Econ 583 Lab 6
Solutions for Nonlinear GMM: Empirical Exercise

Eric Zivot

Winter 2013

1 Nonlinear GMM: Empirical Exercise

In this exercise, you will estimate a typical Euler equation asset pricing model. The
data for the exercise consists of monthly observations on gross consumption growth,
Cy/Cy_1, and returns, Rj;, for ten size sorted portfolios and T-Bills (risk free rate).
(see Zivot and Wang 2005, chapter 21 for an example using S-PLUS).

Consider an Euler equation asset pricing model that allows the individual to invest

in J risky assets with returns R;:+1 (j = 1,...,J), as well as a risk-free asset with
certain return Ry;y1. Assuming power utility over consumption C'
Cl—ao
u(e) =
1— (&%)
ag = risk aversion parameter

the Euler equations may be written as the system of J 4 1 nonlinear equaitons

C oo
E|(1+ Rpu41)5, (grl) ’It] -1 = 0,
t
Cr) ™ ,
E (Rj,tﬂ - Rf,t+1)5o C, 1| = 0,j=1,...,J,

where [; represents information available at time ¢ and /3, represents the time discount
parameter. The parameter vector to be estimated 8y = (5,)’

1. Using the instrument z; = 1, GMM estimation may be performed using the
J + 1 vector of moments

(1+ Rfs1)pB (Céf)_a —1

Rin = Rye)B (%52)
glwi.0,0) = | e T e G

(RJ,t+1 - Rfvt;rl)ﬁ (Cé?)_a

1

Using these moments, estimate @ using the iterated efficient GMM estimator
(with a White-type HC covariance estimator) as well as the continuous updat-
ing (CU) efficient GMM estimator. Use @ = (1,5)" as the starting values for
the optimization for the iterated GMM estimator, and use the iterated GMM
estimates as the starting values for the CU GMM estimator. Do the estimates
look economically plausible? Does the J-statistic reject the overidentifying re-
strictions at the 5% significance level?

Solution: For this question I will use the R package gmm to do the estimation.
Details are given in the script file econ5831ab6Solutions.R!. To use the gmm()
function, you must first write a function to compute the moment conditions g(w;, 1, 0)
which returns a matrix containing g(wy.1,0) for t = 1,...,T at a given value of 6.
One such a function is

eulerJ.moments <- function(parm,x=NULL) {
parm = (beta,alpha)
data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,
RJ(t+1)-Rf (t+1))
n.col = ncol(x)
sdf = parm[1]*x[,1]" (-parm[2])
dl = sdf*x[,2] - 1
d2 = as.matrix(rep(sdf, (n.col-2))*x[,3:n.col])
return(cbind(dl,d2))
}

The function has two arguments, parm and x, where parm is a 2 x 1 vector 8 = (3,)’

and x is a T x (J + 2) data matrix whose tth row is
w; = (¢t/ci—1, 1+ Ry, Ry — Ry, ..., Ry — Rpy)

The function returns a 7' x (J + 1) data matrix whose tth row is g(wy, 8)’.
The data for estimation is created as follows

pricing.df = read.csv(file="C:/Users/ezivot/Dropbox/econ583/pricing.csv")
rownames (pricing.df) = pricing.df[,1]
pricing.df = pricing.df[,-1]
pricing.mat = as.matrix(pricing.df)
n.col = ncol(pricing.mat)
excessRet.mat = apply(pricing.mat[,2:(n.col-1)],2,
function(x,y){x-y},
pricing.mat[,"RF"])
eulerDataJ.mat = cbind(pricing.mat[,"CONS"],1+pricing.mat[,"RF"],

vV + + VvV V V V VYV

'T could use Eviews for the iterated efficient estimator, but not for the CU estimator (Eviews can
only do the CU estimator for single equation GMM).

+ excessRet.mat)
> colnames(eulerDataJ.mat) [1] = "CONS"
> colnames(eulerDataJ.mat) [2] = "RF"

The iterated efficient GMM estimator using the White estimate of S and initial
values 6, = (1,5)" is computed using

> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> eulerJ.gmm.fit = gmm(g=eulerJ.moments, x=eulerDatalJ.mat,
+ tO=start.vals, type="iterative",

+ vcov="iid", optfct="optim")

> summary(eulerJ.gmm.fit)

Call:
gmm(g = eulerJ.moments, x = eulerDataJ.mat, tO = start.vals,
type = "iterative", vcov = "iid", optfct = "optim")

Method: iterative

Coefficients:

Estimate Std. Error t value Pr(>ltl)
beta 8.2736e-01 1.1616e-01 7.1228e+00 1.0578e-12
alpha 5.7395e+01 3.4221e+01 1.6772e+00 9.3504e-02

J-Test: degrees of freedom is 9
J-test P-value
Test E(g)=0: 5.76329 0.76336

Here, Die (S;;C) — (0.827,57.395) with SE(f,,.,) = 0.116 and SE(Ge,) = 34.221.
The estimate of 3 looks reasonable, but the estimate of « is much too large. A more
economically plausible estimate would be around 3. However, the standard error
of Qe is quite big and the J-test does not reject so the model specification is not
rejected. Note, e = (0.827,57.395) is almost identical to what Eviews gives.

