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1 MaximumLikelihood Estimation of ARMAMod-
els

For iid data with marginal pdf f(yt;θ), the joint density function for a sample y =
(y1, . . . , yT ) is simply the product of the marginal densities for each observation

f(y;θ) = f(y1, . . . , yT ;θ) =
TY
t=1

f(yt;θ)

The likelihood function is this joint density treated as a function of the parameters
θ given the data y :

L(θ|y) = L(θ|y1, . . . , yT ) =
TY
t=1

f(yt;θ)

The log-likelihood then as the simple form

lnL(θ|y) =
TX
t=1

ln f(yt;θ)

For a sample from a covariance stationary time series {yt}, the construction of
the log-likelihood give above doesn’t work because the random variables in the sam-
ple (y1, . . . , yT ) are not iid. One solution is to try to determine the joint density
f(y1, . . . , yT ;θ) directly, which requires, among other things, the T × T variance-
covariance matrix var(y). Hamilton describes this approach in detail for Gaussian
ARMA processes. An alternative approach relies on factorization of the joint den-
sity into a series of conditional densities and the density of a set of initial values.
To illustrate this approach, consider the joint density of two adjacent observations
f(y2, y1;θ) from a covariance stationary time series. The joint density can always be
factored as the product of the conditional density of y2 given y1 and the marginal
density of y1 :

f(y2, y1;θ) = f(y2|y1;θ)f(y1;θ)
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For three observations, the factorization becomes

f(y3, y2, y1;θ) = f(y3|y2, y1;θ)f(y2|y1;θ)f(y1;θ)
In general, the conditional marginal factorization has the form

f(yT , . . . , y1;θ) =

Ã
TY

t=p+1

f(yt|It−1,θ)
!
· f(yp, . . . , y1;θ)

where It = {yt, . . . , y1} denotes the information available at time t, and yp, . . . , y1
denotes the initial values. The log-likelihood function may then be expressed as

lnL(θ|y) =
TX

t=p+1

ln f(yt|It−1,θ) + ln f(yp, . . . , y1;θ)

The full log-likelihood function is called the exact log-likelihood. The first term is
called the conditional log-likelihood, and the second term is called the marginal log-
likelihood for the initial values.
In the maximum likelihood estimation of time series models, two types of maxi-

mum likelihood estimates (mles) may be computed. The first type is based on maxi-
mizing the conditional log-likelihood function. These estimates are called conditional
mles and are defined by

θ̂cmle = argmax
θ

TX
t=p+1

ln f(yt|It−1,θ)

The second type is based on maximizing the exact log-likelihood function. These
estimates are called exact mles, and are defined by

θ̂mle = argmax
θ

TX
t=p+1

ln f(yt|It−1,θ) + ln f(yp, . . . , y1;θ)

For stationary models, θ̂cmle and θ̂mle are consistent and have the same limiting
normal distribution. In finite samples, however, θ̂cmle and θ̂mle are generally not equal
and my differ by a substantial amount if the data are close to being non-stationary
or non-invertible.

Example 1 Maximum likelihood estimation of an AR(1) model

Consider the stationary AR(1) model

yt = c+ φyt−1 + εt, εt ∼ iid N(0, σ2), t = 1, . . . , T

θ = (c, φ, σ2)0, |φ| < 1

2



Conditional on It−1

yt|It−1 ∼ N(c+ φyt−1, σ2), t = 2, . . . , T

which only depends on yt−1. The conditional density f(yt|It−1, θ) is then

f(yt|yt−1,θ) = (2πσ2)−1/2 exp
µ
− 1

2σ2
(yt − c− φyt−1)2

¶
, t = 2, . . . , T

To determine the marginal density for the initial value y1, recall that for a stationary
AR(1) process

