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1 Introduction

The application of the instrumental variables (IV) estimator in the context of the clas-
sical linear regression model, from a textbook context, is quite straightforward: if the
error distribution cannot be considered independent of the regressors’ distribution, IV is
called for, using an appropriate set of instruments. But applied researchers often must
confront several hard choices in this context.

An omnipresent problem in empirical work is heteroskedasticity. Although the con-
sistency of the IV coefficient estimates is not affected by the presence of heteroskedas-
ticity, the standard IV estimates of the standard errors are inconsistent, preventing
valid inference. The usual forms of the diagnostic tests for endogeneity and overiden-
tifying restrictions will also be invalid if heteroskedasticity is present. These problems
can be partially addressed through the use of heteroskedasticity–consistent or “robust”
standard errors and statistics. The conventional IV estimator (though consistent) is,
however, inefficient in the presence of heteroskedasticity. The usual approach today
when facing heteroskedasticity of unknown form is to use the Generalized Method of
Moments (GMM), introduced by L. Hansen (1982). GMM makes use of the orthogo-
nality conditions to allow for efficient estimation in the presence of heteroskedasticity
of unknown form.

In the twenty years since it was first introduced, GMM has become a very popular
tool among empirical researchers. It is also a very useful heuristic tool. Many standard
estimators, including IV and OLS, can be seen as special cases of GMM estimators,
and are often presented as such in first–year graduate econometrics texts. Most of the
diagnostic tests we discuss in this paper can also be cast in a GMM framework. We
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begin, therefore, with a short presentation of IV and GMM estimation in Section 2.
We include here a discussion of intra–group correlation or “clustering”. If the error
terms in the regression are correlated within groups, but not correlated across groups,
then the consequences for IV estimation are similar to that of heteroskedasticity: the
IV coefficient estimates are consistent, but their standard errors and the usual forms
of the diagnostic tests are not. We discuss how clustering can be interpreted in the
GMM context and how it can be dealt with in Stata to make efficient estimation, valid
inference and diagnostic testing possible.

Efficient GMM brings with it the advantage of consistency in the presence of arbi-
trary heteroskedasticity, but at a cost of possibly poor finite sample performance. If
heteroskedasticity is in fact not present, then standard IV may be preferable. The usual
Breusch–Pagan/Godfrey/Cook–Weisberg and White/Koenker tests for the presence of
heteroskedasticity in a regression equation can be applied to an IV regression only un-
der restrictive assumptions. In Section 3 we discuss the test of Pagan and Hall (1983)
designed specifically for detecting the presence of heteroskedasticity in IV estimation,
and its relationship to these other heteroskedasticity tests.

Even when IV or GMM is judged to be the appropriate estimation technique, we
may still question its validity in a given application: are our instruments “good instru-
ments”? This is the question we address in Section 4. “Good instruments” should be
both relevant and valid: correlated with the endogenous regressors and at the same time
orthogonal to the errors. Correlation with the endogenous regressors can be assessed by
an examination of the significance of the excluded instruments in the first–stage IV re-
gressions. We may cast some light on whether the instruments satisfy the orthogonality
conditions in the context of an overidentified model: that is, one in which a surfeit of
instruments are available. In that context we may test the overidentifying restrictions
in order to provide some evidence of the instruments’ validity. We present the variants
of this test due to Sargan (1958), Basmann (1960) and, in the GMM context, L. Hansen
(1982), and show how the generalization of this test, the C or “difference–in–Sargan”
test, can be used test the validity of subsets of the instruments.

Although there may well be reason to suspect non–orthogonality between regressors
and errors, the use of IV estimation to address this problem must be balanced against
the inevitable loss of efficiency vis–à–vis OLS. It is therefore very useful to have a test
of whether or not OLS is inconsistent and IV or GMM is required. This is the Durbin–
Wu–Hausman (DWH) test of the endogeneity of regressors. In Section 5, we discuss
how to implement variants of the DWH test, and how the test can be generalized to
test the endogeneity of subsets of regressors. We then show how the Hausman form of
the test can be applied in the GMM context, how it can be interpreted as a GMM test,
when it will be identical to the Hansen/Sargan/C-test statistic, and when the two test
statistics will differ.

We have written four Stata commands—ivreg2, ivhettest, overid, and ivendog—
that, together with Stata’s built-in commands, allow the user to implement all of the
above estimators and diagnostic tests. The syntax diagrams for these commands are
presented in the last section of the paper, and the electronic supplement presents anno-
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tated examples of their use.

2 IV and GMM estimation

The “Generalized Method of Moments” was introduced by L. Hansen in his celebrated
1982 paper. There are a number of good modern texts that cover GMM, and one
recent prominent text, Hayashi (2000), presents virtually all the estimation techniques
discussed in the GMM framework. A concise on–line text that covers GMM is Hansen
(2000). The exposition below draws on Hansen (2000), Chapter 11; Hayashi (2000),
Chapter 3; Wooldridge (2002), Chapter 8; Davidson and MacKinnon (1993), and Greene
(2000).

We begin with the standard IV estimator, and then relate it to the GMM framework.
We then consider the issue of clustered errors, and finally turn to OLS.

2.1 The method of instrumental variables

The equation to be estimated is, in matrix notation,

y = Xβ + u, E(uu′) = Ω (1)

with typical row
yi = Xiβ + ui (2)

The matrix of regressors X is n ×K, where n is the number of observations. The
error term u is distributed with mean zero and the covariance matrix Ω is n×n. Three
special cases for Ω that we will consider are:

Homoskedasticity: Ω = σ2I (3)

Heteroskedasticity: Ω =



σ2
1 0

. . .
σ2
i

. . .
0 σ2

n

 (4)

Clustering: Ω =



Σ1 0
. . .

Σm
. . .

0 ΣM

 (5)
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where Σm indicates an intra–cluster covariance matrix. For cluster m with t observa-
tions, Σm will be t× t. Zero covariance between observations in the M different clusters
gives the covariance matrix Ω, in this case, a block–diagonal form.

Some of the regressors are endogenous, so that E(Xiui) 6= 0. We partition the set
of regressors into [X1 X2], with the K1 regressors X1 assumed under the null to be
endogenous, and the (K −K1) remaining regressors X2 assumed exogenous.

The set of instrumental variables is Z and is n × L; this is the full set of variables
that are assumed to be exogenous, i.e., E(Ziui) = 0. We partition the instruments
into [Z1 Z2], where the L1 instruments Z1 are excluded instruments, and the remaining
(L− L1) instruments Z2 ≡ X2 are the included instruments/exogenous regressors:

Regressors X = [X1 X2] = [X1 Z2] = [Endogenous Exogenous] (6)

Instruments Z = [Z1 Z2] = [Excluded Included] (7)

The order condition for identification of the equation is L ≥ K; there must be at
least as many excluded instruments as there are endogenous regressors. If L = K, the
equation is said to be “exactly identified”; if L > K, the equation is “overidentified”.

Denote by PZ the projection matrix Z(Z ′Z)−1Z ′. The instrumental variables or
two–stage least squares (2SLS) estimator of β is

β̂IV = (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y = (X ′PZX)−1X ′PZ y (8)

The asymptotic distribution of the IV estimator under the assumption of conditional
homoskedasticity (3) can be written as follows. Let

QXZ = E(X ′iZi) (9)

QZZ = E(Z ′iZi) (10)

and let û denote the IV residuals,

û ≡ y −Xβ̂IV (11)

Then the IV estimator is asymptotically distributed as β̂IV
A∼ N(β, V (β̂IV )) where

V (β̂IV ) =
1
n
σ2(Q′XZQ

−1
ZZQXZ)−1 (12)

Replacing QXZ , QZZ and σ2 with their sample estimates

QXZ =
1
n
X ′Z (13)

QZZ =
1
n
Z ′Z (14)
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σ̂2 =
û′û

n
(15)

we obtain the estimated asymptotic variance–covariance matrix of the IV estimator:

V (β̂IV ) = σ̂2(X ′Z(Z ′Z)−1Z ′X)−1 = σ̂2(X ′PZX)−1 (16)

Note that some packages, including Stata’s ivreg, include a degrees–of–freedom
correction to the estimate of σ̂2 by replacing n with n − L. This correction is not
necessary, however, since the estimate of σ̂2 would not be unbiased anyway (Greene
(2000), p. 373). Our ivreg2 routine defaults to the large–sample formulas for the
estimated error variance and covariance matrix; the user can request the small–sample
versions with the option small.

