
Econ 583 Lab 6

Solutions for Nonlinear GMM: Empirical Exercise

Eric Zivot

Winter 2013

1 Nonlinear GMM: Empirical Exercise

In this exercise, you will estimate a typical Euler equation asset pricing model. The

data for the exercise consists of monthly observations on gross consumption growth,

−1 and returns, for ten size sorted portfolios and T-Bills (risk free rate).

(see Zivot and Wang 2005, chapter 21 for an example using S-PLUS).

Consider an Euler equation asset pricing model that allows the individual to invest

in risky assets with returns +1 (= 1), as well as a risk-free asset with

certain return +1. Assuming power utility over consumption

() =
1−0

1− 0
0 = risk aversion parameter

the Euler equations may be written as the system of + 1 nonlinear equaitons

"
(1 ++1)0

µ
+1

¶−0
|
#
− 1 = 0

"
(+1 −+1)0

µ
+1

¶−0
|
#
= 0 = 1

where represents information available at time and 0 represents the time discount

parameter The parameter vector to be estimated θ0 = (0 0)
0

1. Using the instrument = 1, GMM estimation may be performed using the

 + 1 vector of moments

g(w+1θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
(1 ++1)

³
+1

´−
− 1

(1+1 −+1)
³
+1

´−
...

(+1 −+1)
³
+1

´−

⎞⎟⎟⎟⎟⎟⎟⎠
1

Using these moments, estimate θ using the iterated efficient GMM estimator

(with a White-type HC covariance estimator) as well as the continuous updat-

ing (CU) efficient GMM estimator. Use θ = (1 5)0 as the starting values for
the optimization for the iterated GMM estimator, and use the iterated GMM

estimates as the starting values for the CU GMM estimator. Do the estimates

look economically plausible? Does the J-statistic reject the overidentifying re-

strictions at the 5% significance level?

Solution: For this question I will use the R package gmm to do the estimation.

Details are given in the script file econ583lab6Solutions.R1. To use the gmm()

function, you must first write a function to compute the moment conditions g(w+1θ)

which returns a matrix containing g(w+1θ) for = 1 at a given value of θ

One such a function is

eulerJ.moments <- function(parm,x=NULL) {

parm = (beta,alpha)

data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

RJ(t+1)-Rf(t+1))

n.col = ncol(x)

sdf = parm[1]*x[,1]^(-parm[2])

d1 = sdf*x[,2] - 1

d2 = as.matrix(rep(sdf,(n.col-2))*x[,3:n.col])

return(cbind(d1,d2))

}

The function has two arguments, parm and x, where parm is a 2×1 vector θ = ()0
and x is a × (+ 2) data matrix whose th row is

w = (−1 1 + 1 − −)

The function returns a × (+ 1) data matrix whose th row is g(wθ)
0

The data for estimation is created as follows

> pricing.df = read.csv(file="C:/Users/ezivot/Dropbox/econ583/pricing.csv")

> rownames(pricing.df) = pricing.df[,1]

> pricing.df = pricing.df[,-1]

> pricing.mat = as.matrix(pricing.df)

> n.col = ncol(pricing.mat)

> excessRet.mat = apply(pricing.mat[,2:(n.col-1)],2,

+ function(x,y){x-y},

+ pricing.mat[,"RF"])

> eulerDataJ.mat = cbind(pricing.mat[,"CONS"],1+pricing.mat[,"RF"],

1I could use Eviews for the iterated efficient estimator, but not for the CU estimator (Eviews can

only do the CU estimator for single equation GMM).

2

+ excessRet.mat)

> colnames(eulerDataJ.mat)[1] = "CONS"

> colnames(eulerDataJ.mat)[2] = "RF"

The iterated efficient GMM estimator using the White estimate of S and initial

values θ1 = (1 5)
0 is computed using

> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> eulerJ.gmm.fit = gmm(g=eulerJ.moments, x=eulerDataJ.mat,

+ t0=start.vals, type="iterative",

+ vcov="iid", optfct="optim")

> summary(eulerJ.gmm.fit)

Call:

gmm(g = eulerJ.moments, x = eulerDataJ.mat, t0 = start.vals,

type = "iterative", vcov = "iid", optfct = "optim")

Method: iterative

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta 8.2736e-01 1.1616e-01 7.1228e+00 1.0578e-12

alpha 5.7395e+01 3.4221e+01 1.6772e+00 9.3504e-02

J-Test: degrees of freedom is 9

J-test P-value

Test E(g)=0: 5.76329 0.76336

Here, θ̂

³
Ŝ−1

´
= (0827 57395)0 with c(̂) = 0116 and c(̂) = 34221

The estimate of looks reasonable, but the estimate of is much too large. A more

economically plausible estimate would be around 3. However, the standard error

of ̂ is quite big and the J-test does not reject so the model specification is not

rejected. Note, θ̂ = (0827 57395)
0 is almost identical to what Eviews gives.

