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Hypothesis Testing for Linear GMM Models

The main types of hypothesis tests are

• Overidentification restrictions

• Coefficient restrictions (linear and nonlinear)

• Subsets of orthogonality restrictions

• Instrument relevance.



Remark:

One should always first test the overidentifying restrictions before conducting
the other tests. If the model specification is rejected, it does not make sense
to do the remaining tests.



Specification Tests in Overidentified Models

An advantage of the GMM estimation in overidentified models is the ability to
test the specification of the model

 = z0δ0 + 

[g] = [x] = 0 [gg
0
] = [xx

0

2
 ] = S

The -statistic, introduced in Hansen (1982), refers to the value of the GMM
objective function evaluated using an efficient GMM estimator:

 = (δ̂(Ŝ−1) Ŝ−1) = g(δ̂(Ŝ
−1
))0Ŝ−1g(δ̂(Ŝ−1))

g(δ) = S − Sδ
δ̂(Ŝ−1) = any efficient GMM estimator, Ŝ

→S

Recall, If  =  then  = 0; if    then   0.



Under regularity conditions (see Hayashi, 2000, Chap. 3) and if the moment
conditions are valid, then as →∞


→ 2( − )

Remarks

1. In a well-specified overidentified model with valid moment conditions the
-statistic behaves like a chi-square random variable with degrees of freedom
equal to the number of overidentifying restrictions.

2. If the model is misspecified and/or some of the moment conditions do not
hold (e.g., [] = [(− z0δ0)] 6= 0 for some ), then the -statistic
will be large relative to a chi-square random variable with  −  degrees of
freedom.



3. The -statistic acts as an omnibus test statistic for model misspecification.
A large -statistic indicates a misspecified model.

4. Unfortunately, the -statistic does not, by itself, give any information about
how the model is misspecified.



The J-statistic and TSLS

When [xx
0

2
 ] = S = 2Σ efficient GMM reduces to TSLS. The -

statistic then takes the form

(δ̂TSLS ̂
−2
TSLSS

−1
 )

= 
(s − Sδ̂TSLS)0S−1 (s − Sδ̂TSLS)

̂2TSLS

The TSLS -statistic is also known as Sargan’s statistic (see Sargan, 1958).

Remark: Most statistical software that computes TSLS does not report Sargan’s
statistic.



Asymptotic Distribution of Sample Moments and J-statistic
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Result 1: The normalized sample moment evaluated at δ0 is asymptotically
normally distributed

√
g(δ0) =

√
S =

1
√


X
=1

x
→ (0S)

This follows directly by the CLT for ergodic-stationary MDS.



Result 2: The J-statistic evaluated at δ0 and Ŝ−1 is asymptotically chi-square
distributed with  degrees of freedom

 = (δ0 Ŝ
−1) = g(δ0)

0Ŝ−1g(δ0)
→ 2()

provided Ŝ
→S

This follows directly from Result 1, Slutsky’s theorem and the CMT:

g(δ0)
0Ŝ−1g(δ0) =

³√
Ŝ−12g(δ0)

´0 ³√
Ŝ−12g(δ0)

´
→ (0 I)

0(0 I) ≡ z0z ∼ 2()

where z ∼ (0 I) and Ŝ
−1 = Ŝ−120Ŝ−12



Result 3: The J-statistic evaluated at δ0 and Ŵ
→W 6= S−1 is not asymp-

totically chi-square distributed with  degrees of freedom

 = (δ0Ŵ) = g(δ0)
0Ŵg(δ0)

9 2()

This follows directly from Result 1, Slutsky’s theorem and the CMT:

g(δ0)
0Ŵg(δ0) =

³√
Ŵ12g(δ0)

´0 ³√
Ŵ12g(δ0)

´
→
³
W12(0S)

´0 ³
W12(0S)

´
≡
³
W12S12z

´0
(W12S12z)

6= z0z ∼ 2()

where z ∼ (0 I) andW =W120W12

Note:
³
W12S12z

´0
(W12S12z) 6= z0z ∼ 2() unlessW12 = S−12



Q1: What is the distribution of normalized sample moment evaluated at the
GMM estimates δ̂(Ŵ) and δ̂(Ŝ−1)?