2.2 The Generalized Method of Moments

The standard IV estimator is a special case of a Generalized Method of Moments (GMM)
estimator. The assumption that the instruments Z are exogenous can be expressed as
E(ziui) = 0. The L instruments give us a set of L moments,

gi(β) = Z ′iui = Z ′i(yi −Xiβ) (17)

where gi is L × 1. The exogeneity of the instruments means that there are L moment
conditions, or orthogonality conditions, that will be satisfied at the true value of β = β0:

E(gi(β)) = 0 (18)

Each of the L moment equations corresponds to a sample moment, and we write these
L sample moments as

g(β) =
1
n

n∑
i=1

gi(β) =
1
n

n∑
i=1

Z ′i(yi −Xiβ) =
1
n
Z ′u (19)

The intuition behind GMM is to choose an estimator for β, β̂, that sets these L sample
moments as close to zero as possible.

If the equation to be estimated is exactly identified, so that L = K, then we have as
many equations—the L moment conditions—as we do unknowns—the K coefficients in
β. In this case it is possible to find a β̂ that solves g(β) = 0, and this GMM estimator
is in fact the IV estimator.

If the equation is overidentified, however, so that L > K, then we have more equa-
tions than we do unknowns, and in general it will not be possible to find a β̂ that will
set all L sample moment conditions to exactly zero. In this case, we take an L × L
weighting matrix W and use it to construct a quadratic form in the moment conditions.
This gives us the GMM objective function:

J(β) = ng(β)′Wg(β) (20)
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A GMM estimator for β is the β̂ that minimizes J(β). Deriving and solving the K first
order conditions

∂J(β)
∂β

= 0 (21)

yields the GMM estimator:

β̂GMM = (X ′ZWZ ′X)−1X ′ZWZ ′y (22)

Note that the results of the minimization, and hence the GMM estimator, will be
the same for weighting matrices that differ by a constant of proportionality (we will
make use of this fact below). Beyond this, however, there are as many GMM estimators
as there are choices of weighting matrix W .

What is the optimal choice of weighting matrix? Denote by S the covariance matrix
of the moment conditions g:

S =
1
n
E(Z ′uu′Z) =

1
n
E(Z ′ΩZ) (23)

where S is an L×L matrix. The general formula for the distribution of a GMM estimator
is

V (β̂GMM ) =
1
n

(Q′XZWQXZ)−1(Q′XZWSWQXZ)(Q′XZWQXZ)−1 (24)

The efficient GMM estimator is the GMM estimator with an optimal weighting matrix
W , one which minimizes the asymptotic variance of the estimator. This is achieved
by choosing W = S−1. Substitute this into Equation (22) and Equation (24) and we
obtain the efficient GMM estimator

β̂EGMM = (X ′ZS−1Z ′X)−1X ′ZS−1Z ′y (25)

with asymptotic variance

V (β̂EGMM ) =
1
n

(Q′XZS
−1QXZ)−1 (26)

Note the generality (the “G” of GMM) of the treatment thus far; we have not yet
made any assumptions about Ω, the covariance matrix of the disturbance term. But
the efficient GMM estimator is not yet a feasible estimator, because the matrix S is not
known. To be able to implement the estimator, we need to estimate S, and to do this,
we need to make some assumptions about Ω.

2.3 GMM and heteroskedastic errors

Let us start with one of the most commonly encountered cases in cross–section analy-
sis: heteroskedasticity of unknown form, but no clustering (Equation (4)). We need a
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heteroskedasticity–consistent estimator of S. Such an Ŝ is available by using the stan-
dard “sandwich” approach to robust covariance estimation. Denote by Ω̂ the familiar
“hat” matrix:

Ω̂ =



û2
1 0

. . .
û2
i

. . .
0 û2

n

 (27)

where ûi is a consistent estimate of ui. Then a consistent estimator of S is

Ŝ =
1
n

(Z ′Ω̂Z) (28)

This works because, although we cannot hope to estimate the n diagonal elements of Ω
with only n observations, they are sufficient to enable us to obtain a consistent estimate
of the L× L matrix S.

The û used for the “hat” matrix in Equation (27) can come from any consistent
estimator of β; efficiency is not required. In practice, the most common choice for
estimating û is the IV residuals. This gives us the algorithm for the feasible efficient
two-step GMM estimator, as implemented in ivreg2,gmm and ivgmm0:1

1. Estimate the equation using IV.

2. Form the residuals û. Use these to form the optimal weighting matrix Ŵ = Ŝ−1 =(
1
n (Z ′Ω̂Z)

)−1

.

3. Calculate the efficient GMM estimator β̂EGMM and its variance-covariance matrix
using the estimated optimal weighting matrix and Equations (25), (26) and (13).
This yields

β̂EGMM = (X ′Z(Z ′Ω̂Z)−1Z ′X)−1X ′Z(Z ′Ω̂Z)−1Z ′y (29)

with asymptotic variance

V (β̂EGMM ) = (X ′Z(Z ′Ω̂Z)−1Z ′X)−1 (30)

A variety of other feasible GMM procedures are also possible. For example, the
procedure above can be iterated by obtaining the residuals from the two–step GMM
estimator, using these to calculate a new Ŝ, using this in turn to calculate the three–step
feasible efficient GMM estimator, and so forth, for as long as the user wishes or until
the estimator converges; this is the “iterated GMM estimator”.2

1This estimator goes under various names: “2-stage instrumental variables”(2SIV), White (1982);
“2-step 2-stage least squares”, Cumby et al. (1983); “heteroskedastic 2-stage least squares” (H2SLS);
Davidson and MacKinnon (1993), p. 599.

2Another approach is to choose a different consistent but inefficient Step 1 estimator for the cal-
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2.4 GMM, IV and homoskedastic vs. heteroskedastic errors

Let us now see what happens if we impose the more restrictive assumption of conditional
homoskedasticity on Ω (Equation (3)). This means the S matrix simplifies:

S =
1
n
E(Z ′ΩZ) = σ2 1

n
E(Z ′Z) (31)

The expectation term in (31) can be estimated by 1
nZ
′Z, but what about σ2? As we

noted above, the GMM estimator will be the same for weighting matrices that differ
by a constant of proportionality. We can therefore obtain the efficient GMM estimator
under conditional homoskedasticity if we simply ignore σ2 and use as our weighting
matrix

Ŵ =
(

1
n
Z ′Z

)−1

(32)

Substituting (32) into Equation (22), we find that it reduces to the formula for the IV
estimator in Equation (8). To obtain the variance of the estimator, however, we do need
an estimate of σ2. If we use the residuals of the IV estimator to calculate σ̂2 = 1

n û
′û,

we obtain
Ŝ = σ̂2 1

n
Z ′Z (33)

Finally, if we now set

Ŵ = Ŝ−1 =
(
σ̂2 1
n
Z ′Z

)−1

(34)

and substitute (34) into the formula for the asymptotic variance of the efficient GMM
estimator (26), we find that it reduces to the formula for the asymptotic variance of
the IV estimator (12). In effect, under the assumption of conditional homoskedasticity,
the (efficient) iterated GMM estimator is the IV estimator, and the iterations converge
after one step.3

What are the implications of heteroskedasticity for the IV estimator? Recall that in
the presence of heteroskedasticity, the IV estimator is inefficient but consistent, whereas
the standard estimated IV covariance matrix is inconsistent. Asymptotically correct

culation of residuals used in Step 2. One common alternative to IV as the initial estimator is to use
the residuals from the GMM estimator that uses the identity matrix as the weighting matrix. Alterna-
tively, one may work directly with the GMM objective function. Note that the estimate of the optimal
weighting matrix is derived from some β̂. Instead of first obtaining an optimal weighting matrix and
then taking it as given when maximizing Equation (20), we can write the optimal weighting matrix
as a function of β, and choose β to maximize J(β) = ngn(β)′W (β)gn(β). This is the “continuously
updated GMM” of Hansen et al. (1996); it requires numerical optimization methods.

