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Testing the CAPM Revisited 

 

 

 

Abstract 
 

This paper re-examines the tests of the Sharpe-Lintner Capital Asset Pricing Model (CAPM). 

The null that the CAPM intercepts are zero is tested for ten size-based stock portfolios and for  

twenty five book-to-market sorted portfolios using five-year, ten-year and longer sub-periods 

during 1965-2004. The paper shows that the evidence for rejecting the CAPM on statistical 

grounds is weaker than the consensus view suggests, and highlights the pitfalls of testing 

multiple hypotheses with the conventional heteroskedasticity and autocorrelation robust (HAR) 

test with asymptotic P-values. The conventional test rejects the null for almost all sub-periods, 

which is consistent with the evidence in the literature. By contrast, the null is not rejected for 

most of the sub-periods by the new HAR tests developed by Keifer, Vogelsang and Bunzel 

(2000), Kiefer and Vogelsang (2005), and Sun, Phillips and Jin (2008). 
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Testing the CAPM Revisited 

 

1. Introduction 

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) rightfully 

occupies a central place in the asset pricing literature. Not surprisingly, an enormous research 

effort has been devoted to the empirical testing of the model over the past several decades. 

Notwithstanding Roll’s (1977) famous critique of the early tests of the CAPM, a consensus now 

exists that the model fails to adequately explain the cross-section of asset returns. The consensus 

is supported by the results of several studies, most notably those by Fama and French (1992, 

1996) and Campbell, Lo and MacKinlay (1997, hereafter CLM).  

In this paper we re-examine the empirical evidence on the rejection of the CAPM by 

CLM. The rejection of most interest is the one based on a conventional heteroskedasticity and 

autocorrelation robust (HAR) test.  Our main contribution is to show that the evidence for 

rejecting the CAPM on statistical grounds is much weaker than the consensus view suggests. 

Although it is well documented that the conventional HAR test rejects the CAPM using 

asymptotic critical values, these results are not compelling because it is well known that the 

conventional test suffers from size distortions when based on asymptotic P-values. In point of 

fact, the evidence is much more favorable to the CAPM when inference is based on simulated 

finite-sample P-values.  

Next we revisit the CAPM using newly developed HAR tests (Sun, Phillips and Jin 

(2008)).  These tests have the advantage of substantially less size distortion relative to the 

conventional robust tests.  The results from these tests strongly support the CAPM when using 

asymptotic as well as simulated finite-sample P-values.  Our results highlight the pitfall of 
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testing multiple hypotheses with conventional HAR tests. This pitfall is one of potentially severe 

over-rejection of the null hypothesis.  

In HAR testing, the test statistics use kernel-based nonparametric estimators of the 

standard deviations and covariances of the estimated regression coefficients.  The test statistics 

used in the conventional HAR tests incorporate heteroskedasticity and autocorrelation consistent 

(HAC) estimators of the variance-covariance matrix.  These estimators typically involve a 

bandwidth or lag truncation parameter, M.  Consistency requires that M satisfy certain conditions 

as the sample size T increases. A commonly used HAC estimator is the one proposed by Newey 

and West (1987, 1994).  In applications, the finite sample distribution of a conventional HAR 

test statistic is approximated by its asymptotic distribution, namely a standard normal or chi-

square.  This approximation is known to be unsatisfactory in many cases, which gives rise to size 

distortion, or more precisely, error in the rejection probability (ERP) under the null hypothesis.  

To reduce the ERP,  Keifer, Vogelsang and Bunzel (2000, hereafter KVB) and Keifer and 

Vogelsang (2005, hereafter KV) proposed the use of kernel-based estimators in which M is set 

proportional to the sample size T, that is, M bT .  In this case, when the parameter b is fixed as 

T goes to infinity, the kernel-based estimators have a random limiting distribution, which implies 

that they are inconsistent. In turn, the associated test statistics have nonstandard limit 

distributions.  The nonstandard or new HAR tests are carried out in practice by approximating 

the finite sample distribution of the test statistic by its nonstandard limit distribution.   

In the Gaussian location model, Sun, Phillips and Jin (2008) have analyzed the ERP for 

tests where b is fixed as T goes to infinity and where the critical values are obtained from the 

nonstandard limit distribution.  This ERP is compared to that for conventional tests with critical 

values obtained from the standard normal approximation.  They show that the ERP of the 
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nonstandard approximation is smaller than that of the standard normal approximation by an order 

of magnitude.  This result is an extension of an earlier finding by Jansson (2004). These 

analytical findings support the earlier simulation results by KVB, KV (2002a, 20002b) and 

Phillips, Sun and Jin (2006, 2007, hereafter PSJ).  The conclusion from this analysis is that the 

nonstandard approximation provides a substantially more accurate approximation to the finite 

sample distribution.  Consequently, the nonstandard test has substantially less size distortion than 

the conventional test.  

In this paper, we apply the conventional and new HAR tests to the CAPM using data for 

the period 1965-2004.  We applied the conventional and new HAR tests to settings with ten size-

sorted stock portfolios as well as settings with 15, 20 and 25 size and book-to-market sorted 

portfolios.  Consistent with the evidence in previous studies cited above, the conventional HAR 

test with asymptotic P-values rejects the CAPM for most five-year and ten-year sub-periods at 

the usual significance levels.  By contrast, the null is not rejected by the new HAR tests with 

asymptotic P-values for most of the sub-periods.   

This finding is consistent with the results in Ray and Savin (2008).  Their study used the 

Fama-French three-factor model to illustrate that the new HAR tests can change inferences 

drawn from the data and in particular that the conventional Wald tests tend to over-reject.  In 

contrast to the present study, Ray and Savin (2008) did not focus on the substantive issue of 

whether the model is satisfactory for asset pricing. 

One possible explanation for the conflicting results is that the conventional test has high 

power compared to the new tests, assuming that the conventional test has the correct Type I error 

or level in finite-samples.  Another explanation for the conflict is that the conventional test over-

rejects instead of having the correct level.  In other words, the actual finite-sample level of the 
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conventional test is much larger than the nominal level when asymptotic critical values are used, 

or equivalently, the finite-sample P-value is substantially larger than the asymptotic P-value. We 

conduct simulation experiments to investigate the source of the conflicting test results. 