Q2: What is the distribution of the J-statistic evaluated at the GMM estimate
δ̂(Ŝ−1)?

Intuition: Estimation of the  × 1 vector δ0 uses up  degrees of freedom.
Therefore, the asymptotic normal distribution of g(δ̂(Ŵ)) and g(δ̂(Ŝ−1))
will be normal but with a− dimensional covariance matrix. The asymptotic
distribution of the J-statistic evaluated at δ̂(Ŝ−1) will be chi-square with−
degrees of freedom.



Properties of Quadratic Forms in Symmetric Idempotent Matrices

Result: Let Q be an  ×  symmetric idempotent (i.e. projection) matrix
with (Q) =    such that Q = Q0 and Q × Q = Q and let
z ∼ (0 I) Then

z0Qz ∼ 2()

Sketch of proof.

Consider the spectral (eigenvalue) decomposition of Q

Q = PΛP0

P = orthonormal matrix of eigenvectors; P0 = P−1

Λ = diagonal matrix of eigenvalues



Now, because Q is a rank  projection matrix it has  eigenvalues equal to
1 and − eigenvalues equal to 0. Hence, we can write

Λ =

Ã
I

O−

!
In addition, because P is orthonormal

Pz ≡ z

That is,

[Pz] = P[z] = 0

(Pz) = [PzzP0] = P[zz0]P0 = PP−1 = I

Then

z0Qz = z0PΛP0z = z0Λz =
X
=1

2 ∼ 2()



Proposition 1: The normalized sample moment evaluated at the GMM estimate
δ̂(Ŵ) is asymptotically normally distributed

Ŵ12√g(δ̂(Ŵ)) = Ŵ12√(s − Sδ̂(Ŵ))
→ (0NSN0)

N = (I −P )W12 P = F(F
0F)−1F0F =W12Σ

rank(F) =  rank(N) =  −  rank(NSN0) =  − 

Corollary: The normalized sample moment evaluated at the efficient GMM
estimate δ̂(Ŝ−1) is asymptotically normally distributed

Ŝ−12
√
g(δ̂(Ŝ

−1)) → (0 (I −P ))

This follows directly from Proposition 1 by setting Ŵ = Ŝ
−1




Proposition 2: The asymptotic distribution of the J-statistic evaluated at the
efficient GMM estimate δ̂(Ŝ−1) is chi-square with  −  degrees of freedom

(δ̂(Ŝ−1) Ŝ−1) = g(δ̂(Ŝ
−1
))0Ŝ−1g(δ̂(Ŝ−1))

→ 2( − )

This follows directly from the Corollary to Proposition 1:

g(δ̂(Ŝ
−1
))0Ŝ−1g(δ̂(Ŝ−1)) =µ

Ŝ−12
√
g(δ̂(Ŝ

−1
))
¶0 µ

Ŝ−12
√
g(δ̂(Ŝ

−1
))
¶

→ (0 (I −P ))0(0 (I −P )) ≡ z0(I −P )z ∼ 2( − )

where

z ∼ (0 I) rank(I −P ) =  − 



Sketch of Proof to Proposition 1.

First note that

δ̂(Ŵ) = (S0ŴS)
−1S0Ŵs

g(δ̂(Ŵ)) = s − Sδ̂(Ŵ)

= s − S(S0ŴS)
−1S0Ŵs

Define (e.g. Cholesky factorization)

Ŵ = Ŵ120Ŵ12

Then

Ŵ12g(δ̂(Ŵ))

= Ŵ12s − Ŵ12S(S
0
ŴS)

−1S0Ŵ
120Ŵ12s

= (I − Ŵ12S(S
0
ŴS)

−1S0Ŵ
120)Ŵ12s



Define

F̂ = Ŵ12S

P
̂

= F̂(F̂
0
F̂)
−1
F̂0

= Ŵ12S(S
0
ŴS)