3It is worth noting that the IV estimator is not the only such efficient GMM estimator under
conditional homoskedasticity. Instead of treating σ2 as a parameter to be estimated in a second
stage, what if we return to the GMM criterion function and minimize by simultaneously choosing
β and σ2? The estimator that solves this minimization problem is in fact the Limited Information
Maximum Likelihood estimator (LIML). In effect, under conditional homoskedasticity, the continuously
updated GMM estimator is the LIML estimator. Calculating the LIML estimator does not require
numerical optimatization methods; it can be calculated as the solution to an eigenvalue problem (see,
e.g., Davidson and MacKinnon (1993), pp. 644–51).
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inference is still possible, however. In these circumstances the IV estimator is a GMM
estimator with a sub–optimal weighting matrix, and hence the general formula for the
asymptotic variance of a general GMM estimator, Equation (24), still holds. The IV
weighting matrix Ŵ remains as in (32); what we need is a consistent estimate of Ŝ. This
is easily done, using exactly the same method employed in two–step efficient GMM.
First, form the “hat” matrix Ω̂ as in Equation (27), using the IV residuals, and use this
matrix to form the Ŝ matrix as in Equation (28). Substitute this Ŝ, the (sub–optimal)
IV weighting matrix Ŵ (Equation 32), and the sample estimates of QXZ (13) and QZZ
(14) into the general formula for the asymptotic variance of a GMM estimator (24), and
we obtain an estimated variance–covariance matrix for the IV estimator that is robust
to the presence of heteroskedasticity:

Robust V (β̂IV ) = (X ′PZX)−1(X ′Z(Z ′Z)−1(Z ′Ω̂Z)(Z ′Z)−1Z ′X)(X ′PZX)−1 (35)

This is in fact the usual Eicker–Huber–White “sandwich” robust variance–covariance
matrix for the IV estimator, available from ivreg or ivreg2 with the robust option.

2.5 Clustering, robust covariance estimation, and GMM

We turn now to the third special form of the disturbance covariance matrix Ω, clus-
tering. Clustering arises very frequently in cross–section and panel data applications.
For example, it may be reasonable to assume that observations on individuals drawn
from the same family (cluster) are correlated with each other, but observations on in-
dividuals from different families are not. In the panel context, it may be reasonable to
assume that observations on the same individual (cluster) in two different time periods
are correlated, but observations on two different individuals are not.

As specified in Equation (5), the form of clustering is very general. The intra–
cluster correlation Σm can be of any form, be it serial correlation, random effects, or
anything else. The Σm’s may, moreover, vary from cluster to cluster (the cluster analog
to heteroskedasticity). Even in these very general circumstances, however, efficient
estimation and consistent inference is still possible.

As usual, what we need is a consistent estimate of S. Denote by um the vector of
disturbances for cluster m; if there are t observations in the cluster, then um is t × 1.
Let ûm be some consistent estimate of um. Finally, define Σ̂m ≡ ûmû

′
m. If we now

define the “hat matrix” as the block–diagonal form

Ω̂C =



Σ̂1 0
. . .

Σ̂m
. . .

0 Σ̂M

 (36)

then an estimator of S that is consistent in the presence of arbitrary intra–cluster
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correlation is
Ŝ =

1
n

(Z ′Ω̂CZ) (37)

The earliest reference to this approach to robust estimation in the presence of clus-
tering of which we are aware is White (1984), pp. 135–6. It is commonly employed in
the context of panel data estimation; see Wooldridge (2002), p. 193, Arellano (1987)
and Kézdi (2002). It is the standard Stata approach to clustering, implemented in, e.g.,
robust, regress and ivreg2.4

The cluster–robust covariance matrix for IV estimation is obtained exactly as in
the preceding subsection except using Ŝ as defined in Equation (37). This generates
the robust standard errors produced by ivreg and ivreg2 with the cluster option.
Similarly, GMM estimates that are efficient in the presence of arbitrary intra–cluster
correlation are obtained exactly as in Subsection 2.3, except using the cluster–robust es-
timate of Ŝ. This efficient GMM estimator is a useful alternative to the fixed or random
effects IV estimators available from Stata’s xtivreg because it relaxes the constraint
imposed by the latter estimators that the correlation of individual observations within
a group is constant.

It is important to note here that, just as we require a reasonable number of diagonal
elements (observations) for the usual “hat” matrix Ω̂, we also require a reasonable
number of diagonal elements (clusters) for Ω̂C . An extreme case is where the number
of clusters M is ≤ K. When this is the case, rank(Ŝ) = M ≤ K = rank(Z ′Z). At this
point, ivreg2 will either refuse to report standard errors (in the case of IV estimation)
or exit with an error message (in the case of GMM estimation). But users should take
care that, if the cluster option is used, then it ought to be the case that M >> K.5

2.6 GMM, OLS and Heteroskedastic OLS (HOLS)

Our final special case of interest is OLS. It is not hard to see that under conditional
homoskedasticity and the assumption that all the regressors are exogenous, OLS is
an efficient GMM estimator. If the disturbance is heteroskedastic, OLS is no longer
efficient but correct inference is still possible through the use of the Eicker–Huber–
White “sandwich” robust covariance estimator, and this estimator can also be derived
using the general formula for the asymptotic variance of a GMM estimator with a sub–
optimal weighting matrix, Equation (24).

A natural question is whether a more efficient GMM estimator exists, and the answer
is “yes” (Chamberlain (1982), Cragg (1983)). If the disturbance is heteroskedastic,
there are no endogenous regressors, and the researcher has available additional moment

4There are other approaches to dealing with clustering that put more structure on the Ω matrix
and hence are more efficient but less robust. For example, the Moulton (1986) approach to obtaining
consistent standard errors is in effect to specify an “error components” (a.k.a. “random effects”)
structure in Equation (36): Σm is a matrix with diagonal elements σ2

u + σ2
v and off-diagonal elements

σ2
v . This is then used with Equation (24) to obtain a consistent estimate of the covariance matrix.

5Stata’s official ivreg is perhaps excessively forgiving in this regard, and will indicate error only if
M ≤ L, i.e., the number of regressors exceeds the number of clusters.
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conditions, i.e., additional variables that do not appear in the regression but that are
known to be exogenous, then the efficient GMM estimator is that of Cragg (1983),
dubbed “heteroskedastic OLS” (HOLS) by Davidson and MacKinnon (1993), p. 600. It
can be obtained in precisely the same way as feasible efficient two–step GMM except
now the first–step inefficient but consistent estimator used to generate the residuals is
OLS rather than IV. This estimator can be obtained using ivreg2 by specifying the gmm
option, an empty list of endogenous regressors, and the additional exogenous variables
in the list of excluded instruments. If the gmm option is omitted, OLS estimates are
reported.

2.7 To GMM or not to GMM?

The advantages of GMM over IV are clear: if heteroskedasticity is present, the GMM
estimator is more efficient than the simple IV estimator, whereas if heteroskedasticity
is not present, the GMM estimator is no worse asymptotically than the IV estimator.

Nevertheless, the use of GMM does come with a price. The problem, as Hayashi
(2000) points out (p. 215), is that the optimal weighting matrix Ŝ at the core of efficient
GMM is a function of fourth moments, and obtaining reasonable estimates of fourth
moments may require very large sample sizes. The consequence is that the efficient
GMM estimator can have poor small sample properties. In particular, Wald tests tend
to over–reject the null (good news for the unscrupulous investigator in search of large
t statistics, perhaps, but not for the rest of us). If in fact the error is homoskedastic,
IV would be preferable to efficient GMM. For this reason a test for the presence of
heteroskedasticity when one or more regressors is endogenous may be useful in deciding
whether IV or GMM is called for. Such a test was proposed by Pagan and Hall (1983),
and we have implemented it in Stata as ivhettest. We describe this test in the next
section.

3 Testing for heteroskedasticity

The Breusch–Pagan/Godfrey/Cook–Weisberg and White/Koenker statistics are stan-
dard tests of the presence of heteroskedasticity in an OLS regression. The principle is
to test for a relationship between the residuals of the regression and p indicator vari-
ables that are hypothesized to be related to the heteroskedasticity. Breusch and Pagan
(1979), Godfrey (1978), and Cook and Weisberg (1983) separately derived the same
test statistic. This statistic is distributed as χ2 with p degrees of freedom under the
null of no heteroskedasticity, and under the maintained hypothesis that the error of the
regression is normally distributed. Koenker (1981) noted that the power of this test
is very sensitive to the normality assumption, and presented a version of the test that
relaxed this assumption. Koenker’s test statistic, also distributed as χ2

p under the null,
is easily obtained as nR2

c , where R2
c is the centered R2 from an auxiliary regression of

the squared residuals from the original regression on the indicator variables. When the
indicator variables are the regressors of the original equation, their squares and their
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cross-products, Koenker’s test is identical to White’s nR2
c general test for heteroskedas-

ticity (White (1980)). These tests are available in Stata, following estimation with
regress, using our ivhettest as well as via hettest and whitetst.