 In the experiments for the conventional HAR test, the simulated finite-sample P-values 

are larger than the asymptotic P-values, especially for the five-year and ten-year sub-periods, 

which suggests that the conventional test over-rejects.  The conflict between the conventional 

test and the new tests for the five-year and ten-year sub-periods is much reduced when the tests 

are based on simulated finite-sample P-values instead of asymptotic P-values.  Moreover, the 

new tests are clearly superior in terms of size distortion when many parameters are tested 

simultaneously, which is the relevant case for testing the CAPM in a multi-portfolio framework.  

In addition, the new tests have high power against empirically relevant alternatives. 

These findings underscore the pitfalls of relying on inferences based on the conventional test. 

Our results highlight that using the critical values or P-values based on the new tests can help to 

mitigate the over-rejection problem. 

The point that the conventional Wald tests and other related tests tend to over-reject the 

null hypothesis is not new.  Previous papers in the finance literature that have made this point 

include Jobson and Korkie (1989), Gibbons, Ross and Shanken (1989), Zhou (1993), Kan and 

Zhang (1999a, 1999b), Ahn and Gadarowski (2004) and Kan and Zhou (2002).  However, these 

papers do not provide satisfactory solutions to the poor finite-sample performance of the 

conventional test.   

Chief among these alternative approaches is the F-test of Gibbons, Ross and Shanken 

(1989).  It is well known that the finite-sample distribution for the GRS test statistic relies on the 

assumption that returns are normally distributed and i.i.d., an assumption that is inconsistent with 
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the data.  Another proposed solution is the test based on the Hansen and Jagannathan (1987) 

distance measure.  Kan and Zhou (2002) and Lewellen, Nagel, and Shanken (2008) derive the 

exact finite sample distribution of the Hansen-Jagannathan distance measure.  This finite sample 

distribution again requires the assumption of multivariate normality of asset returns.  As shown 

by Kan and Zhou (2002) and Lewellen, Nagel, and Shanken (2008), in the absence of the 

normality assumption, the test performs poorly. As noted by Cochrane (2005), “…it is not 

obvious that a finite-sample distribution that ignores [non-normal and] non-i.i.d. returns will be a 

better approximation than an asymptotic distribution that corrects for them (p. 302).”  In 

addition, the shortcomings of the conventional HAR test in asset pricing applications have been 

noted by Ferson and Foerster (1994), and Hansen, Heaton, and Yaaron (1996).  The new HAR 

tests explored in this paper have the advantage that the nonstandard limiting distribution of the 

test statistic provides a more accurate approximation to its finite sample distribution - a result 

that has analytical justification.   

Still another approach in the finance literature to overcome the shortcomings of the 

conventional test has been pursued by Zhou (1993).  He shows that the efficiency of the CRSP 

value-weighted index is not rejected by a test that exploits the assumption that asset returns have 

an elliptical distribution.  A similar approach has been employed by Vorkink (2003).  The test 

employed by Vorkink accounts for the potential kurtosis in returns, although it does not account 

for skewness.  In contrast to these studies, this paper does not rely on alternative distributional 

assumptions to achieve acceptance of the null hypothesis.  In light of our findings, it is not 

surprising that tests can be tailored such that the CAPM is not rejected.  

The organization of the paper is the following.  Section 2 reviews the conventional and 

new HAR tests in the case of the location model.  Section 3 presents the statistical framework 
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and the conventional and new HAR tests for testing the CAPM.  Section 4 reports the CAPM test 

results using the conventional HAR tests and the new HAR tests based on asymptotic P-values. 

Section 5 gives the finite-sample P-values for the conventional and the new HAR tests and  

Section 6  the simulated level-corrected powers.  Section 7 reports the evidence on multivariate 

complications and Section 8 concludes the paper.  

2. HAR inference for the mean 

The HAR tests are most easily introduced in the case of a simple location model. In the 

context of this model, the HAR tests about the mean are conducted using t-statistics. An 

advantage of the location model is that the properties of the conventional t-test and the 

nonstandard or new t-tests can be analyzed analytically. Theoretical results on the accuracy of 

the normal and the nonstandard approximations are reported, and the intuition behind the 

superior performance of the new tests is discussed. 

Following KVB and Jansson (2004), the focus of this section is on inference about   in 

the case of the location model: 

, ( 1,..., )t ty u t T    

where 
tu  is a mean zero process with a nonparametric autocorrelation process. The least squares 

estimator of  gives 1

1

ˆ ,
T

tt
Y T y 


   and the scaled and centered estimation error is  

                       1/2 1/2ˆ( ) ,TT T S     

where
1

.
t

tS u 
  Let ˆû y     be the time series of residuals. Under a commonly used 

assumption about 
TS , the estimation error converges in distribution to a normal distribution:  

                     
2ˆ( ) (1) (0, ),T W N       
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which provides the usual basis for robust testing about .  Here 2 is the long run variance of  

and W(r) is standard Brownian motion. 

    The conventional approach is to estimate 2 using kernel-based nonparametric 

estimators that involve some smoothing and possibly truncation of the autocovariances. When 
tu  

is stationary with spectral density function  ( ),uuf   the long run variance (LRV) of 
tu  is   

                      2

0

1

2 ( ) 2 (0),uu

j

j f   




    

where ( ) ( ).t t jj E u u   The HAC estimates of 2 typically have the following form 

             

1
1

12

1
1

1

ˆ ˆ for 0,
ˆ ˆ ˆ( ) ( ) ( ), ( )

ˆ ˆ for 0,

T j
T

t j tt

T
j T

t j tt j

T u u jj
M k j j

M T u u j
  







 

 

 
  







 

involving the sample covariances ˆ( ).j  In this expression, ( )k   is some kernel; M is a bandwidth 

 parameter and consistency of 2ˆ ( )M requires M  and / 0M T  as ;T  see, for 

 example, Andrews (1991), Hansen (1992) and Newey and West (1987, 1994).  

 To test the null 
0 0:H    against the alternative 

1 0: ,H    the conventional 

approach relies on a nonparametrically studentized t-ratio statistic of the form 

                       1/2

ˆ 0( )
ˆ ˆ( ) / ( ),Mt T M      

which is asymptotically (0,1)N . The use of this t-statistic is convenient empirically and is 

widespread in practice, in spite of well-known problems with size distortion in inference. 

To reduce size distortion, that is, the error in the rejection probability (ERP) under the 

null,  KVB and KV(2005) proposed the use of kernel-based estimators of 
2  in which the 
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bandwidth parameter M is set equal to or proportional to T, that is, M bT for some  0,1b .  

In this case, the estimator becomes  

                        
1

2

1

ˆ ˆ( ),
T

b

j T

j
k j

bT
 



 

 
  

 
  

and the associated t-statistic is given by  

                        1/2

0
ˆ ˆ( ) /b bt T     . 

