage opportunities work very

quickly. Cointegration is appropriately modeled using

short spans of high frequency data in seconds, min-

utes, hours or days.



Cointegration and Common Trends

If the (n × 1) vector time series Yt is cointegrated

with 0 < r < n cointegrating vectors then there are

n− r common I(1) stochastic trends.

For example, let

Yt = (y1t, y2t)
0 ∼ I(1)

εt = (ε1t, ε2t, ε3t)
0 ∼ I(0)

and suppose that Yt is cointegrated with cointegrat-

ing vector β = (1,−β2)0. This cointegration relation-
ship may be represented as

y1t = β2

tX
s=1

ε1s + ε3t

y2t =
tX

s=1

ε1s + ε2t

The common stochastic trend is
Pt
s=1 ε1s.



Notice that the cointegrating relationship annihilates

the common stochastic trend:

β0Yt = y1t − β2y2t

= β2

tX
s=1

ε1s + ε3t − β2

⎛⎝ tX
s=1

ε1s + ε2t

⎞⎠
= ε3t − β2ε2t ∼ I(0).



Some Simulated Cointegrated Systems

Cointegrated systems may be conveniently simulated

using Phillips’ (1991) triangular representation. For

example, consider a bivariate cointegrated system for

Yt = (y1t, y2t)
0 with cointegrating vector β = (1,−β2)0.

A triangular representation has the form

y1t = β2y2t + ut, where ut ∼ I(0)

y2t = y2t−1 + vt, where vt ∼ I(0)

• The first equation describes the long-run equilib-
rium relationship with an I(0) disequilibrium error

ut.

• The second equation specifies y2t as the common
stochastic trend with innovation vt:

y2t = y20 +
tX

j=1

vj.



• In general, the innovations ut and vt may be con-
temporaneously and serially correlated. The time

series structure of these innovations characterizes

the short-run dynamics of the cointegrated sys-

tem.

• The system with β2 = 1, for example, might be

used to model the behavior of the logarithm of

spot and forward prices, spot and futures prices,

stock prices and dividends, or consumption and

income.



Example: Bivariate system with β = (1,−1)0

y1t = y2t + ut

y2t = y2t−1 + vt

ut = 0.75ut−1 + εt,

εt ∼ iid N(0, (0.5)2),

vt ∼ iid N(0, (0.5)2)

Note: y2t defines the common trend



Trivariate cointegrated system with 1 cointegrating

vector β = (1,−β1, β2)0

y1t = β1y2t + β2y3t + ut, ut ∼ I(0)

y2t = y2t−1 + vt, vt ∼ I(0)

y3t = y3t−1 +wt, wt ∼ I(0)

An example of a trivariate cointegrated system with

one cointegrating vector is a system of nominal ex-

change rates, home country price indices and foreign

country price indices. A cointegrating vector β =

(1,−1,−1)0 implies that the real exchange rate is sta-
tionary.



Example: Trivariate cointegrated system β = (1,−0.5,−0.5)0

y1t = 0.5y2t + 0.5y3t + ut,

ut = 0.75ut−1 + εt, εt ∼ iid N(0, (0.5)2)
y2t = y2t−1 + vt, vt ∼ iid N(0, (0.5)2)
y3t = y3t−1 +wt, wt ∼ iid N(0, (0.5)2)

Note: y2t and y3t are the common trends



Simulated trivariate cointegrated system with 2 coin-

tegrating vectors

A triangular representation for this system with cointe-

grating vectors β1 = (1, 0,−β13)0 and β2 = (0, 1,−β23)0
is

y1t = β13y3t + ut, ut ∼ I(0)

y2t = β23y3t + vt, vt ∼ I(0)

y3t = y3t−1 +wt, wt ∼ I(0)

An example in finance of such a system is the term

structure of interest rates where y3 represents the

short rate and y1 and y2 represent two different long

rates. The cointegrating relationships would indicate

that the spreads between the long and short rates are

stationary.



Example: Trivariate system with β1 = (1, 0,−1)0,
β2 = (0, 1,−1)0

y1t = y3t + ut,

ut = 0.75ut−1 + εt, εt ∼ iid N(0, (0.5)2)
y2t = y3t + vt,

vt = 0.75vt−1 + ηt, ηt ∼ iid N(0, (0.5)2)
y3t = y3t−1 +wt, wt ∼ iid N(0, (0.5)2)

Note: y3t defines the common trend.



Cointegration and Error Correction Models

Consider a bivariate I(1) vector Yt = (y1t, y2t)
0 and

assume thatYt is cointegrated with cointegrating vec-

tor β = (1,−β2)0 so that β0Yt = y1t−β2y2t is I(0).