The CU efficient GMM estimator using the White estimate of S and initial values

A

0, = 0, is computed using

> eulerJ.cugmm.fit = gmm(g=eulerJ.moments, x=eulerDatalJ.mat,
+ tO=coef (eulerJ.gmm.fit), type="cue",
+ vcov="iid", optfct="optim")

> summary(eulerJ.cugmm.fit)

Call:

gmm(g = eulerJ.moments, x = eulerDataJ.mat, tO = coef(eulerJ.gmm.fit),

type = "cue", vcov = "iid", optfct = "optim")
Method: cue
Coefficients:
Estimate Std. Error t value Pr(Cltl)
beta 6.9741e-01 1.1886e-01 5.8676e+00 4.4212e-09

alpha 9.6193e+01 3.1617e+01 3.0425e+00 2.3466e-03

J-Test: degrees of freedom is 9
J-test P-value

Test E(g)=0: 5.14334 0.82164

Here, 0.,(Scl_0) = (0.697,96.193) with SE(B,,) = 0.119 and SE(de,) = 31.617.
The estimate of 3 looks reasonable, but the estimate of o is much too large. However,
the standard error of &y, is quite big and the J-test does not reject so the model
specification is not rejected.

2. Now consider using the instrument x; = (1,C;/Cy_1). What are the 2(J + 1)
moment, conditions to be used for GMM estimation? Using these moments,
estimate @ using the iterated efficient GMM estimator (with a White-type HC
covariance estimator). Do the estimates look economically plausible? Does the
J-statistic reject the overidentifying restrictions at the 5% significance level?

Solution. The moment vector is now

(1+ Rjp41)5 (C(tjtrl)_ -1
(Run = Rpan)B (S52)

(Rrytp1 — Rfvt;rl)ﬁ (Cé_tl>_a
%) ((1 + Ry111)0 (Cg;1>7a B 1)

g(wiy1,0) = (

<%> (Rupr1 — Rpaa1)f (CéT)_a

() (Ruws - Ry (

A function to compute the moments is

Ciq1

s

euler2J.moments <- function(parm,x=NULL) {
parm = (beta,gamma)
data = (C(t+1)/C(t),1+Rf (t+1) ,R1(t+1)-REf(t+1),...,
RJ(t+1)-Rf (t+1),C(t)/C(t-1))
n.col = ncol(x)
sdf = parm[1]*x[,1]" (-parm[2])

dl = sdf*x[,2] - 1

d2 = as.matrix(rep(sdf, (n.col-3))*x[,3:(n.col-1)])
d3 = di*x[,n.col]

d4 = d2*x[,n.coll

return(cbind(dl,d2,d3,d4))

The iterated efficient GMM estimator using the White estimate of S and initial

values 6, = (1,5)" is computed using

> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> euler2J.gmm.fit = gmm(g=euler2J.moments, x=eulerData2J.mat,
+ tO=start.vals, type="iterative",

+ vcov="iid", optfct="optim")

> summary (euler2J.gmm.fit)

Call:
gmm(g = euler2J.moments, x = eulerData2J.mat, tO = start.vals,
type = "iterative", vcov = "iid", optfct = "optim")

Method: iterative
Kernel: (Quadratic Spectral

Coefficients:

Estimate Std. Error t value Pr(>ltl)
beta 9.9809%e-01 8.8343e-04 1.1298e+03 0.0000e+00
alpha -1.2500e+00 3.7575e-01 -3.3268e+00 8.7855e-04

J-Test: degrees of freedom is 20
J-test P-value
Test E(g)=0: 30.207110 0.066567

Here, Direr (S;g) = (0.998, -1.250) with SE(B,,,) = 0.008 and SE(Giw,) =

0.376. The estimate of 3 looks reasonable, but the estimate of « is negative! Also,
J-test rejects at the 6.6% level so the model specification is suspect.

The CU efficient GMM estimator using the White estimate of S and initial values

A

0, = 0., is computed using

> euler2J.cugmm.fit = gmm(g=euler2J.moments, x=eulerData2J.mat,
+ tO=coef (euler2J.gmm.fit), type="cue",
+ vcov="iid", optfct="optim")

> summary (euler2J.cugmm.fit)

Call:
gmm(g = euler2J.moments, x = eulerData2J.mat, tO = coef(euler2J.gmm.fit),
type = "cue", vcov = "iid", optfct = "optim")

Method: cue
Kernel: (Quadratic Spectral

Coefficients:

Estimate Std. Error t value Pr(>ltl)
beta 9.9806e-01 8.7397e-04 1.1420e+03 0.0000e+00
alpha -1.2370e+00 3.7160e-01 -3.3288e+00 8.7224e-04

J-Test: degrees of freedom is 20
J-test P-value
Test E(g)=0: 30.206323 0.066579

The estimates are almost identical to the iterated GMM estimates.