The estimate ˆ
b  is inconsistent and tends to a random quantity instead of  , so the 

bt -statistic is 

no longer standard normal. 

 When the parameter b is fixed as T  , KV showed that under suitable assumptions 

2 2ˆ
b b   , where the limit 

b  is random.  Under the null hypothesis  

                        
1/2(1)b bt W   . 

Thus, the 
bt -statistic has a nonstandard limit distribution arising from the random limit of the 

LRV estimate ˆ
b when b is fixed as T  .  

 Sun, Phillips and Jin (2008) have obtained the properties of the tests analytically under 

the assumption of normality. The assumption employed is that 
tu is a mean zero covariance 

stationary Gaussian process with 2 | ( ) | .
h

h h



   The ERP of the nonstandard t-test with 

fixed b is compared to that of the conventional t-test. The nonstandard test is based on the 
bt -

statistic and uses critical values obtained from the nonstandard limit distribution of 
1/2(1) bW  , 

while the conventional test is based on the ˆ ( )Mt -statistic and uses critical values from the 

standard normal distribution. Sun et al. show that the ERP of the nonstandard test is 1( ),O T   

while that of the conventional normal test is O(1). Hence, when b is fixed, the error of the 
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nonstandard approximation to the finite sample distribution of the 
bt -statistic under the null is 

smaller than that of the standard normal approximation to the finite sample distribution of the 

ˆ ( )Mt -statistic, again under the null. Moreover, the error of the nonstandard approximation is 

smaller than that of the normal approximation by an order of magnitude.  

This result is related to that of Jansson (2004), who showed that the ERP of the 

nonstandard test based on the Bartlett kernel with b = 1 is O(logT/T). The Sun et al. (2008) result 

generalizes Jansson’s result in two ways. First, it shows that the log (T) factor can be dropped. 

Second, while Jansson’s result applies only to the Barlett kernel with b = 1, the Sun et al. result 

applies to more general kernels than the Bartlett kernel and kernels with both b = 1 and b <1.  

 There are two reasons for the improved accuracy of the nonstandard approximation. One 

is that the nonstandard distribution mimics the randomness of the denominator of the t-statistic. 

In other words, the nonstandard test behaves in large samples more like its finite sample 

analogue than the conventional asymptotic normal test.  By contrast, the limit theory for the 

conventional test treats the denominator of the t-ratio as if it were non-random in finite samples. 

The other reason is that the nonstandard distribution accounts for the bias of the LRV estimator 

resulting from the unobservability of the regressor errors, that is, the inconsistency mimics the 

bias.   

In related work, PSJ (2006,2007)) proposed an estimator of 
2 of the form  

                        
1

2

1

ˆ ˆ( ) ( ),
T

j T

j
k j

T



 


 

 
  

 
  

which involves setting M equal to T and taking an arbitrary power 1  of the traditional kernel. 

The associated t-statistic 1/2

0
ˆ ˆ( ) /t T      has a nonstandard limiting distribution arising 
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from the random limit of the estimator ˆ
  when  is fixed as T  . Statistical tests based on 

2ˆ
b  and 2ˆ

 share many of the same properties, which is explained by the fact that  and b play 

similar roles in the construction of the estimates. An analysis of tests based on t  is reported in 

work by PSJ (2005a, 2005b).  

3. HAR tests of the CAPM 

This section considers the CAPM as a classical multivariate linear regression model with 

random regressors and reviews the conventional and new HAR tests for the intercept vector.  

Define the variables
1,..., Ny y , where yi is the excess return for the ith portfolio or asset, 

and the variable x where x  is the market factor (the excess return on the market portfolio). 

Suppose that the conditional expectation function is linear, ( | )E y x x   ,  

where 
1 1 1( ,..., ) , ( ,..., ) and ( ,..., )N N Ny y y           .  The null hypothesis of interest 

is
0 : 0H   , and the alternative is

1 : 0H   .   A nonzero value of the intercept is interpreted as 

saying that the model leaves an unexplained return, a mean excess return that is unexplained by 

the market factor. 

Following Greene (2003), the multivariate regression model can be restated as a 

seemingly unrelated regressions (SUR) model with identical regressors for the purpose of 

presenting the classic and conventional robust Wald tests. Denote the tth observation on y 

by
1( ,..., )t t Nty y y

 and on x by 
tx , (t =1,…,T). The SUR model is formulated using the N 

regression equations , ( 1,..., ),i i iy X u i N     where
1( ,..., )i i iTy y y

 , [ , ], (1,...,1) ,X x 
   

1( ,..., ) , ( , ) ,T i i ix x x   
   and 

1( ,..., )i i iTu u u
 . Stacking the N regressions,  

( ) ,y I X u Z u         
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where  I is an NN identity matrix, 1( ,..., ) ,N      and 1( ,..., )Nu u u  
   .  The least squares 

estimator of   is obtained by regressing y  on Z. This produces the estimator  

  1ˆ ( ' ) 'Z Z Z y 


1( ' ) 'Z Z Z u 

  . 

Consider the scaled and centered estimator  

 1 1 1/2 1 1 1/2

1

ˆ( ) ( ' ) ( ' ) ( ( ' ))
T

t

t

T T Z Z T Z u I T X X T v       

 



     ,  

 where (1, )t t tv u x 
  .  Under general assumptions, for example, those given in KV and PSJ 

(2005), the estimator converges in distribution to a normal: 

                     
1 1ˆ( ) (0, )T N Q Q        

where 1( ( lim ' ))Q I p T X X  and  is the long run variance of 
t 
. In the case of the CAPM, 

 is a 2 2N N  matrix 

The conventional HAR statistic for testing the null hypothesis 
0 : 0H    is  

                      
1

1 1ˆ ˆˆˆ ˆ( )MW T RQ M Q R 


    
 

,  

where ˆ ( )M  is an HAC estimator of and ˆ ˆˆ ( (1,0))I R     .  When 
0 : 0H    is true, 

the test statistic is asymptotically distributed as a chi-square with N degrees of freedom; for 

details, see KV.   

