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1 Maximum Likelihood Estimation of ARMA Mod-
els

For iid data with marginal pdf f(y;; @), the joint density function for a sample y =
(y1,--.,yr) is simply the product of the marginal densities for each observation

T
F(y;0) = fyr, . yr; 0) = [ [ f(ui; 0)
t=1

The likelihood function is this joint density treated as a function of the parameters
0 given the data y :

T

L@ly) = L@y, ...,yr) = Hf(yt; 0)

t=1

The log-likelihood then as the simple form

T
I L(Bly) =) In f(y;6)
t=1

For a sample from a covariance stationary time series {y:}, the construction of
the log-likelihood give above doesn’t work because the random variables in the sam-
ple (y1,...,yr) are not iid. One solution is to try to determine the joint density
f(y1,...,yr; @) directly, which requires, among other things, the 7" x T variance-
covariance matrix var(y). Hamilton describes this approach in detail for Gaussian
ARMA processes. An alternative approach relies on factorization of the joint den-
sity into a series of conditional densities and the density of a set of initial values.
To illustrate this approach, consider the joint density of two adjacent observations
f(y2,y1;0) from a covariance stationary time series. The joint density can always be
factored as the product of the conditional density of y, given y; and the marginal
density of y; :

f(Y2,9150) = f(ya2ly1;0) f (y1;0)
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For three observations, the factorization becomes

S (Y3, 92,915 0) = f(yslye, y1;0) f (yaly1; 0) f(y1;0)

In general, the conditional marginal factorization has the form

T
flyr, .. y1;0) = < 1T f(yt|]t170)> Sy 13 0)

t=p+1

where I; = {y;,...,y1} denotes the information available at time ¢, and y,,...,
denotes the initial values. The log-likelihood function may then be expressed as

nL(Oly) = > I f(yelli-1,0) +In f(y,. ..., 11;0)

t=p+1

The full log-likelihood function is called the exact log-likelihood. The first term is
called the conditional log-likelihood, and the second term is called the marginal log-
likelihood for the initial values.

In the maximum likelihood estimation of time series models, two types of maxi-
mum likelihood estimates (mles) may be computed. The first type is based on maxi-
mizing the conditional log-likelihood function. These estimates are called conditional
mles and are defined by

T
Ocmle = arg meax Z lnf(ytut—h 0)

t=p+1

The second type is based on maximizing the exact log-likelihood function. These
estimates are called exact mles, and are defined by

T
0,10 = arg max Z In f(ye|li-1,0) +1In f(yp,...,y1;0)
t=p+1

For stationary models, 9cmle and 9mle are consistent and have the same limiting
normal distribution. In finite samples, however, écmle and 9ml€ are generally not equal
and my differ by a substantial amount if the data are close to being non-stationary
or non-invertible.

Example 1 Mazimum likelihood estimation of an AR(1) model
Consider the stationary AR(1) model

Yo = c+ oY1+, e ~iid N0,0%), t=1,...,T
0 (c,0,0%), |9 <1



Conditional on I;_;
yt‘[tfl ~ N<C + ¢yt717 02)7 = 27 s aT

which only depends on ;1. The conditional density f(y|l¢—1,6) is then

202

1
felyi—1,0) = (27r02)’1/2 exp (— (yp —c — (bytl)?) ,t=2.....T

To determine the marginal density for the initial value y;, recall that for a stationary
AR(1) process

It follows that

C 0'2
~ N
" <1—’1—&)

2 -1/2 1— &2 2
f(y;:0) = (27T1i—¢2> exp <— 20? (?ﬂ- 1f¢) )

The conditional log-likelihood function is

;1Hf(yt|yt—1,9) = #111(2@_

T
1
T 952 Z(yt —c—¢y)°
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Notice that the conditional log-likelihood function has the form of the log-likelihood
function for a linear regression model with normal errors. It follows that the condi-
tional mles for ¢ and ¢ are identical to the least squares estimates from the regression

Yy=cH+ oy 1+e,t=2,...,T

and the conditional mle for o2 is

T

&gmle = (T - 1)71 Z(yt - élee - QAbcmleyl‘fl)2

=2
The marginal log-likelihood for the initial value y; is
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The exact log-likelihood function is then

T 1 2 1-¢ :
InL(0ly) = —Eln(Qﬂ') - §1n <1 - 2) - 20? (yl 1 f (;5)
k)

The exact log-likelihood function is a non-linear function of the parameters 6, and
so there is no closed form solution for the exact mles. The exact mles must be
determined by numerically maximizing the exact log-likelihood function. Usually,
a Newton-Raphson type algorithm is used for the maximization which leads to the
interative scheme

émle,n - émle,n—l - I:I(émlem—l)_lé(émle,n—l)

where H() is an estimate of the Hessian matrix (2nd derivative of the log-likelihood
function), and §(8) is an estimate of the score vector (Ist derivative of the log-
likelihood function). The estimates of the Hessian and Score may be computed nu-
merically (using numerical derivative routines) or they may be computed analytically
(if analytic derivatives are known).

1.1 Prediction Error Decomposition

For general time series models, the log-likelihood function may be computed using an
algorithm known as the prediction error decomposition. To illustrate this algorithm,
consider again the simple AR(1) model. Recall,

yt|It—1 ~ N(C + ¢yt—17 02)7 t= 2a cee aT
from which it follows that

Elylli-1] = c+ oy

var(ylli1) = o

The 1-step ahead prediction errors may then be defined as
v =y — Byl il =y —c+ oy, t=2,...T
The variance of the prediction error at time ¢ is
fi = var(vy) =var(g;) = 0%, t=2,...T

For the initial value, the first prediction error and its variance are
c

1-¢

vy = yl_E[yl] =Y —

fi = war(v) =

1—¢?



Using the prediction errors and the prediction error variances, the exact log-likelihood
function may be re-expressed as

T 1 < 1 <02
InL(Bly) = —5111(2”) 3 Zlﬂft b ZTZ
=1 =1

which is the prediction error decomposition.
Remarks

1. A further simplification may be achieved by writing

var(vy) = O'2ft*

1
= 02-72fort:1
1

= o2 1fort>1

That is f; = 1/(1 — ¢?®) for t = 1 and f; = 1 for ¢ > 1. Then the log-likelihood
becomes

(%
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T T 1 T 1 T
In L(Oly) = —Eln(27r) — Elna2 -3 Zlnft* ~ 53 Z
t=1 t=1

2. For general time series models, the prediction error decomposition may be con-
veniently computed as a by product of the Kalman filter algorithm if the time
series model can be cast in state space form.