E[y1] = µ =
c

1− φ

var(y1) =
σ2

1− φ2

It follows that

y1 ∼ N

µ
c

1− φ
,

σ2

1− φ2

¶
f(y1;θ) =

µ
2π

σ2

1− φ2

¶−1/2
exp

Ã
−1− φ2

2σ2

µ
y1 − c

1− φ

¶2!
The conditional log-likelihood function is

TX
t=2

ln f(yt|yt−1,θ) =
−(T − 1)

2
ln(2π)− (T − 1)

2
ln(σ2)

− 1

2σ2

TX
t=2

(yt − c− φyt−1)2

Notice that the conditional log-likelihood function has the form of the log-likelihood
function for a linear regression model with normal errors. It follows that the condi-
tional mles for c and φ are identical to the least squares estimates from the regression

yt = c+ φyt−1 + εt, t = 2, . . . , T

and the conditional mle for σ2 is

σ̂2cmle = (T − 1)−1
TX
t=2

(yt − ĉcmle − φ̂cmleyt−1)
2

The marginal log-likelihood for the initial value y1 is

ln f(y1;θ) = −1
2
ln(2π)− 1

2
ln

µ
σ2

1− φ2

¶
− 1− φ2

2σ2

µ
y1 − c

1− φ

¶2
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The exact log-likelihood function is then

lnL(θ|y) = −T
2
ln(2π)− 1

2
ln

µ
σ2

1− φ2

¶
− 1− φ2

2σ2

µ
y1 − c

1− φ

¶2
−(T − 1)

2
ln(σ2)− 1

2σ2

TX
t=2

(yt − c− φyt−1)2

The exact log-likelihood function is a non-linear function of the parameters θ, and
so there is no closed form solution for the exact mles. The exact mles must be
determined by numerically maximizing the exact log-likelihood function. Usually,
a Newton-Raphson type algorithm is used for the maximization which leads to the
interative scheme

θ̂mle,n = θ̂mle,n−1 − Ĥ(θ̂mle,n−1)−1ŝ(θ̂mle,n−1)

where Ĥ(θ̂) is an estimate of the Hessian matrix (2nd derivative of the log-likelihood
function), and ŝ(θ̂) is an estimate of the score vector (1st derivative of the log-
likelihood function). The estimates of the Hessian and Score may be computed nu-
merically (using numerical derivative routines) or they may be computed analytically
(if analytic derivatives are known).

1.1 Prediction Error Decomposition

For general time series models, the log-likelihood function may be computed using an
algorithm known as the prediction error decomposition. To illustrate this algorithm,
consider again the simple AR(1) model. Recall,

yt|It−1 ∼ N(c+ φyt−1, σ2), t = 2, . . . , T

from which it follows that

E[yt|It−1] = c+ φyt−1
var(yt|It−1) = σ2

The 1-step ahead prediction errors may then be defined as

vt = yt −E[yt|It−1] = yt − c+ φyt−1, t = 2, . . . T

The variance of the prediction error at time t is

ft = var(vt) = var(εt) = σ2, t = 2, . . . T

For the initial value, the first prediction error and its variance are

v1 = y1 − E[y1] = y1 − c

1− φ

f1 = var(v1) =
σ2

1− φ2
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Using the prediction errors and the prediction error variances, the exact log-likelihood
function may be re-expressed as

lnL(θ|y) = −T
2
ln(2π)− 1

2

TX
t=1

ln ft − 1
2

TX
t=1

v2t
ft

which is the prediction error decomposition.
Remarks

1. A further simplification may be achieved by writing

var(vt) = σ2f∗t

= σ2 · 1

1− φ2
for t = 1

= σ2 · 1 for t > 1

That is f∗t = 1/(1− φ2) for t = 1 and f∗t = 1 for t > 1. Then the log-likelihood
becomes

lnL(θ|y) = −T
2
ln(2π)− T

2
lnσ2 − 1

2

TX
t=1

ln f∗t −
1

2σ2

TX
t=1

v2t
f∗t

2. For general time series models, the prediction error decomposition may be con-
veniently computed as a by product of the Kalman filter algorithm if the time
series model can be cast in state space form.
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