As Pagan and Hall (1983) point out, the above tests will be valid tests for het-
eroskedasticity in an IV regression only if heteroskedasticity is present in that equation
and nowhere else in the system. The other structural equations in the system (corre-
sponding to the endogenous regressors X1) must also be homoskedastic, even though
they are not being explicitly estimated.6 Pagan and Hall derive a test which relaxes this
requirement. Under the null of homoskedasticity in the IV regression, the Pagan–Hall
statistic is distributed as χ2

p, irrespective of the presence of heteroskedasticity elsewhere
in the system. A more general form of this test was separately proposed by White
(1982). Our implementation is of the simpler Pagan–Hall statistic, available with the
command ivhettest after estimation by ivreg, ivreg2, or ivgmm0. We present the
Pagan–Hall test here in the format and notation of the original White (1980) and White
(1982) tests, however, to facilitate comparisons with the other tests noted above.7

Let Ψ be the n × p matrix of indicator variables hypothesized to be related to the
heteroskedasticity in the equation, with typical row Ψi. These indicator variables must
be exogenous, typically either instruments or functions of the instruments. Common
choices would be:

1. The levels, squares, and cross-products of the instruments Z (excluding the con-
stant), as in the White (1980) test. This is the default in ivhettest.

2. The levels only of the instruments Z (excluding the constant). This is available
in ivhettest by specifying the ivlev option.

3. The “fitted value” of the dependent variable. This is not the usual fitted value of
the dependent variable, Xβ̂. It is, rather, X̂β̂, i.e., the prediction based on the IV
estimator β̂, the exogenous regressors Z2, and the fitted values of the endogenous
regressors X̂1. This is available in ivhettest by specifying the fitlev option.

4. The “fitted value” of the dependent variable and its square (fitsq option).

The trade-off in the choice of indicator variables is that a smaller set of indicator vari-
ables will conserve degrees of freedom, at the cost of being unable to detect heteroskedas-
ticity in certain directions.

6For a more detailed discussion, see Pagan and Hall (1983) or Godfrey (1988), pp. 189–90.
7We note here that the original Pagan–Hall paper has a serious typo in the presentation of their

non-normality-robust statistic. Their equation (58b), p. 195, is missing the term (in their terminology)

−2µ3ψ(X̂′X̂)−1X̂′D(D′D)−1. The typo reappears in the discussion of the test by Godfrey (1988).
The correction published in Pesaran and Taylor (1999) is incomplete, as it applies only to the version
of the Pagan–Hall test with a single indicator variable.
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Let
Ψ = 1

n

∑n
i=1 Ψi dimension = n× p

D̂ ≡ 1
n

∑n
i=1 Ψ′i(û

2
i − σ̂2) dimension = n× 1

Γ̂ = 1
n

∑n
i=1(Ψi − Ψ̂)′Xiûi dimension = p×K

µ̂3 = 1
n

∑n
i=1 û

3
i

µ̂4 = 1
n

∑n
i=1 û

4
i

X̂ = PzX

(38)

If ui is homoskedastic and independent of Zi, then Pagan and Hall (1983) (Theo-
rem 8) show that under the null of no heteroskedasticity,

nD̂′B̂−1D̂
A∼ χ2

p (39)

where
B̂ = B1 +B2 +B3 +B4

B1 = (µ̂4 − σ̂4) 1
n (Ψi −Ψ)′(Ψi −Ψ)

B2 = −2µ̂3 1
nΨ′X̂( 1

nX̂
′X̂)−1Γ̂′

B3 = B′2

B4 = 4σ̂2 1
n Γ̂′( 1

nX̂
′X̂)−1Γ̂

(40)

This is the default statistic produced by ivhettest. Several special cases are worth
noting:

• If the error term is assumed to be normally distributed, then B2 = B3 = 0 and
B1 = 2σ̂4 1

n (Ψi −Ψ)′(Ψi −Ψ). This is available from ivhettest with the phnorm
option.

• If the rest of the system is assumed to be homoskedastic, then B2 = B3 = B4 =
0 and the statistic in (39) becomes the White/Koenker nR2

c statistic. This is
available from ivhettest with the nr2 option.

• If the rest of the system is assumed to be homoskedastic and the error term is
assumed to be normally distributed, then B2 = B3 = B4 = 0, B1 = 2σ̂4 1

n (Ψi −
Ψ)′(Ψi−Ψ), and the statistic in (39) becomes the Breusch–Pagan/Godfrey/Cook–
Weisberg statistic. This is available from ivhettest with the bpg option.
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All of the above statistics will be reported with the all option. ivhettest can also be
employed after estimation via OLS or HOLS using regress or ivreg2. In this case the
default test statistic is the White/Koenker nR2

c test.

The Pagan–Hall statistic has not been widely used in practice, perhaps because it
is not a standard feature of most regression packages. For a discussion of the relative
merits of the Pagan–Hall test, including some Monte Carlo results, see Pesaran and
Taylor (1999). Their findings suggest caution in the use of the Pagan–Hall statistic
particularly in small samples; in these circumstances the nR2

c statistic may be preferred.

4 Testing the relevance and validity of instruments

4.1 Testing the relevance of instruments

An instrumental variable must satisfy two requirements: it must be correlated with
the included endogenous variable(s), and orthogonal to the error process. The former
condition may be readily tested by examining the fit of the first stage regressions. The
first stage regressions are reduced form regressions of the endogenous variables X1 on
the full set of instruments Z; the relevant test statistics here relate to the explanatory
power of the excluded instruments Z1 in these regressions. A statistic commonly used,
as recommended e.g., by Bound et al. (1995), is the R2 of the first–stage regression
with the included instruments “partialled-out”.8 Alternatively, this may be expressed
as the F–test of the joint significance of the Z1 instruments in the first–stage regression.
However, for models with multiple endogenous variables, these indicators may not be
sufficiently informative.

To illustrate the pitfalls facing empirical researchers here, consider the following
simple example. The researcher has a model with two endogenous regressors and two
excluded instruments. One of the two excluded instruments is highly correlated with
each of the two endogenous regressors, but the other excluded instrument is just noise.
The model is therefore basically unidentified: there is one good instrument but two
endogenous regressors. But the Bound et al. F−statistics and partial R2 measures from
the two first–stage regressions will not reveal this weakness. Indeed, the F−statistics
will be statistically significant, and without further investigation the researcher will not
realize that the model cannot be estimated in this form. To deal with this problem of
“instrument irrelevance,” either additional relevant instruments are needed, or one of
the endogenous regressors must be dropped from the model. The statistics proposed by
Bound et al. are able to diagnose instrument relevance only in the presence of a single
endogenous regressor. When multiple endogenous regressors are used, other statistics
are required.

One such statistic has been proposed by Shea (1997): a “partial R2” measure that

8More precisely, this is the “squared partial correlation” between the excluded instruments Z1 and
the endogenous regressor in question. It is defined as (RSSZ2 − RSSZ)/TSS, where RSSZ2 is the
residual sum of squares in the regression of the endogenous regressor on Z2, and RSSZ is the RSS
when the full set of instruments is used.
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takes the intercorrelations among the instruments into account.9 For a model containing
a single endogenous regressor, the two R2 measures are equivalent. The distribution of
Shea’s partial R2 statistic has not been derived, but it may be interpreted like any R2.
As a rule of thumb, if an estimated equation yields a large value of the standard (Bound
et al.) partial R2 and a small value of the Shea measure, one may conclude that the
instruments lack sufficient relevance to explain all the endogenous regressors, and the
model may be essentially unidentified.

The Bound et al. measures and the Shea partial R2 statistic can be obtained via
the first or ffirst options on the ivreg2 command.

The consequence of excluded instruments with little explanatory power is increased
bias in the estimated IV coefficients (Hahn and Hausman (2002b)). If their explanatory
power in the first stage regression is nil, the model is in effect unidentified with respect to
that endogenous variable; in this case, the bias of the IV estimator is the same as that of
the OLS estimator, IV becomes inconsistent, and nothing is gained from instrumenting
(ibid.). If the explanatory power is simply “weak”,10 conventional asymptotics fail.
What is surprising is that, as Staiger and Stock (1997) and others have shown, the
“weak instrument” problem can arise even when the first stage tests are significant at
conventional levels (5% or 1%) and the researcher is using a large sample. One rule of
thumb is that for a single endogenous regressor, an F–statistic below 10 is cause for
concern (Staiger and Stock (1997) p. 557). Since the size of the IV bias is increasing in
the number of instruments (Hahn and Hausman (2002b)), one recommendation when
faced with this problem is to be parsimonious in the choice of instruments. For further
discussion see, e.g., Staiger and Stock (1997), Hahn and Hausman (2002a), Hahn and
Hausman (2002b), and the references cited therein.

