
Econ 584 Lab 2
Spring 2006

Eric Zivot

Due: Wednesday, May 3

1 Reading

1. Hamilton, J. (1993), Time Series Analysis, chapters 3, 4 and 13 (sections 1-4)

2. Hayashi, F. (2000), Econometrics, chapter 6.

3. Cochrane, J. (2005), Time Series for Macroeconomics and Finance, chapters 5
and 10.

4. Zivot, E. and J. Wang (2002), chapter 3 and chapter 10 in Modeling Financial
Time Series with S-PLUS. Springer-Verlag.

5. Zivot, E. (2005). Lecture notes on forecasting, ARMA estimation, state space
models, and trend/cycle decompositions.

6. Diebold, F. and R. Mariano (1995). “Comparing predictive accuracy,” Journal
of Business and Economic Statistics, 13, 253-265. Re-printed in Journal of
Business and Economic Statistics, 20(1), 134-145, January 2002.

7. Clark, P. (1987). “The cyclical component of economic activity,” Quarterly
Journal of Economics. Available in JSTOR.

8. Eviews help topics: Forecasting from an equation; State space models and the
Kalman filter.

2 Analytic Questions

1. Let cpt denote the (log of) permanent consumption and assume that c
p
t follows

a random walk with drift

cpt = μ+ cpt−1 + εt, εt ∼ iid N(0, σ2ε)
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Assume that observed consumption, ct, is equal to permanent consumption, c
p
t ,

plus a Gaussian white noise error term

ct = cpt + ηt, ηt ∼ iid N(0, σ2η)

(a) What is a state space representation for ct? How would you determine the
initial state parameters?

(b) Derive the reduced form representation for ∆ct in terms μ, εt and ηt.

(c) Determine the autocorrelation function (ACF) for ∆ct. Given that the
mean, variance and ACF uniquely determines a covariance stationary and
ergodic process, what type of ARMA(p,q) process describes ∆ct? (Hint:
see Hamilton pages 102 - 108)

(d) What is the functional relationship between the reduced form model pa-
rameters μ, σ2ε and σ

2
η and the parameters of the ARMA(p,q) process that

describes ∆ct? In other words, if you knew the ARMA(p,q) parameters for
∆ct how would you solve for the reduced form parameters μ, σ2ε and σ2η?

2. Let yt be a covariance stationary time series, and consider the prediction of yt+h
given information available at time t. Recall, the optimal linear predictor and
its associated prediction error are

yt+h|t = μ+ ψhεt + ψh+1εt−1 + · · ·
εt+h|t = yt+h − yt+h|t = εt+h + ψ1εt+h−1 + · · ·+ ψh−1εt+1

Derive the correlation between εt+h|t and εt+j|t for the pairs h = 2, j = 1 and
h = 3, j = 1, h = 3, j = 2.

3. Consider samples of size T from the AR(1) and MA(1) processes

yt = c+ φyt−1 + εt, εt ∼WN(0, σ2ε)

xt = μ+ ηt + θηt−1, ηt ∼WN(0, σ2η)

(a) Assuming each process is stationary and ergodic, give the asymptotic dis-
tribution for the sample means

ȳ = T−1
TX
t=1

yt

x̄ = T−1
TX
t=1

xt

That is, give the means and variances of the asymptotic distributions for
ȳ and x̄. (Hint: Recall that the long-run variance has the form LRV =P∞

j=−∞ γj = σ2ψ(1)2 where ψ(L) = φ(L)−1θ(L).)
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(b) Describe how you could consistently estimate the asymptotic variances of
ȳ and x̄ parametrically and non-parametrically.

(c) What happens to the asymptotic variance of ȳ as φ→ 1? Does this result
make sense?

(d) What happens to the asymptotic variance of x̄ as θ →−1? Does this result
make sense? (Hint: What type of ARMA process results from taking the
first difference of the process xt = μ+ ηt?)

4. Consider the following unobserved components model for the log of quarterly
real GDP yt:

yt = μt + ct

μt = δt−1 + μt−1 + ηt, ηt ∼ iid N(0, σ2η)

δt = δt−1 + ut, ut ∼ iid N(0, σ2u)

ct = φ1ct−1 + φ2ct−2 + vt, vt ∼ iid N(0, σ2v)

where ηt, ut and vt are mutually independent. This model was originally pro-
posed by Peter Clark and is known as the “Clark model”. Notice that the
trend is specified as a random walk with drift, where the drift also follows a
random walk.

(a) Give a state space representation for the above process.

(b) How would you specify the distribution of the initial state vector?

(c) Under what restrictions on the model’s parameters does the trend become
deterministic?

3 Computer Exercises

In this lab you will use Eviews to compare forecasting models using the Diebold-
Mariano statistic, and estimate and analyze some ARMA models put into state space
form.

3.1 Comparing Forecasting Models

1. Using Eviews, create a new work file with 250 undated observations. Then
create a series named Y2 with simulated values from the AR(2) process

yt = 1.2yt−1 − 0.4yt−2 + εt, εt ∼ iid N(0, (0.5)2)

y1 = y2 = 0

See the Eviews online help for the function nrnd for an example of simulating
AR processes.
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2. For the simulated series do the following: (1) plot series; (2) plot SACF and
PACF; compute descriptive statistics.