The conventional approach to HAR testing relies on consistent estimation of the 

sandwich variance matrix Q
-1
Q

-1
. The term Q  can be consistently estimated by 

1ˆ ( ( ' )).Q I T X X    When 
t 
 is stationary with spectral density matrix ( )f  , the LRV of

t 
  

is  

0

1

( ( ) ( ) ) 2 (0)vv

j

j j f




       , 

where ( ) ( )t t jj E    
  . Consistent kernel-based estimators of   are typically of the form 
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1

1

ˆ ˆ( ) ( ),
T

j T

j
M k j

M



 

 
   

 
  

1

1

1

1

ˆ ˆ for 0,
ˆ ( )

ˆ ˆ for 0,

T j

t j tt

T

t j tt j

T j
j

T j

 

 



  



   

  
  

 




 

which involves sample covariances ˆ ( )j  based on estimates ˆ ˆ (1, )t t tv u x 
   of 

t 
 that are 

constructed from regression residuals ˆˆˆ ( )t t tu y x     . The method proposed by ewey and 

West (1987, 1994) is used to obtain the HAC estimator of  for the conventional HAR test in 

this paper. 

The new Wald statistics used to test 
0 : 0H    are generalizations of the new t-statistics 

for testing the mean, namely 
bt  and t .  When M bT , the kernel-based estimator of 

becomes  

1

1

ˆ ˆ ( ),
T

b

j T

j
k j

bT



 

 
   

 
      

and the associated test statistic is given by   

                      1 1 1ˆ ˆˆˆ ˆ[ ]b bW T RQ Q R      . 

In the case of exponentiated or power kernels, the estimator of is 

                      
1

1

ˆ ˆ ( ),
T

j T

j
k j

T







 

  
    

  
         

and the associated test statistic is given by  1 1 1ˆ ˆˆˆ ˆ[ ]W T RQ Q R       . 

In this paper, two kernel functions are considered, both of which are commonly used in 

practice. One is the Bartlett kernel,  

                     
(1 | |) | | 1,

( )
0 | | 1,

x x
k x

x

 
 


  

and the other is the Parzen kernel,  
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2 3

3

(1 6 6 | | ) for 0 | | 1/ 2,

( ) (2(1 | |) ) for 1/ 2 | | 1,

0 otherwise.

x x x

k x x x

    


   



  

Taking an arbitrary power 1   of these kernels gives the power kernels  

                        
(1 | |) | | 1,

( )
0 | | 1,

x x
k x

x


   
 


 

and  

 

2 3

3

(1 6 6 | | ) for 0 | | 1/ 2,

( ) (2(1 | |) ) for 1/ 2 | | 1,

0 otherwise.

x x x

k x x x



 

    


   



 

The properties of the kernels are discussed in PSJ (2006, 2007).  

4. Asymptotic test results 

This section reports test results for the CAPM using the conventional HAR test and the 

new HAR tests when the tests are based on asymptotic P-values.  The asymptotic P-values are 

obtained from the asymptotic chi-square distribution for the conventional test statistic
MW  and 

the nonstandard asymptotic distributions for the new test statistics 
bW  and W . 

The return data consist of monthly returns, including distributions, for ten (N =10) CRSP 

value-weighted portfolios of NYSE, AMEX and NASDAQ stocks. The stocks are assigned to 

the portfolios based on market value of equity and annually rebalanced. The size-sorted portfolio 

returns as well as the data for the market excess return and the one-month Treasury bill return are 

taken from Ken French’s website.  As will be noted below we also use the returns on the book-

to-market sorted stock portfolios available at the same website.  The sample extends from 

January 1965 through December 2004 (T = 480). The one-month Treasury bill is used as a 

measure of the risk-free return. The tests are performed for five-year, ten-year, thirty-year sub-
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periods and longer periods. The sub-periods include those used by CLM plus additional periods 

made possible by more recent data. 

The asymptotic P-values for the conventional and new HAR tests are presented in Table 

1.  The asymptotic P-values for the conventional test reject the null at the 5 percent significance 

level for all of the five-year and all but one of the ten-year sub-periods. Turning to the thirty-year 

and longer sub-periods, the null is rejected for all six sub-periods. The Newey and West (1987, 

1994) version of the conventional HAR test uses a HAC estimator based on the truncated Bartlett 

kernel. The bandwidth for the tabled results is M = 6. The result are not qualitatively changed by 

using M = 4. A well known guideline for choosing the bandwidth for the Bartlett kernel 

is 1/30.75M T ; see Andrews (1991).  

By contrast, the asymptotic P-values of the new HAR tests do not reject the null at the 5 

percent significance level for more than one-half of the five-year sub-periods and for all of the 

ten-year sub-periods with the exception of the 1995-2004 sub-period. The P-values for the fixed-

b tests are calculated using the Bartlett kernel and b =1 and those for the fixed- tests use the 

Parzen kernel and  = 32.  The results are similar for values of b = 0.5 and for  = 16. The null 

is also not rejected by the asymptotic P-values for five out of six thirty-year and longer sub-

periods. It is worth emphasizing again that the limiting distributions of the fixed-b and fixed- 

tests differ from chi-square distribution. In this application, relying on the fixed-b and fixed- 

approximations produces fewer rejections than the conventional chi-square approximation.   

5. Finite sample test results 

As noted in the introduction, the main reason for thinking that results of the conventional 

HAR test are problematic is that the asymptotic P-values of the new HAR tests do not reject the 

null for the majority of the five-year, ten-year and longer sub-periods. The next step is to 
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investigate the finite-sample as opposed to the asymptotic performance of the conventional and 

new HAR tests for each of the sub-periods.  This section reports simulated finite-sample P-

values of the conventional and the new HAR tests where the P-values are calculated for the three 

forms of the HAR test in four different experiments.  

The null hypothesis that the intercepts are zero is composite because the values of the 

nuisance parameters are unknown in practice. The nuisance parameters include not only the 

slope parameters but also those that specify the process generating the factors and the errors. In 

our experiments, the values of the nuisance parameters are set equal to estimates based on the 

sample data. The level of the tests refers to the probability of a Type I error, not the size where 

the latter is defined as the maximum level over all admissible values of the nuisance parameters. 

In this paper, the simulated finite sample P-values are treated as exact, meaning that they are 

conditional on the values of the nuisance parameters used in the designs. This should be borne in 

mind when reviewing the discussion of the test results.  

The experiments are now described for the January 1965 to 1969 sub-period. The value 

of
ty  is simulated using the constrained least squares estimate of the conditional expectation 

function (1) under the null:  

* * * ( 1,..., ),t t ty x u t T      

where
*

ty ,
*

tx , 
*

tu  are the simulated values of 
ty , 

tx , 
tu
 and  , the constrained least squares 

estimates of the slope vectors calculated from the sample data for the sub-period.  