4.2 Overidentifying restrictions in GMM

We turn now to the second requirement for an instrumental variable. How can the
instrument’s independence from an unobservable error process be ascertained? If (and
only if) we have a surfeit of instruments—i.e., if the equation is overidentified—then
we can test the corresponding moment conditions described in Equation (17): that is,
whether the instruments are uncorrelated with the error process. This condition will
arise when the order condition for identification is satisfied in inequality: the number
of instruments excluded from the equation exceeds the number of included endogenous
variables. This test can and should be performed as a standard diagnostic in any overi-

9The Shea partial R2 statistic may be easily computed according to the simplification presented in
Godfrey (1999), who demonstrates that Shea’s statistic for endogenous regressor i may be expressed as

R2
p =

νOLSi,i

νIV
i,i

[
(1−R2

IV )

(1−R2
OLS

)

]
where νi,i is the estimated asymptotic variance of the coefficient.

10One approach in the literature, following Staiger and Stock (1997), is to define “weak” as meaning
that the first stage reduced form coefficients are in a N1/2 neighborhood of zero, or equivalently, holding
the expectation of the first stage F statistic constant as the sample size increases. See also Hahn and
Hausman (2002b).
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dentified instrumental variables estimation.11 These are tests of the joint hypotheses
of correct model specification and the orthogonality conditions, and a rejection may
properly call either or both of those hypotheses into question.

In the context of GMM, the overidentifying restrictions may be tested via the com-
monly employed J statistic of Hansen (1982). This statistic is none other than the value
of the GMM objective function (20), evaluated at the efficient GMM estimator β̂EGMM .
Under the null,

J(β̂EGMM ) = ng(β̂)′Ŝ−1g(β̂) A∼ χ2
L−K (41)

In the case of heteroskedastic errors, the matrix Ŝ is estimated using the Ω̂ “hat” matrix
(28), and the J statistic becomes

J(β̂EGMM ) = ûZ ′(Z ′Ω̂Z)−1Zû′
A∼ χ2

L−K (42)

With clustered errors, the Ω̂C matrix (37) can be used instead, and this J will be
consistent in the presence of arbitrary intra–cluster correlation.

The J statistic is distributed as χ2 with degrees of freedom equal to the number of
overidentifying restrictions L −K rather than the total number of moment conditions
L because, in effect, K degrees of freedom are used up in estimating the coefficients
of β. J is the most common diagnostic utilized in GMM estimation to evaluate the
suitability of the model. A rejection of the null hypothesis implies that the instruments
are not satisfying the orthogonality conditions required for their employment. This may
be either because they are not truly exogenous, or because they are being incorrectly
excluded from the regression. The J statistic is calculated and displayed by ivreg2
when the gmm, robust, or cluster options are specified. In the last case, the J statistic
will be consistent in the presence of arbitrary intra–cluster correlation. This can be
quite important in practice: Hoxby and Paserman (1998) have shown that the presence
of intra–cluster correlation can readily cause a standard overidentification statistic to
over–reject the null.

4.3 Overidentifying restrictions in IV

In the special case of linear instrumental variables under conditional heteroskedasticity,
the concept of the J statistic considerably predates the development of GMM estimation
techniques. The ivreg2 procedure routinely presents this test, labelled as Sargan’s
statistic (Sargan (1958)) in the estimation output.

Just as IV is a special case of GMM, Sargan’s statistic is a special case of Hansen’s
J under the assumption of conditional homoskedasticity. Thus if we use the IV optimal
weighting matrix (34) together with the expression for J (41), we obtain

Sargan’s statistic =
1
σ̂2
û′Z(Z ′Z)−1Z ′û =

û′Z(Z ′Z)−1Z ′û

û′û/n
=
û′PZ û

û′û/n
(43)

11Thus Davidson and MacKinnon (1993), p. 236: “Tests of overidentifying restrictions should be
calculated routinely whenever one computes IV estimates.” Sargan’s own view, cited in Godfrey (1988),
p. 145, was that regression analysis without testing the orthogonality assumptions is a “pious fraud”.
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It is easy to see from (43) that Sargan’s statistic has an nR2
u form (where R2

u is the
uncentered R2), and it can be easily calculated this way by regressing the IV equation’s
residuals upon all instruments Z (both the included exogenous variables and those in-
struments which do not appear in the equation). The nR2

u of this auxiliary regression
will have a χ2

L−K distribution under the null hypothesis that all instruments are or-
thogonal to the error. This auxiliary regression test is that performed by overid after
ivreg, and the statistic is also automatically reported by ivreg2.12 A good discussion
of this test is presented in Wooldridge (2002), p. 123.

The literature contains several variations on this test. The main idea behind these
variations is that there is more than one way to consistently estimate the variance in
the denominator of (43). The most important of these is that of Basmann (1960).
Independently of Sargan, Basmann proposed an F (L−K,n−L)-test of overidentifying
restrictions:

Basmann’s F -statistic =
û′PZ û/(L−K)
û′MZ û/(n− L)

(44)

where MZ ≡ I−PZ is the “annihilator” matrix and L is the total number of instruments.
Note that since û′MZ û = û′û − û′PZ û, the same artificial regression can be used to
generate both the Basmann and the Sargan statistics.

The difference between Sargan’s and Basmann’s statistics is that the former uses
an estimate of the error variance from the IV regression estimated with the full set
of overidentifying restrictions, whereas the latter uses an estimate from a regression
without the overidentifying restrictions being imposed.13 Either method will generate
a consistent estimator of the error variance under the null of instrument validity, and
hence the two statistics are asymptotically equivalent.

By default the Sargan nR2
u statistic and a χ2 version of Basmann’s statistic (without

the numerator degrees of freedom) are reported in the overid output. An alternative
form of the Sargan statistic that uses a small–sample correction, replacing the estimate
of the error variance û′û/n with û′û/(n−K), may be requested via the dfr option; this
is also the version of the Sargan statistic reported by ivreg2 for IV estimation when the
small option is used. “Pseudo–F” forms of the Sargan and Basmann tests, obtained
by dividing the numerator û′PZ û by L −K, may be requested via the f option. The
all option displays all five statistics.

Neither the Sargan nor the Basmann statistics computed for an IV regression is valid
in the presence of conditional heteroskedasticity. In this case, a heteroskedasticity–
robust overidentification statistic can be calculated for an IV regression by applying
a general result in the literature for a test of overidentification for a GMM estimator
with a sub–optimal weighting matrix, which is what IV amounts to in these circum-

12Note that Stata’s regress reports an uncentered R2 only if the model does not contain a constant,
and a centered R2 otherwise. Consequently, overid calculates the uncentered R2 itself; the uncentered
total sum of squares of the auxiliary regression needed for the denominator of R2

u is simply the residual
sum of squares of the original IV regression.

13See Davidson and MacKinnon (1993), pp. 235–6. The Basmann statistic uses the error variance
from the estimate of their equation (7.54), and the pseudo–F form of the Basmann statistic is given by
equation (7.55); the Sargan statistic is given by their (7.57).
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stances.14 It does not seem to have been noted in the literature that in the IV case this
“robustified Sargan statistic” is numerically identical to the J statistic computed from
feasible efficient two–step GMM for that equation. Thus, if robust inference is sought
in an instrumental variables model, one may calculate the test for overidentification via
a standard J statistic. When the robust and/or cluster options are used with ivreg2
to estimate an IV regression with robust standard errors, the Hansen J statistic for
feasible efficient two–step GMM is automatically reported.

4.4 Testing a subset of the overidentifying restrictions

The Hansen–Sargan tests for overidentification presented above evaluate the entire set
of overidentifying restrictions. In a model containing a very large set of excluded instru-
ments, such a test may have very little power. Another common problem arises when
the researcher has prior suspicions about the validity of a subset of instruments, and
wishes to test them.

In these contexts, a “difference–in–Sargan” statistic may usefully be employed.15

The test is known under other names as well, e.g., Ruud (2000) calls it the “distance
difference” statistic, and Hayashi (2000) dubs it the C statistic; we will use the latter
term. The C test allows us to test a subset of the original set of orthogonality condi-
tions. The statistic is computed as the difference between two Sargan statistics (or, for
efficient GMM, two J statistics): that for the (restricted, fully efficient) regression using
the entire set of overidentifying restrictions, versus that for the (unrestricted, inefficient
but consistent) regression using a smaller set of restrictions, in which a specified set of
instruments are removed from the set. For excluded instruments, this is equivalent to
dropping them from the instrument list. For included instruments, the C test hypothe-
cates placing them in the list of included endogenous variables: in essence, treating them
as endogenous regressors. The C test, distributed χ2 with degrees of freedom equal to
the loss of overidentifying restrictions (i.e., the number of suspect instruments being
tested), has the null hypothesis that the specified variables are proper instruments.