Engle and Granger’s famous (1987) Econometrica pa-

per showed that cointegration implies the existence of

an error correction model (ECM) of the form

∆y1t = c1 + α1(y1t−1 − β2y2t−1)

+
X
j

ψ
j
11∆y1t−j +

X
j

ψ
j
12∆y2t−j + ε1t

∆y2t = c2 + α2(y1t−1 − β2y2t−1)

+
X
j

ψ
j
21∆y1t−j +

X
j

ψ
j
22∆y2t−j + ε2t

The ECM links the long-run equilibrium relationship

implied by cointegration with the short-run dynamic

adjustment mechanism that describes how the vari-

ables react when they move out of long-run equilib-

rium.



Let yt denote the log of real income and ct denote the

log of consumption and assume that Yt = (yt, ct)
0

is I(1). The Permanent Income Hypothesis implies

that income and consumption are cointegrated with

β = (1,−1)0:

ct = μ+ yt + ut

μ = E[ct − yt]

ut ∼ I(0)

Suppose the ECM has the form

∆yt = γy + αy(ct−1 − yt−1 − μ) + εyt

∆ct = γc + αc(ct−1 − yt−1 − μ) + εct

The first equation relates the growth rate of income

to the lagged disequilibrium error ct−1 − yt−1 − μ,

and the second equation relates the growth rate of

consumption to the lagged disequilibrium as well. The

reactions of yt and ct to the disequilibrium error are

captured by the adjustment coefficients αy and αc.



Consider the special case

∆yt = γy + 0.5(ct−1 − yt−1 − μ) + εyt,

∆ct = γc + εct.

Consider three situations:

1. ct−1 − yt−1 − μ = 0. Then

E[∆yt|Yt−1] = γy

E[∆ct|Yt−1] = γd

2. ct−1 − yt−1 − μ > 0. Then

E[∆yt|Yt−1] = γy + 0.5(ct−1 − yt−1 − μ) > γy

Here the consumption has increased above its

long-run mean (positive disequilibrium error) and

the ECM predicts that yt will grow faster than its

long-run rate to restore the consumption-income

ratio its long-run mean.



3. ct−1 − yt−1 − μ < 0. Then

E[∆yt|Yt−1] = γy + 0.5(ct−1 − yt−1 − μ) < cy

Here consumption-income ratio has decreased be-

low its long-run mean (negative disequilibrium er-

ror) and the ECM predicts that yt will grow more

slowly than its long-run rate to restore the consumption-

income ratio to its long-run mean.



Tests for Cointegration

Let the (n × 1) vector Yt be I(1). Recall, Yt is

cointegrated with 0 < r < n cointegrating vectors if

there exists an (r × n) matrix B0 such that

B0Yt =

⎛⎜⎝ β01Yt
...

β0rYt

⎞⎟⎠ =
⎛⎜⎝ u1t

...
urt

⎞⎟⎠ ∼ I(0)

Testing for cointegration may be thought of as test-

ing for the existence of long-run equilibria among the

elements of Yt.



Cointegration tests cover two situations:

• There is at most one cointegrating vector

— Originally considered by Engle and Granger
(1986), “Cointegration and Error Correction:
Representation, Estimation and Testing,” Econo-
metrica. They developed a simple two-step
residual-based testing procedure based on re-
gression techniques.

• There are possibly 0 ≤ r < n cointegrating vec-
tors.

— Originally considered by Johansen (1988), “Sta-
tistical Analysis of Cointegration Vectors,” Jour-
nal of Economics Dynamics and Control. He
developed a sophisticated sequential procedure
for determining the existence of cointegration
and for determining the number of cointegrat-
ing relationships based on maximum likelihood
techniques.



Residual-Based Tests for Cointegration

Engle and Granger’s two-step procedure for determin-

ing if the (n× 1) vector β is a cointegrating vector is
as follows:

• Form the cointegrating residual β0Yt = ut

• Perform a unit root test on ut to determine if it

is I(0).

The null hypothesis in the Engle-Granger procedure is

no-cointegration and the alternative is cointegration.



There are two cases to consider.

1. The proposed cointegrating vector β is pre-specified

(not estimated). For example, economic theory

may imply specific values for the elements in β

such as β = (1,−1)0. The cointegrating residual
is then readily constructed using the prespecified

cointegrating vector.

2. The proposed cointegrating vector is estimated

from the data and an estimate of the cointegrat-

ing residual β̂
0
Yt = ût is formed.

Note: Tests for cointegration using a pre-specified coin-

tegrating vector are generally much more powerful

than tests employing an estimated vector.



