Econ 584 Lab 4

Eric Zivot

Due: Friday June 2, 2006

1 Part I: Analytic Exercises

Question 1

Consider the VAR model

$$\begin{aligned} \mathbf{y}_t &= \mathbf{A}\mathbf{y}_{t-1} + \boldsymbol{\varepsilon}_t, \\ \boldsymbol{\varepsilon}_t &\sim \text{ iid } (0, \boldsymbol{\Sigma}) \end{aligned}$$

where

$$\mathbf{A} = \left(\begin{array}{cc} \frac{1}{2} & 0\\ 1 & \frac{1}{4} \end{array}\right).$$

- 1. Find the eigenvalues of A
- 2. Find the roots of the characteristic polynomial

$$\det(\mathbf{I}_2 - \mathbf{A}z) = 0.$$

and show that the roots of the characteristic polynomial are the inverses of the eigenvalues of \mathbf{A} .

Question 2

Consider a bivariate VAR(p) model

$$\mathbf{A}(L)\mathbf{y}_t = \boldsymbol{\varepsilon}_t, \ \mathbf{A}(L) = \mathbf{I} - \mathbf{A}_1 \mathbf{L} - \dots - \mathbf{A}_p \mathbf{L}^p$$

$$\boldsymbol{\varepsilon}_t \sim \text{iid} \ (0, \boldsymbol{\Sigma})$$

with Wold (moving average) representation

$$\mathbf{y}_t = \mathbf{\Psi}(L) \boldsymbol{\varepsilon}_t$$

where $\Psi(L) = \sum_{k=0}^{\infty} \Psi_k L^k$ and $\Psi_0 = \mathbf{I}_2$.

1. Find the moving average coefficients Ψ_k for a VAR(1) model.

2. Show that the moving average coefficients for a VAR(2) model can be found recursively by

$$\mathbf{\Psi}_0 = \mathbf{I}_2, \, \mathbf{\Psi}_1 = \mathbf{A}_1$$

and

$$\Psi_k = \mathbf{A}_1 \Psi_{k-1} + \mathbf{A}_2 \Psi_{k-2}, \ k > 1$$

Question 3

Consider the bivariate cointegrated VECM

$$egin{array}{rcl} \Delta \mathbf{y}_t &=& \mathbf{c} + oldsymbol{lpha}oldsymbol{eta}' \mathbf{y}_{t-1} + oldsymbol{arepsilon}_t, \ oldsymbol{arepsilon}_t &\sim& ext{iid} \ (0, oldsymbol{\Sigma}) \end{array}$$

where $\boldsymbol{\alpha} = (\alpha_1, 0)'$ and $\boldsymbol{\beta} = (1, -\beta_2)'$. Equation by equation, the system is given by

$$\Delta y_{1t} = c_1 + \alpha_1 (y_{1t-1} - \beta_2 y_{2t-1}) + \varepsilon_{1t}$$

$$\Delta y_{2t} = c_2 + \varepsilon_{2t}$$

1. From the cointegrated VECM representation above, derive the VECM representation

$$\mathbf{\Delta}\mathbf{y}_t = \mathbf{c} + \mathbf{\Pi}\mathbf{y}_{t-1} + oldsymbol{arepsilon}_t$$

and the VAR(1) representation

$$\mathbf{y}_t = \mathbf{c} + \mathbf{A}\mathbf{y}_{t-1} + oldsymbol{arepsilon}_t$$

That is, determine the elements of the matrices Π and \mathbf{A} .

2. Show that $\beta' \mathbf{y}_t$ follows an AR(1) process. Show that the AR(1) process is stable provided that $-2 < \alpha_1 < 0$. What can you say about the system when $\alpha_1 = 0$?

2 Part II: Empirical Exercises

Question 1. Using the output and unemployment data in the Excel file BQ.xls on the class webpage, specify and estimate a SVAR model of the form

$$\begin{aligned} \mathbf{B}\mathbf{y}_t &= \mathbf{\gamma}_0 + \sum_{j=1}^p \mathbf{\Gamma}_j \mathbf{y}_{t-j} + \boldsymbol{\varepsilon}_t \\ E[\boldsymbol{\varepsilon}_t \boldsymbol{\varepsilon}_t'] &= \mathbf{D} = \text{diagonal} \\ \mathbf{y}_t &= (\Delta y_{1t}, y_{2t})' \end{aligned}$$

where y_1 represents log output and y_2 represents unemployment. Specify ε_1 as a permanent "supply" shock and ε_2 as a transitory "demand" shock. To identify the parameters of the SVAR, impose the Blanchard-Quah restriction

$$\lim_{s \to \infty} \frac{\partial y_{1t+s}}{\partial \varepsilon_{2t}} = \theta_{12}(1) = \sum_{s=0}^{\infty} \theta_{12}^{(s)} = 0$$

that transitory shocks have no long-run effect on the level of output.

- 1. Determine the lag length of the reduced form VAR using the AIC information criteria. Use a maximum lag of 8. Report the VAR estimates and briefly comment on the fit of the VAR.
- 2. Read the Eviews online manual entry on Structural (Identified) VARs. The subsection on Long Run Restrictions shows how to impose the restriction that $\theta_{12}(1) = 0$. Note: Eviews uses **C** to denote $\Theta(1)$. After imposing the restriction $\theta_{12}(1) = 0$, estimate the SVAR and report the resulting estimates.
- 3. Compute the impulse response functions and forecast error variance decompositions from the SVAR model using a maximum horizon of 40 quarters. Briefly comment on what you find.

Question 2: Hayashi, chapter 10 Empirical Exercises (a) - (d) (estimation of cointegrated Money Demand function). *Hint*: for the DOLS estimates, you can use the Newey-West HAC standard errors instead of going through the procedure described on pages 656-657.

Question 3: Here you will use the same data as in Question 2 but use Eviews to investigate cointegration using Johansen's maximum likelihood procedure. You will find it helpful to read the Eviews online help for Cointegration Test.

1. Let $\mathbf{Y}_t = (m_t - p_t, R_t, y_t)'$. Use the AIC model selection criteria to determine the lag length p for a VAR(p) model for Y_t :

$$\mathbf{Y}_t = \mathbf{c} + \mathbf{A}_1 \mathbf{Y}_{t-1} + \dots + \mathbf{A}_p \mathbf{Y}_{t-p} + \boldsymbol{\varepsilon}_t$$

Use $p_{\text{max}} = 4$.

- 2. Based on your estimate for p, estimate a VECM(p-1) and compute the Johansen trace and maximum eigenvalue statistics to determine the number of cointegrating vectors. Compute the test statistics using a VECM with an unrestricted constant as well as restricted trend. What do you find? Do your results agree with those in Question 2?
- 3. Regardless of the outcome of the cointegration tests, impose one cointegrating vector and estimate it using Johansen's maximum likelihood procedure. Normalize the cointegrating vector on $m_t p_t$. Compare your results to these found in Question 2.
- 4. Using a likelihood ratio statistic, test the hypothesis that income elasticity is equal to unity.