Although the C statistic can be calculated as the simple difference between the
Hansen–Sargan statistics for two regressions, this procedure can generate a negative
test statistic in finite samples. In the IV context this problem can be avoided and the C
statistic guaranteed to be non–negative if the estimate of the error variance σ̂2 from the
original (restricted, more efficient) IV regression is used to calculate the Sargan statistic
for the unrestricted IV regression as well. The equivalent procedure in the GMM context
is to use the Ŝ matrix from the original estimation to calculate both J statistics. More
precisely, Ŝ from the restricted estimation is used to form the restricted J statistic, and
the submatrix of Ŝ with rows/columns corresponding to the unrestricted estimation is
used to form the J statistic for the unrestricted estimation; see Hayashi (2000), p. 220.

14See Ahn (1995), Proposition 1, or, for an alternative formulation, Wooldridge (1995), Procedure
3.2.

15See Hayashi (2000), pp. 218–21 and pp. 232–34 or Ruud (2000), Chapter 22, for comprehensive
presentations.
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The C test is conducted in ivreg2 by specifying the orthog option, and listing the
instruments (either included or excluded) to be challenged. The equation must still be
identified with these instruments either removed or reconsidered as endogenous if the
C statistic is to be calculated. Note that if the unrestricted equation is exactly iden-
tified, the Hansen–Sargan statistic for the unrestricted equation will be zero and the
C statistic will coincide with the Hansen–Sargan statistic for the original (restricted)
equation, and this will be true irrespective of the instruments used to identify the un-
restricted estimation. This illustrates how the Hansen–Sargan overidentification test is
an “omnibus” test for the failure of any of the instruments to satisfy the orthogonality
conditions, but at the same time requires that the investigator believe that at least some
of the instruments are valid; see Ruud (2000), p. 577.

4.5 Tests of overidentifying restrictions as Lagrange multiplier (score)
tests

The Sargan test can be viewed as analogous to a Lagrange multiplier (LM) or score
test.16 In the case of OLS, the resemblance becomes exact. Consider the model Y =
X2β + u, and the researcher wishes to test whether the additional variables Z1 can be
omitted; both X2 and Z1 are assumed to be exogenous. The LM test statistic of this
hypothesis is obtained as nR2

u from a regression of the OLS residuals û on X2 and Z1. It
is easy to see that this is in fact the same procedure used to obtain the Sargan statistic
for the special case of no endogenous regressors: X = X2 and Z = [Z1 X2]. This result
carries over into GMM estimation using Cragg’s HOLS: the J statistic for the HOLS
estimator is a heteroskedasticity–robust LM–type test of the hypothesis that Z1 can be
omitted from the estimation.

When ivreg2 is used to generate OLS estimates, the Sargan statistic reported is an
LM test of the variables in the IV varlist . If the gmm option is chosen, HOLS estimates
are reported along with a robust LM statistic. As usual, the cluster option generates
a statistic that is robust to arbitrary intra–cluster correlation.

If the estimation method is OLS but the error is not homoskedastic, then the stan-
dard LM test is no longer valid. A heteroskedasticity–robust version is, however, avail-
able.17 The robust LM statistic for OLS is numerically equivalent to the J statistic
from feasible efficient two–step GMM, i.e., HOLS, a result which again does not seem
to have been noted in the literature.

5 Testing for endogeneity of the regressors

There may well be reason to suspect non–orthogonality between regressors and errors—
which can arise from several sources, after all, including classical errors–in–variables.
Turning to IV or efficient GMM estimation for the sake of consistency must be balanced

16For a detailed discussion of the relationship between the different types of tests in a GMM frame-
work, see Ruud (2000), Chapter 22.

17See Wooldridge (2002), pp. 58–61, and Wooldridge (1995) for more detailed discussion.
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against the inevitable loss of efficiency. As Wooldridge states, “...an important cost of
performing IV estimation when x and u are uncorrelated: the asymptotic variance of the
IV estimator is always larger, and sometimes much larger, than the asymptotic variance
of the OLS estimator.” (Wooldridge (2003), p. 490) Naturally, this loss of efficiency
is a price worth paying if the OLS estimator is biased and inconsistent; thus a test of
the appropriateness of OLS, and the necessity to resort to instrumental variables or
GMM methods, would be very useful. The intuition for such a test may also be couched
in terms of the number of orthogonality conditions available. May all or some of the
included endogenous regressors be appropriately treated as exogenous? If so, these
restrictions can be added to the set of moment conditions, and more efficient estimation
will be possible.

5.1 Durbin–Wu–Hausman tests for endogeneity in IV estimation

Many econometrics texts discuss the issue of “OLS vs. IV” in the context of the Durbin–
Wu–Hausman (DWH) tests, which involve estimating the model via both OLS and IV
approaches and comparing the resulting coefficient vectors. In the Hausman form of the
test, a quadratic form in the differences between the two coefficient vectors, scaled by
the precision matrix, gives rise to a test statistic for the null hypothesis that the OLS
estimator is consistent and fully efficient.

Denote by β̂c the estimator that is consistent under both the null and the alternative
hypotheses, and by β̂e the estimator that is fully efficient under the null but inconsistent
if the null is not true. The Hausman (1978) specification test takes the quadratic form

H = n(β̂c − β̂e)′D−(β̂c − β̂e)
where

D =
(
V (β̂c)− V (β̂e)

) (45)

and where V (β̂) denotes a consistent estimate of the asymptotic variance of β, and the
operator − denotes a generalized inverse.

A Hausman statistic for a test of endogeneity in an IV regression is formed by choos-
ing OLS as the efficient estimator β̂e and IV as the inefficient but consistent estimator
β̂c. The test statistic is distributed as χ2 with K1 degrees of freedom, this being the
number of regressors being tested for endogeneity. The test is perhaps best interpreted
not as a test for the endogeneity or exogeneity of regressors per se, but rather as a
test of the consequence of employing different estimation methods on the same equa-
tion. Under the null hypothesis that OLS is an appropriate estimation technique, only
efficiency should be lost by turning to IV; the point estimates should be qualitatively
unaffected.

The Hausman statistic comes in several flavors, depending on which estimates of
the asymptotic variances are used. An obvious possibility would be to use V (β̂IV )
and V (β̂OLS) as generated by standard IV and OLS estimation; this would be the
result if Stata’s hausman command were used without any options. This is actually
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rarely done because, although asymptotically valid, it has the drawback of possibly
generating a negative Hausman statistic in finite samples.18 Avoiding this problem is
straightforward, however. Recall that the standard asymptotic covariances for IV and
OLS are

V (β̂IV ) = σ̂2
IV (X ′PZX)−1 V (β̂OLS) = σ̂2

OLS(X ′X)−1 (46)

Under the null, both the IV and the OLS estimates of the error variance are consistent
estimators of σ, and either can be used to form the Hausman statistic. If a common
estimate of σ is used, then the generalized inverse of D is guaranteed to exist and a
positive test statistic is guaranteed.19

If the Hausman statistic is formed using the OLS estimate of the error variance,
then the D matrix in Equation (45) becomes

D = σ̂2
OLS

(
(X ′PZX)−1 − (X ′X)−1

)
(47)

This version of the endogeneity test was first proposed by Durbin (1954) and separately
by Wu (1973) (his T4 statistic) and Hausman (1978). It can be obtained within Stata by
using hausman with the sigmamore option in conjunction with estimation by regress,
ivreg and/or ivreg2.

If the Hausman statistic is formed using the IV estimate of the error variance, then
the D matrix becomes

D = σ̂2
IV

(
(X ′PZX)−1 − (X ′X)−1

)
(48)

This version of the statistic was proposed by separately by Wu (1973) (his T3 statistic)
and Hausman (1978). It can be obtained within Stata by using hausman with the
(undocumented) sigmaless option.

Use of hausman with the sigmamore or sigmaless options avoids the additional
annoyance that because Stata’s hausman tries to deduce the correct degrees of freedom
for the test from the rank of the matrix D, it may sometimes come up with the wrong
answer. It will correctly report K1 degrees of freedom for the test if a common estimate
of the error variance is used, i.e., in either the Durbin (47) or Wu T3 (48) forms of
the statistic,20 but not if both V (β̂IV ) and V (β̂OLS) are used to form D. What will
happen in this case is that hausman will report the correct χ2 statistic, but with degrees
of freedom equal to K rather than K1, and the user will have to calculate the correct
p−value by hand.