Normal-Normal (NN) P-value experiment.  This experiment produces data that satisfy 

the assumptions of the classical normal SUR model with normally distributed regressors. The P-

value simulation procedure consists of five steps:  
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S1.  Generate a sample of T = 60 
*

tx  vectors by randomly sampling the ( , )N x S  

distribution where 1

tt
x T x  and 1 ( )( )t tt

S T x x x x     are calculated 

from sample data for the sub-period. 

S2.  Generate a sample of T = 60 
*

tu  vectors independently of 
*

tx  by randomly 

sampling the (0, )N   distribution where 1 ( )( )t tt
T u u u u

   
     and 

1

tt
u T u

    are calculated from the constrained residual vectors 

( )t t tu y x     for the sub-period.  

S3.  Generate a sample of T = 60 
*

ty  vectors from (9) using the
*

tx  vectors from 

S1, the 
*

tu  vectors from S2 and the constrained least squares estimates as the 

values for the slope parameters. 

S4. Compute the three forms of the HAR test statistic from the simulated dataset 

of size T = 60. 

S5. Repeat steps S1, S2, S3 and S4 10, 000 times. Compute the P-value for each 

form of the HAR test statistic from the empirical distribution of the test statistic. 

Resample-Resample (RR) P-value experiment.  This experiment captures the 

nonnormality present in the data. In this and the remaining experiments, only one or both of the 

first two steps differ from those in the NN experiment. 

S1 . Generate a sample of T = 60 
*

tx  vectors by randomly sampling with 

replacement the observations tx .  

  S2.  Generate a sample of T = 60 
*

tu  vectors independently of 
*

tx  by randomly  

  sampling with replacement the demeaned constrained least squares   

  residuals tu u  .  

Normal-VAR (NV) P-value experiment. This experiment introduces serial correlation 

in the errors. The first step is the same as in the NN experiment.  
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S2.  Generate a sample of T = 60 
*

tu  vectors independently of 
*

tx   using a 

Gaussian VAR(1) process 
* * *

1t t tu u       , where  is a 10×10 matrix of 

autoregressive coefficients. The autoregressive matrix  is obtained by a least 

squares regression of 
tu
on

1tu 
 using the constrained least square residuals for 

the sub-period. The vector 
*

t  
is randomly sampled from the N(0,  ) 

distribution, where 1

1
( )( )

T

t tt
T    

   
    and 1

tt
T 

    are 

calculated from the VAR residuals. The conditions for covariance-stationarity are 

checked by calculating the roots of the matrix. In each replication, the initial 

values of 
*

1tu   in the VAR (1) are set equal to zero, and the first 200 draws are 

discarded in order make the results independent of the initial values.  

Resample-Block (RB) P-value experiment. This experiment allows for volatility 

clustering of the returns. The first step is the same as in the RR experiment.  

S2.  Generate a sample of T = 60 
*

tu  vectors independently of 
*

tx  by randomly 

sampling with replacement the demeaned constrained least squares 

residuals tu u  in consecutive fixed-length non-overlapping blocks where the 

block length is six months.  

  

The NN and RR experiments provide evidence on how the tests perform when the 

multivariate iid assumption holds with and without normality. If the tests exhibit poor 

performance under this assumption, it is unlikely that they will perform well in the presence of 

autocorrelation or volatility clustering. 

The rationale for the NV and RB experiments is the studies in finance documenting 

departures from the iid assumption.  The motivation for using a VAR(1) is the evidence reported 

in CLM that individual securities have positive cross-autocorrelations.  The RB experiments are 
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motivated by a large body of evidence that asset return volatility is both time-varying and 

predictable; for example, see Bollerslev (1986) and Bollerslev, Engle and Nelson (1994).  

In the simulation experiments, it was not feasible to generate the errors for each period 

using an estimated multivariate GARCH model. Instead, we use a procedure that is employed in 

bootstrap sampling with dependent data.  The procedure is to divide the residual vectors for each 

sub-period into blocks, and then randomly resample the blocks with replacement. In the RB 

experiments, six-month length blocks were chosen because this is approximately the half-life of 

an estimated univariate GARCH process for monthly stock returns; for example, see French, 

Schwert and Stambaugh, (1987) for estimates for the period 1928-1984.   

More generally, the RB experiments capture dependence in the errors. There are other 

processes that may be generating dependence in addition to autoregressive conditional 

heteroskedasticity. These include ARMA models and also models that produce non-martingale 

difference sequences such as nonlinear moving average and bilinear models. Consequently, the 

results of the RB experiments cannot be interpreted as only due to volatility clustering, although 

this may be the dominant effect. 

Table 2 presents the simulated finite-sample P-values for the conventional and new HAR 

tests. The first message from this table is that the rejections of the null at the five percent level 

are much reduced for the conventional test and are relatively few for the new HAR tests.  For the 

conventional test, the differences between the asymptotic and simulated finite-sample P-values 

for the five-year sub-periods are quite large in all four experiments. This suggests that the 

conventional test based on asymptotic P-values produces misleading inferences when testing the 

CAPM.  In point of fact, even for the thirty-year and longer sub-periods the conventional test 
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does not reject the null at the one percent level with few exceptions when inference is based on 

the finite-sample P-values.  

For the fixed-b and the fixed- tests, there is almost no conflict between the inferences 

based on the asymptotic and simulated finite-sample P-values for the five-year and ten-year 

periods.   The same is true for the six thirty-year and longer sub-periods; the null is not rejected 

for five out of six thirty-year and longer sub-periods based on asymptotic and finite-sample P-

values.  Hence, the simulated finite-sample P-values and the asymptotic P-values produce 

essentially the same inferences for the new HAR tests. In summary, the evidence in Table 2 is 

largely supportive of the CAPM.  

 

 

6. Power of new HAR tests 

This section reports simulated level-corrected powers of the conventional and the new 

HAR tests. The level-corrected powers are calculated for the three forms of the HAR test in four 

different experiments. The four experiments are conducted for each of the sub-periods.  

The simulated powers are estimates of the true level-corrected powers conditional on the 

experimental design. The design specifies the vector of intercepts under the alternative, the 

nuisance parameters including the slope vectors and the long run variance matrix and the process 

generating the factors as well the errors. 