3. Using the first 200 observations on Y2, estimate the AR(2) model using the LS
command; e.g., LS Y2 C AR(1) AR(2). Report the fit of the equation. From the
[View] menu on the Equation window, investigate the ARMA structure, plot
the actual, fitted and residuals, and plot the SACF and PACF of the estimated
residuals. Comment briefly on what you find. Name the equation AR2FIT, and
close the equation window.

4. Using the first 200 observations on Y2, estimate a mis-specified MA(1) model
using the LS command; e.g., LS Y2 C MA(1). Report the fit of the equation.
From the [View] menu on the Equation window, investigate the ARMA struc-
ture, plot the actual, fitted and residuals, and plot the SACF and PACF of the
estimated residuals. Comment briefly on what you find and compare with the
AR(2) fit. Name the equation MA1FIT.

5. Using observations 201 through 250, compute rolling 1-step ahead (static) fore-
casts of Y2 from the AR(2) and MA(1) models. Name the AR(2) forecasts
Y2FAR2, and name the MA(1) forecasts Y2FMA1. Compare the RMSE and
MAE from the two sets of forecasts and comment briefly.

6. FromY2 and the AR(2) andMA(1) forecasts, compute the 1-step ahead forecast
errors for observations 201 through 250; e.g., for the AR(2) model the forecast
error may be defined using GENR EAR2 = Y2 - Y2FAR2 (don’t forget to set
the sample correctly). Using the forecast errors from the two models, compute
the squared and absolute loss differentials relative to the AR(2) model; e.g.,
for the squared loss differential use GENR DSQ = EMA1^2 - EAR2^2; for the
absolute loss differential use GENR DABS = ABS(EMA1) - ABS(EAR2). Plot
these loss differentials. Which model appears to forecast better?

7. Compute the Diebold-Mariano statistic for the loss differentials DSQ and DABS.
This can be easily done by regressing each loss differential on a constant and
computing the standard error using a HAC (Newey-West type) estimator. The
Diebold-Mariano statistic is then the reported t-statistic on the constant. Using
these statistics, test the hypothesis that the AR(2) model and the MA(1) model
have equal forecasting accuracy using a 5% significance level.

3.2 Working with State Space Models

In this exercise, you will use the real GDP data from economagic that you analyzed
in Lab 1. Before doing any estimation, create a new variable that is equal the log of
real GDP times 100 and use this variable for all of the estimation. This seemingly
innocuous transformation scales the data so that the estimation of the state space

4



model is numerically stable. If you don’t scale the data then the state space estimation
may not converge.

1. Create a new series by multiplying the log real GDP data by 100. Call this
series lrgdp_100. This simple transformation will increase the scale of the error
variances and make the estimation of the state space model more stable.

2. Linearly detrend the real GDP data (multiplied by 100) as in lab 1 by regressing
on a constant and time trend and take the residuals as the detrended data. Call
this data dtlrgdp.

3. Using the detrended data over the period 1947.1 through 1999.1, fit an AR(2)
model without a constant using the LS command: LS dtlrgdp AR(1) AR(2).
Name the equation LSFIT. Note: you will lose the first two observations due
to the lagged values in the AR(2) model. Create dynamic forecasts over the
period 2000.1 through 2003.4.

4. Create a state space object named SSAR2 representing an AR(2) model with-
out a constant. See the Eviews help on State Space Models and the Kalman
Filter for details on how to do this. Estimate the state space model using the
detrended data over the period 1947.1 through 1999.1. Note: you will not
lose the first two values because the state space model utilizes the exact likeli-
hood function. Create dynamic forecasts over the period 2000.1 through 2003.4.
Compare the results to the LS fit. Should they be the same?

5. Using the state space model, compute the filtered estimates of the state vari-
ables. What do these variables represent?

3.3 Estimate Simple Unobserved Components Model

In this exercise, you will estimate a simple UC model for the log-level of quarterly
real GDP.

1. Use the series lrgdp_100 for the estimation in this section. This simple trans-
formation will increase the scale of the error variances and make the estimation
of the state space model more stable.

2. Create a state space object named SSCLARK for the following unobserved
components model

yt = μt + ct

μt = δ + μt−1 + ηt, ηt ∼ iid N(0, σ2η)

ct = φ1ct−1 + φ2ct−2 + vt, vt ∼ iid N(0, σ2v)
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where ηt, ut and vt are mutually independent. Estimate this model by maximum
likelihood using the log-level of real GDP that you analyzed in Lab 1. Be sure
to properly specify the distribution of the initial state vector.

3. Compute the roots of φ(z) = 0 using the estimated values of φ1 and φ2. Briefly
discuss the dynamic properties of the estimated cycle.

4. The importance of the random walk trend relative to the AR(2) cycle can be
determined by looking at the ratio of σ2η to σ2v. Compute this ratio using the
maximum likelihood estimates and comment briefly on what you find.

5. Compute and plot the filtered estimates of the signal (observation) and the
states. Comment briefly on what you find. Do the filtered estimates of the
cycle look like “business cycles”?
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