−1S0Ŵ
120

rank(P
̂
) =  as →∞

Then

Ŵ12g(δ̂(Ŵ)) = (I −P̂ )Ŵ
12s

rank(I −P̂ ) =  −  as →∞



Now

s = Sδ0 + S

Ŵ12s = Ŵ12Sδ0 + Ŵ
12S

= F̂δ0 + Ŵ
12S

Therefore,

Ŵ12g(δ̂(Ŵ)) = (I −P̂ )Ŵ
12s

= (I −P̂ )
³
F̂δ0 + Ŵ

12S
´

= (I −P̂ )Ŵ
12S

since (I −P̂ )F̂ = 0



Consider the normalized sample moment

Ŵ12√g(δ̂(Ŵ)) = (I −P̂ )Ŵ
12√S

By the ergodic theorem and Slutsky’s theorem

F̂ = Ŵ12S
→W12Σ = F

P
̂

→ P

(I −P̂ )Ŵ
12 → (I −P )W12

By the CLT for ergodic-stationary MDS and the CMT

√
S

→ (0S)

Therefore, by the CMT

Ŵ12√g(δ̂(Ŵ)) = (I −P̂ )Ŵ
12√S

→ (I −P )W12(0S) ≡ (0NSN0)



where N = (I −P )W12 Note

rank(N) =  − 

rank(NSN0) =  − 



Testing Restrictions on Coefficients: Wald Statistics

Wald-type statistics are based on the asymptotic normality of the GMM es-
timator δ̂(Ŵ) for an arbitrary weight matrix Ŵ. Simple tests on individual
coefficients of the form

0 :  = 0

may be conducted using the asymptotic -ratio

 =
̂(Ŵ)− 0cSE(̂(Ŵ))

where cSE(̂(Ŵ)) is the square root of the th diagonal element of

1


davar(δ̂(Ŵ)) =

1


(S0ŴS)

−1S0ŴŜŴS(S
0
ŴS)

−1

Under the null hypothesis , the -ratio has an asymptotic standard normal
distribution.



Linear hypotheses of the form

0 : Rδ0 = r

R = fixed  ×  matrix of rank 

r = fixed  × 1 vector

may be tested using the Wald statistic

Wald = (Rδ̂(Ŵ)− r)0
h
R·davar(δ̂(Ŵ)) ·R0

i−1
×(Rδ̂(Ŵ)− r)davar(δ̂(Ŵ)) = (S0ŴS)

−1S0ŴŜŴS(S
0
ŴS)

−1

Under the null, the Wald statistic has a limiting chi-square distribution with 
degrees of freedom.



Remark

The Wald statistic is valid for any consistent and asymptotically normal GMM
estimator δ̂(Ŵ) based on an arbitrary symmetric and positive definite weight
matrix Ŵ

→W. Usually, Wald statistics are computed using Ŵ = Ŝ−1.



Sketch of Proof

Under 0 : Rδ0 = r
√
(Rδ̂(Ŵ)− r) =

√
n(Rδ̂(Ŵ)−Rδ0) =R

√
(δ̂(Ŵ)− δ0)

By the asymptotic normality of δ̂(Ŵ) and Slutsky’s theorem

R
√
(δ̂(Ŵ)− δ0)

→ R·(0 avar(δ̂(Ŵ)))

≡ (0R·avar(δ̂(Ŵ)) ·R0)



Therefore, by the CMT

Wald =
√
(Rδ̂(Ŵ)− r)0

h
R·davar(δ̂(Ŵ)) ·R0

i−1
×
√
(Rδ̂(Ŵ)− r)

→ (0R·avar(δ̂(Ŵ)) ·R0)0
h
R·davar(δ̂(Ŵ)) ·R0

i−1
×(0R·avar(δ̂(Ŵ)) ·R0)

∼ 2()



Nonlinear hypotheses of the form

0 : a(δ0)
×1

= 0

rank (A(δ0)) =  A(δ0)
×

=
a(δ0)

δ0

may be tested using the Wald statistic

Wald = a(δ̂(Ŵ))0
h
A(δ̂(Ŵ))davar(δ̂(Ŵ))A(δ̂(Ŵ))0

i−1
×a(δ̂(Ŵ))

Under the null, the Wald statistic has a limiting chi-square distribution with 
degrees of freedom.