The powers are calculated for a test of H0 against the alternative
1 : (0.0005),H c   

| | 0c  .  Here the alternative intercept vector  is proportional to a vector of ones, , where c is a 

scalar. With this setup, a unit increase in c translates into an increase in the monthly excess 

return of 5 basis points. In finance a monthly excess return of 10 basis points (c = 2) is 
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considered small; see Fama and French (1996, p. 57). On the other hand, a monthly excess return 

of 50 basis points (c = 10) is considered large by traditional benchmarks. One benchmark is the 

equity premium. This is about 6 percent per annum, which translates into a monthly excess 

return of 50 basis points. Another is the monthly excess return on the market portfolio, which is 

between 80 and 100 basis points. Hence, this setup provides a natural metric for interpreting the 

power, which is often absent in power studies.  

The power experiments are now described for the January 1965 to 1969 sub-period. The 

value of
ty  is simulated using  

                       * * * ( 1,..., ),t t ty x u t T        

where
*

ty ,
*

tx , 
*

tu  are the simulated values of 
ty , 

tx , 
tu
. The intercept vector  is a known 

constant given by the alternative H1. The slope   is obtained by running a constrained least 

squares regression of ont ty x
 for the sample data where the constraint is 0  .   

 Normal-Normal (NN) power experiment.  The power simulation procedure consists of 

four steps for each value of c. For c = 0, steps S1, S2, S3 and S4 are the same as in the P-value 

simulation procedure. The fifth step is:  

S5. Repeat steps S1, S2 S3, S4 10, 000 times. Compute the 5 percent critical value 

for each form of the HAR test statistic from the empirical distribution of the test 

statistic under H0  (c = 0).  

For c ≥ 1, steps S1, S2, S3, S4 are the same as the P-value simulation procedure. The modified 

fifth step is:  

S5. Repeat steps S1, S2, S3 and S4 10,000 times. Compute the power for each 

form of the HAR test statistic from the empirical distribution of the test statistic 

using the simulated five percent critical value obtained from the c = 0 experiment. 

The steps in the RR, NV and RB power simulation experiments are obtained by making 

the analogous changes to the RR, NV and RB P-value simulation experiments. 
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The powers for the NN experiments for the conventional and new HAR tests are reported 

in Table 3. The powers are reported only for positive values of c since the power curves are 

symmetric in c. The results show that all three of the tests tend to have high level-corrected 

power against empirically relevant departures from the null, that is, for monthly excess returns of 

greater than 5 basis points. The level-corrected powers for T = 60 tend to be about 0.5 or greater 

at c = 2 (monthly excess return of 10 basis points) and close to one at c = 3 (monthly excess 

return of 15 basis points). The exceptions are the 1995-1999 and 2000-2004 sub-periods.  The 

powers of the three tests are very similar for 2c  . The conventional test has generally higher 

powers for the c = 1 case for the ten-year and longer periods. Nevertheless for empirically 

relevant values of c, the Table 3 results show that the frequent non-rejections of the null by the 

fixed-b tests and fixed- tests documented in Table 2 are not due to low power. The same 

conclusion is supported by the results from the RR, NV and RB power experiments. These 

results are available on request.  

Table 3 shows that the powers do depend on the kernel and hence on choice of the HAR 

test, although the results are qualitatively similar. Additional simulations show that the powers of 

the fixed-b tests tend to increase as b decreases and the powers of the fixed-tests tend to 

increase as  increases. These results are consistent with the findings in KV(2005)  and PSJ 

(2006, 2007). However, this does not imply that a small b should be chosen for the fixed-b test or 

a large  for the fixed-test. This is because as b decreases the ERP of the fixed-b test increases 

and as  increases the ERP of the fixed-test increases.  The trade-off between the ERP and 

power is analyzed in detail in PSJ (2005a, 2005b) and Sun, Phillips and Jin (2008).  

7. Multivariate complications  
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The purpose of this section is to convince readers who may have doubts about the 

superiority of the new tests.  This section reports the effect of increasing the number of intercepts 

tested on the rejection probabilities of the conventional and new HAR tests. As will be seen, the 

conventional HAR test suffers from massive size distortion when testing many intercepts 

parameters simultaneously, which is relevant when testing the ten equation CAPM.  

Ray and Savin (2008) considered a three-factor model with i equations and hence i 

intercepts. In this section, we adapt their approach for the one-factor model. Accordingly, model 

i is the CAPM with i equations: 

( 1,...,10, 1,..., ),i i i i

t t ty x u i t T             

where 1 1 1( ,..., ) , ( ,..., ), ( ,..., )i i i

t t it i iy y y      
      and 1( ,..., )i

t t itu u u
 . The ordering of 

the models and equations makes use of the fact that the portfolios are ordered by market equity. 

The ith intercept is the intercept of the equation for the ith portfolio of stocks. 

  For the ith model, the null hypothesis of interest is 0 : 0i iH   , and the alternative 

is 1 : 0i iH   . The null 0

iH  is tested for the ith model using the conventional, fixed-b and fixed- 

tests with five percent asymptotic critical values. The finite-sample levels of the tests for the ith 

model are obtained by simulation. In the simulation experiments, the null 0 : 0i iH   is imposed. 

In the ith model, the value of
ty  is simulated using  

* * * ( 1,...,10, 1,..., ),i i i

t t ty x u i t T        

where 
* * *, ,  i i

t t ty x u   are the simulated values of , , i i

t t ty x u    and ,i  is the constrained least 

squares estimate of the slope vector. The slope estimates are calculated using the data for January 

1965 through December 2004.  The rejection probabilities are simulated for T = 60, 120 and 240. 
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Ray and Savin give the detailed simulation procedure for the NN probability experiments in the 

case of the three-factor model. The modifications for the one-factor model are straightforward. 

Panel A of Table 4 reports the results for the NN experiments when the tests use five 

percent asymptotic critical values.  The results for the Bartlett-based conventional robust test 

with M = 6 show that the number of intercept parameters has a very strong effect on the 

simulated levels.  The results for T = 60 show that the ERP is about 5 percent for the one 

equation model and 66 percent for the ten equation model, about a thirteen-fold increase in the 

ERP as the number of intercept parameters tested is increased from one to ten. Given T = 120, 

the ERP is about 2 percent for the one equation model and about 32 percent for all ten equations. 

In this case, although the ERP is not large for one parameter, it is very substantial for ten 

parameters.  

Next compare the effect of the number of intercepts on the level of the fixed-b and fixed-

  test.  For the fixed-b test, the effect of the number of intercepts is almost eliminated, and 

similarly for the fixed-  test with  = 32.  For T = 60, the ERP is about 1 percent or less for the 

one equation model and about 2 percent for the ten equation model. For T = 120, the ERP tends 

to be less than 1 percent for all ten equations.  