Testing for Cointegration When the Cointegrating

Vector Is Pre-specified

Let Yt denote an (n×1) vector of I(1) time series, let
β denote an (n× 1) prespecified cointegrating vector
and let

ut = β0Yt = cointegrating residual

The hypotheses to be tested are

H0 : ut = β0Yt ∼ I(1) (no cointegration)

H1 : ut = β0Yt ∼ I(0) (cointegration)

• Any unit root test statistic may be used to eval-
uate the above hypotheses. The most popular

choices are the ADF and PP statistics, but one

may also use the more powerful ERS and Ng-

Perron tests.

• Cointegration is found if the unit root test rejects
the no-cointegration null.



• It should be kept in mind, however, that the coin-
tegrating residual may include deterministic terms

(constant or trend) and the unit root tests should

account for these terms accordingly.



Testing for Cointegration When the Cointegrating
Vector Is Estimated

Let Yt denote an (n × 1) vector of I(1) time series
and let β denote an (n × 1) unknown cointegrating
vector. The hypotheses to be tested are

H0 : ut = β0Yt ∼ I(1) (no cointegration)

H1 : ut = β0Yt ∼ I(0) (cointegration)

• Since β is unknown, to use the Engle-Granger

procedure it must be first estimated from the

data.

• Before β can be estimated some normalization

assumption must be made to uniquely identify it.

• A common normalization is to specifyYt = (y1t,Y
0
2t)
0

where Y2t = (y2t, . . . , ynt)
0 is an ((n − 1) × 1)

vector and the cointegrating vector is normalized

as β = (1,−β02)0.



Engle and Granger propose estimating the normalized

cointegrating vector β2 by least squares from the re-

gression

y1t = γ0Dt + β02Y2t + ut

Dt = deterministic terms

and testing the no-cointegration hypothesis with a

unit root test using the estimated cointegrating resid-

ual

ût = y1t − γ̂0Dt − β̂2Y2t

The unit root test regression in this case is without

deterministic terms (constant or constant and trend).

For example, if one uses the ADF test, the test re-

gression is

∆ût = πût−1 +
pX

j=1

ξ∆ût−j + error



Distribution Theory

• Phillips and Ouliaris (PO) (1990) show that ADF
and PP unit root tests (t-tests and normalized

bias) applied to the estimated cointegrating resid-

ual do not have the usual Dickey-Fuller distribu-

tions under the null hypothesis of no-cointegration.

• Due to the spurious regression phenomenon un-
der the null hypothesis, the distribution of the

ADF and PP unit root tests have asymptotic dis-

tributions that are functions of Wiener processes

that

— Depend on the deterministic terms in the re-

gression used to estimate β2

— Depend on the number of variables, n− 1, in
Y2t.



• These distributions are known as the Phillips-Ouliaris
(PO) distributions, and are described in Phillips

and Ouliaris (1990).



To further complicate matters, Hansen (1992) showed

the appropriate PO distributions of the ADF and PP

unit root tests applied to the residuals also depend on

the trend behavior of y1t and Y2t as follows:

Case I: Y2t and y1t are both I(1) without drift and

Dt = 1. The ADF and PP unit root test statis-

tics follow the PO distributions, adjusted for a

constant, with dimension parameter n− 1.

Case II: Y2t is I(1) with drift, y1t may or may not be

I(1) with drift andDt = 1. The ADF and PP unit

root test statistics follow the PO distributions,

adjusted for a constant and trend, with dimension

parameter n − 2. If n − 2 = 0 then the ADF

and PP unit root test statistics follow the DF

distributions adjusted for a constant and trend.



Case III: Y2t is I(1) without drift, y1t is I(1) with

drift and Dt = (1, t)0. The resulting ADF and

PP unit root test statistics on the residuals follow

the PO distributions, adjusted for a constant and

trend, with dimension parameter n− 1.

Example: PO Critical Values

PO Critical Values: Case I
n-1 1% 5%
1 -3.89 -3.36
2 -4.29 -3.74
3 -4.64 -4.09
4 -4.96 -4.41
5 -5.24 -4.71



Regression-Based Estimates of Cointegrating Vec-

tors and Error Correction Models

Least Square Estimator

Least squares may be used to consistently estimate a

normalized cointegrating vector. However, the asymp-

totic behavior of the least squares estimator is non-

standard. The following results about the behavior of

β̂2 if Yt is cointegrated are due to Stock (1987) and

Phillips (1991):

• T (β̂2 − β2) converges in distribution to a non-

normal random variable not necessarily centered

at zero.