18Readers should also bear in mind here and below that the estimates of the error variances may
or may not have small-sample corrections, according to the estimation package used and the options
chosen. If one of the variance-covariance matrices in D uses a small-sample correction, then so should
the other.

19The matrix difference in (47) and (48) has rank K1; see Greene (2000), pp. 384–385. Intuitively,
the variables being tested are those not shared by X and Z, namely the K1 endogenous regressors
X1. The Hausman statistic for the endogeneity test can also be expressed in terms of a test of the
coefficients of the endogenous regressors alone and the rest of the βs removed. In this alternate form,
the matrix difference in the expression equivalent to (47) is positive definite and a generalized inverse
is not required. See Bowden and Turkington (1984), pp. 50–51.

20This works in the former two cases because the matrix difference in (47) and (48) has rank K1; see
note 19 above.
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Although these different flavors of the DWH endogeneity test are asymptotically
equivalent, they will differ numerically, and may perform differently in finite samples.
Given the choice between forming the Hausman statistic using either σ2

OLS or σ2
IV ,

the standard choice is the former (the Durbin statistic) because under the null both
are consistent but the former is more efficient. The Durbin flavor of the test has the
additional advantage of superior performance when instruments are weak (Staiger and
Stock (1997)).

5.2 Extensions: Testing a subset of the regressors for endogeneity,
and heteroskedastic-robust testing for IV and GMM estimation

In some contexts, the researcher may be certain that one or more regressors in X1 is
endogenous but may question the endogeneity of the others. In such a context the DWH
tests above are easily modified to apply to a subset of the endogenous regressors.

Consider dividing the set of endogenous regressors into two subsets, X1A and X1B ,
where only the second set of variables is to be tested for endogeneity. In the tests
using the Hausman statistic formulation, Equation (45), the less efficient but consistent
estimator βc remains the IV estimator β̂IV , but the fully efficient estimator is now the
IV estimator β̂IV B from the regression in which X1A is still treated as endogenous but
X1B is treated as exogenous. A positive test statistic can again be guaranteed if the
estimate of the error variance σ̂ used in the matrix D is from either of the two IV
estimations, since both are consistent under the null. Again, use of the σ̂2 from the
more efficient estimation is traditional.

The Hausman statistic framework of Equation (45) for tests of the endogeneity of
regressors is available both for IV estimation with robust standard errors and for efficient
GMM estimation. The procedure is essentially the same as in the standard IV vs. OLS
case discussed above: estimate the equation twice, once with the regressors being tested
as exogenous (the more efficient estimator) and once with the same regressors treated as
endogenous (the less efficient but consistent estimator), and form the Hausman statistic
using the estimated coefficients and (robust) covariance matrices.

If Stata’s hausman command is used to form the statistic this way, the mildly an-
noying problem of a possibly negative Hausman statistic can arise, and furthermore
hausman will report the correct statistic but with the wrong degrees of freedom (K in-
stead of the correct K1). The way to guarantee a non–negative test statistic is the same
method used with the C test: the equivalent of the sigmamore option of hausman would
be to use the Ŝ matrix from the more efficient estimation to form the covariance matrix
for the less efficient but consistent estimation as well; see Section 4.4. Unfortunately,
this feature is not available with hausman,21 nor can it easily be computed by hand, but
it is available via the orthog option of ivreg2, as we shall see at the very end of this
section.

21Users beware: the sigmamore option following a robust estimation will not only fail to accomplish
this, it will generate an invalid test statistic as well.
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5.3 Durbin–Wu–Hausman tests as GMM tests of orthogonality con-
ditions

Readers at this point may be wondering about the relationship between the GMM tests
of orthogonality conditions implemented by the Hansen–Sargan, Basmann and C tests
as discussed in Sections 4.2-4.4, and the Durbin–Wu–Hausman tests. The potential
resemblance is even closer once we note that the application of the Hausman test is not
limited to testing the endogeneity of regressors.

A Hausman test, like the C test, can be used to test a variety of combinations of
the orthogonality conditions, not only those involving regressors but those involving
excluded instruments as well. Denote by Le and Lc the number of total instruments
in, respectively, the restricted (efficient) and the unrestricted (consistent but inefficient)
regressions. Le − Lc is therefore the number of orthogonality conditions being tested.
Also denote by Kc

1 the number of endogenous regressors in the unrestricted regression.
Then it can be shown that under conditional homoskedasticity, the Hausman statistic
based on IV or GMM estimates of βe and βc will be distributed as χ2 with degrees of
freedom = Min[Le − Lc, Kc

1]. In the conditional heteroskedasticity case, the degrees
of freedom will be Le − Lc if Le − Lc ≤ Kc

1 but unknown otherwise (making the test
impractical).22

What, then, is the difference between the GMM C test and the Hausman specifica-
tion test? In fact, because the two estimators being tested are both GMM estimators,
the Hausman specification test is a test of linear combinations of orthogonality condi-
tions (Ruud (2000), pp. 578-584). When the particular linear combination of orthog-
onality conditions being tested is the same for the C test and for the Hausman test,
the two test statistics will be numerically equivalent. We can state this more precisely
as follows: If Le − Lc ≤ Kc

1, the C statistic and the Hausman statistic are numerically
equivalent.23 If Le − Lc > Kc

1, the two statistics will be numerically different, the C
statistic will have Le − Lc degrees of freedom, and the Hausman statistic will have Kc

1

degrees of freedom in the conditional homoskedasticity case (and an unknown number
of degrees of freedom in the conditional heteroskedasticity case).

One commonly encountered case in which the two statistics are exactly equivalent
is in fact the one with which we began our discussion of DWH tests, namely when we
want to test the endogeneity of regressors. An example of when the two test statistics
differ would arise when the investigator has suspicions about a large number of excluded
instruments. In this case, the number of instruments being tested, Le − Lc, may be
larger than the Kc

1 endogenous regressors in the less efficient estimation.

The intuition behind the circumstances in which the two statistics will differ follows
from what is being tested. The Hausman test is a vector of contrasts test that detects
changes in the coefficients of the regressors treated as endogenous in the consistent but
inefficient specifications. When the number of moment conditions being tested is larger

22See Hausman and Taylor (1981) and Newey (1985), summarized by Hayashi (2000), pp. 233–34.
23We also need to assume, of course, that the two tests use the same estimate of the error variance,

σ̂2, or the same Ŝ matrix.
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than the number of endogenous regressors that will be affected by them, the Hausman
test will have fewer degrees of freedom than the C test. This means an investigator faces
a trade–off when deciding which of the two tests to use: when the two tests differ, the
Hausman test is a test of linear combinations of moment conditions, and is more powerful
than the C test at detecting violations on restrictions of these linear combinations, but
the latter test will be able to detect other violations of moment conditions that the
former test cannot. As Ruud (2000), pp. 585, points out, one of the appealing features
of the Hausman test is that its particular linear combination of moment conditions also
determines the consistency of the more efficient GMM estimator.

There is an interesting semantic issue here: is there a difference between an “endo-
geneity test” and a test of “exogeneity” or “orthogonality”? The answer is, in the IV
context, “not really”. The DWH endogeneity tests are usually presented in textbooks as
tests of “endogeneity”, and the Hansen–Sargan–Basmann–C-tests are usually presented
as tests of the “validity” or “exogeneity” of instruments—and we have adopted these
conventions here—but they are all really just tests of orthogonality conditions. The
reason for the different terminology relates, instead, to the circumstances in which the
researcher is operating and in particular his/her starting point. Say we start with an IV
estimation in which two regressors x1A and x1B are treated as endogenous and there are
five excluded instruments. We suspect that we do not need to be instrumenting x1B ,
and so we employ the Hausman form of the DWH endogeneity test to see whether or not
we can increase our set of orthogonality conditions from 5 to 6. Now consider a second
researcher whose priors are somewhat less conservative; s/he starts with a specification
in which x1A is still treated as endogenous but x1B is exogenous. S/he does, however,
have the same suspicions about x1B , and so s/he employs a C test of its orthogonality
to see whether or not s/he needs to reduce the set of orthogonality conditions from 6
to 5. The two tests are numerically the same, and are testing the same hypothesis—the
exogeneity of x1B—and the only difference is the starting point of the researchers.