Sketch of Proof

The proof follows from the asymptotic normality of δ̂(Ŵ) and the delta method:

√
(δ̂(Ŵ)− δ0)

→ (0 avar(δ̂(Ŵ)))
√
(a(δ̂(Ŵ))− a(δ0)) =

√
a(δ̂(Ŵ)

→ 
³
0A(δ0)avar(δ̂(Ŵ)))A(δ0)

0´
since a(δ0) = 0 under 0 Therefore, by Slutsky’s theorem and the CMT

Wald =
√
a(δ̂(Ŵ))0

h
A(δ̂(Ŵ))davar(δ̂(Ŵ))A(δ̂(Ŵ))0

i−1
×
√
a(δ̂(Ŵ))
→ 2()



Testing Restrictions on Coefficients: GMM LR-Type Statistics

Motivation: F-statistic in linear regression

Consider the linear regression model

 = x0
(1×)

β
(×1)

+   = 1     

and consider testing the simple hypothesis

0 :  = 0



A standard test statistic is the F-statistic

 =

³
(β0)−(β̂)

´


(β̂)(−)

=

³
(β0)−(β̂)

´


̂2

(β) = (y−Xβ)0(y−Xβ)
= OLS objective function

If the regressors are fixed and the errors are normally distributed, then  ∼
−



The F-statistic may be re-written as

 ·  =
(β0)

̂2
− (β̂)

̂2

which is the difference between the scaled restricted OLS objective function
and the scaled unrestricted OLS objective function.

Under more general conditions on the regressors and the errors,

 ·  → 2()

Note: It can be shown that  ·  is numerically identical to the usual Wald
statistic for testing 0 : β = β0 (e.g. typical first year econometrics calcula-
tion)



Linear and nonlinear restrictions of the form

0 : Rδ0
×1

= r

0 : a(δ0)
×1

= 0

can be tested using a statistic based on the difference between the GMM ob-
jective functions (J-statistics) evaluated under the restricted and unrestricted
models.

In efficient GMM estimation, the unrestricted objective function is

(δ̂(Ŝ−1) Ŝ−1)

where δ̂(Ŝ−1) is computed without restrictions.

The restricted efficient GMM estimator solves

̃R(Ŝ
−1) = argmin


(δ Ŝ−1) subject to 0



The GMM LR-type statistic is the difference between the restricted and unre-
stricted -statistics:

LRGMM = (δ̃R(Ŝ
−1) Ŝ−1)− (δ̂(Ŝ−1) Ŝ−1)

Under the null hypotheses it can be shown (homework assignment)

LRGMM
→ 2()



Remarks

1. As →∞, it can be shown that Wald − LRGMM
→ 0, although the two

statistics may differ in finite samples for nonlinear hypotheses.

2. For linear restrictions, Wald and LRGMM are numerically equivalent provided
that the same value of Ŝ is used to compute the restricted and unrestricted
efficient GMM estimators. Typically Ŝ computed under the unrestricted model
is used in constructing LRGMM. In this case, when the restricted efficient
GMM estimator is computed the weight matrix Ŝ−1UR is held fixed during the
estimation (no iteration is performed on the weight matrix).

3. If LRGMM is computed using two different consistent estimates of S, say
Ŝ and S̃, then it is not guaranteed to be positive in finite samples but is
asymptotically valid.



4. The LRGMM statistic has the advantage over the Wald statistic for non-
linear hypotheses in that it is invariant to how the nonlinear restrictions are
represented. Additionally, Monte Carlo studies have shown that LRGMM often
performs better than Wald in finite samples. In particular, Wald tends to over
reject the null hypothesis when it is true.