• The least squares estimate β̂2 is consistent for
β2 and converges to β2 at rate T instead of the

usual rate T 1/2. That is, β̂2 is super consistent.



• β̂2 is consistent even if Y2t is correlated with ut
so that there is no asymptotic simultaneity bias.

• In general, the asymptotic distribution of T (β̂2−
β2) is asymptotically biased and non-normal. The

usual OLS formula for computing davar(β̂2) is in-
correct and so the usual OLS standard errors are

not correct.

• Even though the asymptotic bias goes to zero as
T gets large β̂2 may be substantially biased in

small samples. The least squres estimator is also

not efficient.

The above results indicate that the least squares es-

timator of the cointegrating vector β2 could be im-

proved upon. A simple improvement is suggested by

Stock and Watson (1993).



What causes the bias and non-normality in β̂2?

Assume a triangular representation of the form

y1t = Y02tβ2 + u1t

Y2t = Y2t−1 + u2t

The bias and non-normality is a function of the time

series structure of ut = (u1t,u
0
2t)
0. Assume a Wold

structure for utÃ
u1t
u2t

!
=

Ã
ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

!Ã
ε1t
ε2t

!
Ã
ε1t
ε2t

!
∼ iid N

ÃÃ
0
0

!
,

Ã
σ11 σ12
σ21 Σ22

!!

Result: There is no asymptotic bias if ut ∼WN(0, In)



Stock and Watson’s Efficient Lead/Lag Estimator

Stock andWatson (1993) provide a very simple method

for obtaining an asymptotically efficient (equivalent

to maximum likelihood) estimator for the normalized

cointegrating vector β2 as well as a valid formula for

computing its asymptotic variance. Let

Yt = (y1t,Y
0
2t)
0

Y2t = (y2t, . . . , ynt)
0

β = (1,−β02)0



Stock and Watson’s efficient estimation procedure is:

• Augment the cointegrating regression of y1t on
Y2t with appropriate deterministic terms Dt with

p leads and lags of ∆Y2t

y1t = γ0Dt + β02Y2t +
pX

j=−p
ψ0j∆Y2t−j + ut

= γ0Dt + β02Y2t +ψ00∆Y2t
+ψ0p∆Y2t+p + · · ·+ψ01∆Y2t+1
+ψ0−1∆Y2t−1 + · · ·+ψ0−p∆Y2t−p + ut

• Estimate the augmented regression by least squares.
The resulting estimator of β2 is called the dy-

namic OLS estimator and is denoted β̂2,DOLS.

It will be consistent, asymptotically normally dis-

tributed and efficient (equivalent to MLE) un-

der certain assumptions (see Stock and Watson

(1993))



• Asymptotically valid standard errors for the indi-
vidual elements of β̂2,DOLS are given by the OLS

standard errors multiplied by the ratioÃ
σ̂2uclrv(ut)

!1/2
where σ̂2u is the OLS estimate of var(ut) andclrv(ut) is any consistent estimate of the long-run
variance of ut using the residuals ût from. Al-

ternatively, the Newey-West HAC standard errors

may also be used.

• An alternative method to correct the standard er-
rors utilizes a Cochrane-Orcutt GLS transforma-

tion of the error term. This is called the dynamic

GLS estimator. Recently, Okagi and Ling (2005)

have utilized this estimator to produce improved

tests for cointegration based on Hausman-type

tests.



Estimating Error Correction Models by Least Squares

Consider a bivariate I(1) vector Yt = (y1t, y2t)
0 and

assume thatYt is cointegrated with cointegrating vec-

tor β = (1,−β2)0 so that β0Yt = y1t−β2y2t is I(0).

Suppose one has a consistent estimate β̂2 (by OLS or

DOLS) of the cointegrating coefficient and is inter-

ested in estimating the corresponding error correction

model for ∆y1t and ∆y2t using

∆y1t = c1 + α1(y1t−1 − β̂2y2t−1)

+
X
j

ψ
j
11∆y1t−j +

X
j

ψ
j
12∆y2t−j + ε1t

∆y2t = c2 + α2(y1t−1 − β̂2y2t−1)

+
X
j

ψ
j
21∆y1t−j +

X
j

ψ222∆y2t−j + ε2t

• Because β̂2 is super consistent it may be treated
as known in the ECM, so that the estimated dis-

equilibrium error y1t − β̂2y2t may be treated like

the known disequilibrium error y1t − β2y2t.



• Since all variables in the ECM are I(0), the two

regression equations may be consistently estimated

using ordinary least squares (OLS).

• Alternatively, the ECM system may be estimated

by seemingly unrelated regressions (SUR) to in-

crease efficiency if the number of lags in the two

equations are different.