5.4 DWH endogeneity tests in practice

There are a variety of ways of conducting a DWH endogeneity test in Stata for the
standard IV case with conditional homoskedasticity. Three equivalent ways of obtaining
the Durbin flavor of the Durbin–Wu–Hausman statistic (47) are:

1. Estimate the less efficient but consistent model using IV, followed by the command
hausman, save. Then estimate the fully efficient model by OLS (or by IV if
only a subset of regressors is being tested for endogeneity), followed by hausman,
sigmamore.

2. Estimate the fully efficient model using ivreg2, specifying the regressors to be
tested in the orthog option.

3. Estimate the less efficient but consistent model using ivreg, then use ivendog
to conduct an endogeneity test. This program will take as its argument a varlist
consisting of the subset of regressors to be tested for endogeneity; if the varlist is
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empty, the full set of endogenous regressors is tested.

The latter two methods are of course more convenient than the first, as the test can be
done in one step.

Yet another asymptotically equivalent flavor of the DWH test is available for stan-
dard IV estimation under conditional homoskedasticity, and is included in the output
of ivendog. This is the test statistic introduced by Wu (1973) (his T2), and sepa-
rately shown by Hausman (1978) to be calculated straightforwardly through the use of
auxiliary regressions. We will refer to it as the Wu–Hausman statistic.24

Consider a simplified version of our basic model (1) with a single endogenous regres-
sor x1:

y = β1x1 +X2β2 + u, (49)

with X2 ≡ Z2 assumed exogenous (including the constant, if one is specified) and with
excluded instruments Z1 as usual. The auxiliary regression approach involves estimating
the reduced form (first–stage) regression for x1 :

x1 = Z1Γ1 +X2Γ2 + v = ZΓ + v (50)

We are concerned with testing that x1 ⊥ u. Since by assumption each z in Z is
uncorrelated with u, the first stage regression implies that this condition is equivalent to
a test of v ⊥ u. Exogeneity of the z’s implies that û—the residuals from OLS estimation
of the first–stage regression (50)—will be a consistent estimator of u. Thus, we augment
Equation (49) with û and reestimate it with OLS. A t−test of the significance of û in
this auxiliary regression is then a direct test of the null hypothesis—in this context,
that θ = 0:

y = β1x1 +X2β2 + θû+ ε (51)

The Wu–Hausman test may be readily generalized to multiple endogenous variables,
since it merely requires the estimation of the first–stage regression for each of the en-
dogenous variables, and augmentation of the original model with their residual series.
The test statistic then becomes an F−test, with numerator degrees of freedom equal
to the number of included endogenous variables. One advantage of the Wu–Hausman
F−statistic over the other DWH tests for IV vs. OLS is that with certain normality
assumptions, it is a finite sample test exactly distributed as F (see Wu (1973) and
Nakamura and Nakamura (1981)). Wu (1974)’s Monte Carlo studies also suggest that
this statistic is to be preferred to the statistic using just σ2

IV .

A version of the Wu–Hausman statistic for testing a subset of regressors is also
available, as Davidson and MacKinnon (1993), pp. 241–242 point out. The modified
test involves estimating the first–stage regression for each of the K1B variables in X1B

in order to generate a residual series. These residual series ÛB are then used to augment
the original model:

y = X1Aδ +X1Bλ+X2β + ÛBΘ + ε (52)
24A more detailed presentation of the test can be found in Davidson and MacKinnon (1993), pp. 237–

42.



26 Instrumental variables and GMM: Estimation and testing

which is then estimated via instrumental variables, with only X1A specified as included
endogenous variables. The test for endogeneity of the variables in X1B is then a test for
the joint significance of the Θ estimates; rejection of that null hypothesis implies that
instruments must be provided for the X1B variables.

An inconvenient complication here is that an ordinary F -test for the significance
of Θ in this auxiliary regression will not be valid, because the unrestricted sum of
squares needed for the denominator is wrong, and obtaining the correct SSR requires
further steps (see Davidson and MacKinnon (1993), chapter 7). Only in the special
case where the efficient estimator is OLS will an ordinary F−test yield the correct test
statistic. The auxiliary regression approach to obtaining the Wu–Hausman statistic
described above has the further disadvantage of being computationally expensive and
practically cumbersome when there are more than a few endogenous variables to be
tested, because a residual series must be constructed separately for every endogenous
variable being tested.

We have taken a different and simpler approach to programming the Wu–Hausman
statistic in ivendog. The Durbin flavor of the Durbin–Wu–Hausman statistic (47) can
be written as

Durbin DWH: χ2(K1B) =
Q∗

USSR/n
(53)

and the Wu–Hausman F−statistic can be written

Wu-Hausman: F (K1B , n−K −K1B) =
Q ∗ /K1B

(USSR−Q∗)/(n−K −K1B)
(54)

where Q∗ is the difference between the restricted and unrestricted sums of squares given
by the auxiliary regression (51) or (52), and USSR is the sum of squared residuals from
the efficient estimate of the model.25 From the discussion in the preceding section,
however, we know that for tests of the endogeneity of regressors, the C statistic and the
Hausman form of the DWH test are numerically equal, and when the error variance from
the more efficient estimation is used, the Hausman form of the DWH test is the Durbin
flavor. We also know from the discussion in sections (4.3) and (4.4) that the C statistic
is simply the difference of two Sargan statistics, one for the unrestricted/consistent
estimation and one for the restricted/efficient estimation, and we can use the estimate
of the error variance from the more efficient estimation for both. Finally, we can see
from Equations (53) and (54) that the Wu–Hausman F−statistic can be easily calculated
from the same quantities needed for the DWH statistic.

This means that the Wu–Hausman F−statistic in Equation (54) does not need
to be calculated using the traditional auxiliary regression method, with all the first-
stage regressions and generation of residual series as described above. Instead, it can be
calculated using only three additional regressions: one to estimate the restricted/efficient

25See Wu (1973) or Nakamura and Nakamura (1981). Q∗ can also be interpreted as the difference
between the sums of squares of the second–stage estimation of the efficient model with and without
the residual series, and with the fitted values for the variables X1A maintained as endogenous. If the
efficient model is OLS, then of course the second–stage estimation is simply OLS augmented by the
residual series.
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model, and two artificial regressions to obtain the two Sargan statistics. More precisely,
we can write

Durbin DWH: χ2(K1B) =
û′ePZ,X1B ûe − û′cPZ ûc

û′eûe/n
(55)

W–H: F (K1B , n−K−K1B) =
(û′ePZ,X1B ûe − û′cPZ ûc)/K1B

(û′eûe − (û′ePZ,X1B ûe − û′cPZ ûc))/(n−K −K1B)
(56)

where ûe and ûc refer to the residuals from the restricted/efficient and unrestricted/consistent
estimations respectively, and PZ,X1B is the projection matrix of the instruments Z aug-
mented by the regressors X1B whose endogeneity is being tested.

A special case worth noting is when the unrestricted/consistent estimation is ex-
actly identified. In that case the Sargan statistic for that equation is zero, and hence
û′cPZ ûc = 0. It is easy to see from the above that the Durbin flavor of the Durbin–
Wu–Hausman χ2 test statistic becomes identical to the Sargan statistic (43) for the
restricted/efficient estimation, and the Wu–Hausman F−statistic becomes identical to
Basmann’s F−statistic (44).26

Whereas we have available a large smorgasboard of alternative but asymptotically
equivalent tests of endogeneity in the case of IV estimation under conditional ho-
moskedasticity, there is much less choice when estimating either IV with a robust co-
variance matrix or efficient GMM. As noted above, the use of hausman to test regressors
for endogeneity in the context of heteroskedasticity–robust or efficient GMM estimation
will sometimes generate negative test statistics, and the degrees of freedom printed out
for the statistic will be wrong. If Le − Lc > Kc

1, there is the additional problem that
the degrees of freedom of the Hausman statistic are unknown. All these problems can
be avoided and a valid endogeneity test statistic obtained simply through the use of
the C statistic: estimate the restricted/fully efficient model with ivreg2, specifying the
regressors to test for endogeneity in the orthog option.

6 Syntax diagrams

ivreg2 depvar
[
varlist1

]
(varlist2=varlist iv)

[
weight

] [
if exp

] [
in range

][
, gmm orthog(#) small level(#) hascons noconstant robust

cluster(varname) first ffirst noheader nofooter eform(string)

depname(varname) mse1 plus
]

ivhettest
[
varlist

] [
, ivlev ivsq fitlev fitsq ph phnorm nr2 bpg all

]
overid

[
, chi2 dfr f all

]
ivendog

[
varlist

]
26This is another way of illustrating that the estimate of the error variance used in Basmann’s statistic

comes from an estimation without any overidentifying restrictions being imposed; see the discussion of
Equation (44) above.
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