Panel B of Table 4 reports the results for alternative experimental designs in addition to 

the NN design for the ten equations case. For the alternative experiments, the ERPs are larger 

than for the NN experiments. The difference is especially noticeable for the NV and RB 

experiments, that is, experiments that allow for serial correlation and/or volatility clustering. 

Nevertheless, even for these experiments, the new tests exhibit substantially lower ERPs 

compared to the conventional test.  Note that even for T = 480 the conventional test has an ERP 

ranging from 5 percent for the NN experiment to twenty five percent for the NV experiment. 
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This further illustrates that the rejections of the CAPM documented in the literature need to be 

viewed with caution. 

As a robustness check, we also applied the conventional and new HAR tests to settings 

with more than ten portfolios, namely the 15, 20 and 25 size and book-to-market sorted 

portfolios obtained from the Ken French website. For the NN experiments, the results show that 

the P-values for the conventional tests are zero for all three sets of portfolios for all sub-periods. 

In contrast, the P-values are frequently above 5 per cent for the majority of the fixed- tests and 

about for about half of the fixed-b tests. This evidence again suggests that the conventional test 

leads to an over-rejection of the null hypothesis. By contrast, the new tests are clearly superior in 

terms of size distortion when many parameters are tested simultaneously.  

8. Concluding comments 

In this paper, we have assumed that the conditional expectation function (CEF) of a stock 

portfolio’s return given the market return (i.e., the CEF of giveny x ) is linear.  Although this 

assumption is not in general compatible with the three-factor Fama-French (1993) model and the 

four-factor Carhart (1997) model, the CAPM can be interpreted as the population linear 

projection of ony x  or best linear predictor of giveny x .  In this interpretation, the Sharpe-

Lintner version of the CAPM implies that all the elements in the intercept of the best linear 

predictor are zero, and the HAR tests can be interpreted as testing the intercept of the best linear 

predictor. 

With this interpretation in mind, our study finds that the evidence for the statistical 

rejection of the CAPM is weaker than the consensus view suggests. This finding illustrates the 

pitfalls of testing multiple hypotheses with the conventional HAR test. The potential solution to 

the over-rejection problem is to use the new HAR tests employed in this paper. 
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Table 1 

Asymptotic P-values (%) for HAR tests of the CAPM 

Notes: The tabled asymptotic P-values for the fixed-b and fixed- tests are computed by simulation using 

10,000 replications of each experiment. The P-values for the conventional HAR test are calculated from 

the chi-square distribution with ten degrees of freedom. 

 

 

 

 

 

 Conventional: Barlett Fixed-b: Barlett Fixed-: Parzen 

Sub-Period WM 

M = 6 

P-value Wb 

b = 1 

P-value W 

 = 32 

P-value 

Five-Year       

1/65-12/69 98.23 0.0000 725.96 0.0094 205.88 0.0153 

1/70-12/74 73.68 0.0000 619.46 0.0230 141.22 0.0442 

1/75-12/79 54.81 0.0000 416.86 0.1003 72.46 0.2087 

1/80-12/84 18.73 0.0438 125.17 0.7473 21.46 0.7859 

1/85-12/89 27.75 0.0020 240.66 0.3619 41.47 0.4692 

1/90-12/94 71.94 0.0000 579.11 0.0304 77.98 0.1811 

1/95-12/99 90.26 0.0000 684.98 0.0129 214.26 0.0141 

1/00-12/04 36.23 0.0001 348.34 0.1607 49.67 0.3771 

Ten-Year       

1/65-12/74 11.50 0.3196 144.88 0.6696 27.16 0.6866 

1/75-12/84 26.16 0.0035 330.44 0.1855 50.69 0.3681 

1/85-12/94 31.31 0.0005 381.86 0.1294 92.63 0.1279 

1/95-12/04 50.79 0.0000 815.90 0.0051 170.30 0.0254 

Thirty-Year       

1/65-12/94 37.05 0.0001 420.69 0.0971 66.52 0.2417 

1/70-12/99 19.89 0.0303 332.55 0.1827 83.16 0.1595 

1/75-12/04 29.14 0.0012 911.13 0.0027 507.80 0.0004 

More Years       

1/65-12/99 26.75 0.0029 370.06 0.1399 71.94 0.2123 

1/70-12/04 21.66 0.0169 399.33 0.1152 86.90 0.1459 

1/65-12/04 27.84 0.0019 415.68 0.1012 74.42 0.1989 
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Table 2  

Simulated finite-sample P-values (%) for HAR tests of the CAPM      

Notes: The tabled finite-sample rejection probabilities are computed by simulation using 10,000 replications of each experiment. 

 Conventional test: Bartlett Fixed-b: Bartlett Fixed- : Parzen

Sub-Period M = 6 b= 1  = 32 

Five-Year NN RR NV RB NN RR NV RB NN RR NV RB 

1/65-12/69 1.3 2.0 0.8 7.2 1.4 2.5 1.0 8.3 1.4 2.2 1.1 14.6 

1/70-12/74 4.5 6.0 4.1 13.3 3.6 5.1 3.3 11.9 4.9 6.2 5.0 19.7 

1/75-12/79 12.4 15.4 7.9 17.6 14.0 18.0 8.9 18.8 22.7 25.8 19.9 39.2 

1/80-12/84 70.0 71.1 54.9 70.5 78.3 78.9 65.2 76.8 79.7 80.2 75.1 86.8 

1/85-12/89 48.2 50.2 38.1 45.0 43.7 45.7 33.5 39.6 49.8 51.6 45.4 61.2 

1/90-12/94 4.9 6.5 2.6 9.9 4.7 6.5 2.4 9.3 19.6 21.7 14.8 33.3 

1/95-12/99 2.8 6.2 1.4 12.1 3.6 7.4 1.7 13.0 1.9 3.7 1.3 17.9 

1/00-12/04 29.9 37.8 16.8 26.1 20.6 28.0 10.9 19.5 39.2 45.2 31.2 42.2 

Ten-Year            

1/65-12/74 69.2 68.8 67.4 69.9 69.2 69.6 67.5 68.0 68.5 69.0 67.7 72.3 

1/75-12/84 15.9 17.0 12.5 21.6 21.1 22.5 17.2 25.1 36.6 38.6 35.7 48.6 

1/85-12/94 8.6 9.6 7.2 11.7 14.4 15.5 12.3 16.2 12.6 13.8 12.8 22.6 

1/95-12/04 0.9 1.5 0.4 3.3 0.6 1.0 0.3 2.3 2.9 3.3 2.4 7.3 

Thirty-Year            

1/65-12/94 0.1 0.2 0.2 0.6 10.5 9.9 9.3 12.3 25.0 23.4 23.7 25.9 

1/70-12/99 9.4 9.5 8.6 13.7 19.6 19.3 19.1 22.9 16.2 15.3 15.8 18.8 

1/75-12/04 1.1 1.5 0.9 2.9 0.3 0.4 0.3 0.7 0.0 0.1 0.1 0.1 

More Years            

1/65-12/99 1.5 1.8 1.5 3.4 14.7 15.4 13.8 17.8 20.9 21.3 20.1 23.2 

1/70-12/04 5.7 6.4 4.9 8.1 11.8 12.9 11.4 14.1 14.2 15.1 14.5 16.9 

1/65-12/04 0.9 1.1 0.8 2.5 10.4 11.3 10.6 13.0 19.8 20.5 20.2 22.4 
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Table 3 