Testing Subsets of Orthogonality Conditions

Consider the linear GMM model

 = z
0
δ0 + 

with instruments x = (x01x
0
2)
0 such that

x
×1

=

Ã
x1
x2

!
1 × 1
2 × 1

1 ≥  and 1 +2 = 

The instruments x1 are assumed to be valid (i.e., [x1] = 0), whereas the
instruments x2 are suspected not to be valid (i.e., [x2] 6= 0). That is,
the hypotheses to be tested are

0 : [x] = 0

1 : [x2] 6= 0 given [x1] = 0



A procedure to test for the validity of x2 due to Newey (1985), and Eichen-
baum, Hansen, and Singleton (1988) is as follows.

First, estimate the model by efficient GMM using the full set of instruments
x giving

δ̂(Ŝ−1Full) = (S
0
Ŝ

−1
FullS)

−1S0Ŝ
−1
FullS

where

ŜFull =

"
Ŝ11Full Ŝ12Full
Ŝ21Full Ŝ22Full

#
Ŝ11Full is 1 ×1

Second, estimate the model by efficient GMM using only the instruments x1
(which are valid under 1) and using the weight matrix Ŝ

−1
11Full giving

δ̃(Ŝ−111Full) = (S
0
1Ŝ

−1
11FullS1)

−1S01Ŝ
−1
11FullS1



Third, form the statistic

 = (δ̂(Ŝ−1Full) Ŝ
−1
Full)− (δ̃(Ŝ−111Full) Ŝ

−1
11Full)

Under the null hypothesis that [x] = 0, the statistic  has a limiting
chi-square distribution with  −1 degrees of freedom.

Note: The use of Ŝ−111Full guarantees that the  statistic is non-negative.



Testing Instrument Relevance

In order to obtain consistent GMM estimates the instruments x must satisfy

[x] = 0 (orthogonality or validity)

rank([xz
0
]) =  (relevancy)

For the rank condition to hold, the endogenous variables z must be correlated
with the instruments.

To see this, consider the simple GMM regression involving a single endogenous
variable and a single instrument (all variables demeaned)

 =  + 

[] = 0

The rank condition is rank(Σ) = 1, which implies thatΣ = cov( ) 6= 0.



Remarks

1. If there are  instruments 1      but only one endogenous variable
 then the rank condition holds as long as cov( ) 6= 0 for some .

2. If cov( ) ≈ 0 for all  then the instruments are called weak.

3. Testing instrument relevance is important in practice because recent research
(e.g., Nelson and Startz (1989), Dufour (1997), Staiger and Stock (1997),
Zivot, Startz, Nelson (1998), Stock and Wright (2000)) has shown that stan-
dard GMM procedures for estimation and inference can be highly misleading if
instruments are weak.

4. Stock, Wright, and Yogo (2002) and Kleibergen and Mavorides (2009) gave
nice surveys of the issues associated with using GMM in the presence of weak
instruments and discussed the nonstandard inference procedures that should be
used.



Simple procedure for testing instrument relevance

Consider the general linear GMM regression

 = z0δ + 
= z01

(1×1)
δ1

(1×1)
+ x01
(1×1)

δ2
(1×1)

+ 

 = 1 +1

such that

[z1] 6= 0 (1 endogenous regressors)
[x1] = 0 (1 included exogenous regressors)

Assume there are 2 additional instruments (excluded exogenous variables)
x2 satisfying

[x2] = 0



What is important for the rank condition are the correlations between the
endogenous variables in z1 and the instruments in x2.

To measure the correlations between the elements of z1 and x2 and to test
for instrument relevance, estimate by least squares the so-called first-stage
regression

1 = x
0
1π1 + x

0
2π2 +   = 1     1

for each endogenous variable in z1.

The -ratios on the variables in x2 can be used to assess the strength of the
correlation between 1 and the variables in x2. The  -statistic for testing
π2 = 0 can be used to assess the joint relevance of x2 for 1.