The CU efficient GMM estimator using the White estimate of S and initial values

θ1 = θ̂ is computed using

> eulerJ.cugmm.fit = gmm(g=eulerJ.moments, x=eulerDataJ.mat,

+ t0=coef(eulerJ.gmm.fit), type="cue",

+ vcov="iid", optfct="optim")

> summary(eulerJ.cugmm.fit)

3

Call:

gmm(g = eulerJ.moments, x = eulerDataJ.mat, t0 = coef(eulerJ.gmm.fit),

type = "cue", vcov = "iid", optfct = "optim")

Method: cue

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta 6.9741e-01 1.1886e-01 5.8676e+00 4.4212e-09

alpha 9.6193e+01 3.1617e+01 3.0425e+00 2.3466e-03

J-Test: degrees of freedom is 9

J-test P-value

Test E(g)=0: 5.14334 0.82164

Here, θ̂(Ŝ
−1
−) = (0697 96193)

0 with c(̂) = 0119 and c(̂) = 31617

The estimate of looks reasonable, but the estimate of is much too large. However,

the standard error of ̂ is quite big and the J-test does not reject so the model

specification is not rejected.

2. Now consider using the instrument x = (1 −1)0 What are the 2(+ 1)
moment conditions to be used for GMM estimation? Using these moments,

estimate θ using the iterated efficient GMM estimator (with a White-type HC

covariance estimator). Do the estimates look economically plausible? Does the

J-statistic reject the overidentifying restrictions at the 5% significance level?

Solution. The moment vector is now

g(w+1θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 ++1)
³
+1

´−
− 1

(1+1 −+1)
³
+1

´−
...

(+1 −+1)
³
+1

´−³

−1

´µ
(1 ++1)

³
+1

´−
− 1
¶

³

−1

´
(1+1 −+1)

³
+1

´−
...³

−1

´
(+1 −+1)

³
+1

´−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
A function to compute the moments is

4

euler2J.moments <- function(parm,x=NULL) {

parm = (beta,gamma)

data = (C(t+1)/C(t),1+Rf(t+1),R1(t+1)-Rf(t+1),...,

RJ(t+1)-Rf(t+1),C(t)/C(t-1))

n.col = ncol(x)

sdf = parm[1]*x[,1]^(-parm[2])

d1 = sdf*x[,2] - 1

d2 = as.matrix(rep(sdf,(n.col-3))*x[,3:(n.col-1)])

d3 = d1*x[,n.col]

d4 = d2*x[,n.col]

return(cbind(d1,d2,d3,d4))

}

The iterated efficient GMM estimator using the White estimate of S and initial

values θ1 = (1 5)
0 is computed using

> start.vals = c(1,5)

> names(start.vals) = c("beta","alpha")

> euler2J.gmm.fit = gmm(g=euler2J.moments, x=eulerData2J.mat,

+ t0=start.vals, type="iterative",

+ vcov="iid", optfct="optim")

> summary(euler2J.gmm.fit)

Call:

gmm(g = euler2J.moments, x = eulerData2J.mat, t0 = start.vals,

type = "iterative", vcov = "iid", optfct = "optim")

Method: iterative

Kernel: Quadratic Spectral

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta 9.9809e-01 8.8343e-04 1.1298e+03 0.0000e+00

alpha -1.2500e+00 3.7575e-01 -3.3268e+00 8.7855e-04

J-Test: degrees of freedom is 20

J-test P-value

Test E(g)=0: 30.207110 0.066567

Here, θ̂

³
Ŝ−1

´
= (0998−1250)0 with c(̂) = 0008 and c(̂) =

0376 The estimate of looks reasonable, but the estimate of is negative! Also,

J-test rejects at the 6.6% level so the model specification is suspect.

5

The CU efficient GMM estimator using the White estimate of S and initial values

θ1 = θ̂ is computed using

> euler2J.cugmm.fit = gmm(g=euler2J.moments, x=eulerData2J.mat,

+ t0=coef(euler2J.gmm.fit), type="cue",

+ vcov="iid", optfct="optim")

> summary(euler2J.cugmm.fit)

Call:

gmm(g = euler2J.moments, x = eulerData2J.mat, t0 = coef(euler2J.gmm.fit),

type = "cue", vcov = "iid", optfct = "optim")

Method: cue

Kernel: Quadratic Spectral

Coefficients:

Estimate Std. Error t value Pr(>|t|)

beta 9.9806e-01 8.7397e-04 1.1420e+03 0.0000e+00

alpha -1.2370e+00 3.7160e-01 -3.3288e+00 8.7224e-04

J-Test: degrees of freedom is 20

J-test P-value

Test E(g)=0: 30.206323 0.066579

The estimates are almost identical to the iterated GMM estimates.

6