Simulated power (%) of level-corrected 5 percent new HAR tests for the NN experiments  

 

Notes: The tabled finite-sample powers are computed by simulation using 10,000 replications of each experiment. In each power 

experiment the simulated monthly stock portfolio returns under the alternative are characterized by a non-zero CAPM intercept or 

model pricing error. The powers calculations are based on intercept values that are equal to c times 5 basis points per month.

 Conventional test: Bartlett Fixed-b: Bartlett Fixed- : Parzen

Sub-Period M = 6 b= 1  = 32, b =1 

Five-Year c = 1 c = 2 c = 3 c = 4 c = 1 c = 2 c = 3 c = 4 c = 1 c = 2 c = 3 c = 4 

1/65-12/69 38.2 93.8 99.9 100.0 38.8 93.1 99.8 100.0 27.7 80.3 98.4 100.0 

1/70-12/74 42.3 96.4 100.0 100.0 43.5 95.4 99.8 100.0 31.6 85.9 99.2 100.0 

1/75-12/79 22.2 76.5 98.3 100.0 22.4 76.4 97.5 99.8 16.8 58.0 90.4 98.9 

1/80-12/84 22.0 74.6 98.1 99.9 22.1 73.7 97.0 99.8 16.7 56.3 89.0 98.7 

1/85-12/89 49.7 98.5 100.0 100.0 50.6 97.7 99.9 100.0 36.0 90.7 99.8 100.0 

1/90-12/94 40.8 96.3 100.0 100.0 41.1 95.1 99.9 100.0 29.4 84.8 99.2 100.0 

1/95-12/99 12.6 44.7 81.7 96.7 13.0 45.5 82.0 96.1 10.4 32.4 65.0 87.3 

1/00-12/04 7.4 17.5 38.7 64.6 7.4 18.1 39.8 65.7 6.8 13.9 27.5 47.1 

Ten-Year            

1/65-12/74 73.2 100.0 100.0 100.0 62.8 99.4 100.0 100.0 44.5 95.7 100.0 100.0 

1/75-12/84 28.5 89.4 99.9 100.0 25.6 80.0 98.2 99.9 17.9 59.9 91.2 99.2 

1/85-12/94 72.5 100.0 100.0 100.0 61.1 99.2 100.0 100.0 43.1 95.7 99.9 100.0 

1/95-12/04 14.1 55.9 93.1 99.8 13.4 47.9 84.3 96.9 10.7 32.0 64.0 87.8 

Thirty-Year            

1/65-12/94 94.4 100.0 100.0 100.0 77.4 99.9 100.0 100.0 57.2 98.7 100.0 100.0 

1/70-12/99 91.4 100.0 100.0 100.0 71.8 99.6 100.0 100.0 51.0 97.8 100.0 100.0 

1/75-12/04 71.8 100.0 100.0 100.0 52.4 98.1 100.0 100.0 35.3 90.3 99.7 100.0 

More Years            

1/65-12/99 96.8 100.0 100.0 100.0 81.2 99.9 100.0 100.0 60.2 99.2 100.0 100.0 

1/70-12/04 83.7 100.0 100.0 100.0 63.1 99.3 100.0 100.0 44.9 95.7 99.9 100.0 

1/65-12/04 92.8 100.0 100.0 100.0 72.3 99.7 100.0 100.0 52.9 98.2 100.0 100.0 
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         Table 4  

Simulated rejection probabilities (%) of nominal 5 percent HAR tests by equation subsets  

 

Panel A: NN experiments 

 Conventional 

Bartlett  

 M = 6 

Fixed-b: Bartlett  

b= 1 

Fixed- Parzen  

= 32 

Equations    

 T = 60 

    

1 9.6 5.6 4.8 

1-2 13.6 5.2 5.2 

1-3 18.5 5.6 5.1 

1-4 23.8 5.5 5.2 

1-5 30.7 5.4 5.3 

1-6 38.7 5.8 5.5 

1-7 47.0 6.4 5.7 

1-8 54.7 6.0 5.8 

1-9 63.5 7.4 6.1 

1-10 71.2 7.2 5.7 

  

 T =120 

    

1 6.7 5.3 4.8 

1-2 8.9 5.0 5.2 

1-3 11.0 5.5 5.0 

1-4 13.2 5.2 4.9 

1-5 15.5 4.8 4.8 

1-6 18.8 5.1 5.1 

1-7 23.3 5.1 5.0 

1-8 28.0 6.4 6.4 

1-9 31.8 5.6 5.2 

1-10 36.5 5.3 5.0 
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Panel B: Alternative experiments for the 10 equations case 

 Conventional 

Bartlett  

 M = 6 

Fixed-b: Bartlett  

b= 1 

Fixed- Parzen  

= 32 

Experiment     

 T = 60 

    

NN 71.2 7.2 5.7 

RR 72.4 7.6 5.9 

NV 85.9 30.0 21.7 

RB 79.4 16.9 12.7 

  

 T = 120 

    

NN 36.5 5.3 5.0 

RR 38.5 6.0 5.5 

NV 59.6 17.7 12.3 

RB 47.6 10.9 8.8 

 

 T = 360 

 

NN 13.8 4.7 4.9 

RR 13.5 4.8 4.9 

NV 34.6 9.1 7.0 

RB 19.1 7.3 6.2 

 

 T = 480 

 

NN 10.1 5.0 4.9 

RR 10.7 5.0 4.9 

NV 30.3 8.1 6.0 

RB 15.7 7.2 6.1 

 

Notes:  The tabled rejection probabilities are computed by simulation using 10,000 

replications of each experiment.  
 

 

 

 


