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We investigate confidence intervals and inference for the instrumental
variables model with weak instruments. Confidence intervals based on inverting
the LM, LR, and Anderson—Rubin statistics perform far better than the Wald.
Performance of the LM and LR statistics is improved by a degrees-of-freedom
correction in the overidentified case. The practice of ‘pre-testing’ by looking at
the significance of the first-stage regression and then making inference based
on the LM or LR statistics leads to better results than pre-testing and using the
Wald statistic.

1. INTRODUCTION

A series of recent papers has shown that inference based on instrumental
variables (IV) estimation and asymptotic standard errors is generally misleading in
finite samples when the instruments are weak. In particular, the IV estimate is
strongly biased in the same direction as OLS and the estimated standard error is too
small, the result being that the true null hypothesis is rejected much too often.
Bound et al., (1995), Hall et al., (1996), Maddala and Jeong (1992), Nelson and Startz
(1990a, 1990b), and Staiger and Stock (1997) document these phenomena. Since
weak instruments abound in economic data sets (see Angrist and Krueger 1991,
1992, Campbell and Mankiw 1989, Fuhrer et al., 1995, Hall 1988, McClellan et al.,
1994, and Rotemberg 1984 for some examples), there is clearly the need for
procedures that produce test statistics that have the correct size in finite samples
and so can be used to construct confidence regions that are valid in the sense of
having the stated probability of covering the true value.

Traditionally in instrumental variables estimation, confidence regions are calcu-
lated and inferences are drawn based on the normal distribution with mean and
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variance taken from the sample estimated values of the parameters suggested by
asymptotic distribution theory. Which is to say, a confidence region covers the
parameter estimate plus or minus a multiple of the ‘asymptotic standard error.” With
a well-identified system and enough observations this is a valid approach in the
sense of producing confidence regions that cover the true value with the stated
probability. Unfortunately, when instruments are weak and there is strong endo-
geneity, this traditional approach produces confidence regions that are highly
misleading. Below, we construct examples in which traditional confidence regions
always exclude the true parameter, or equivalently, in which the size of the Wald test
is 100 per cent. Fortunately, we are able to show that alternative confidence regions
based on inverting the Lagrange multiplier, likelihood ratio, and Anderson—Rubin
statistics are well behaved (in that they have correct coverage probabilities), and easy
to compute.

Little attention has been given in the econometrics literature to the possibility of
inverting the likelihood ratio (LR) or Lagrange multiplier (LM) statistics to obtain a
confidence region. In exception, Gallant (1987, pp. 107) suggests inverting the LR
statistic in the context of nonlinear regression.” In the weak instrument context
structural parameters are nearly nonidentified and the likelihood function should be
relatively flat. The intuition is appealing: a flat likelihood will result in an appropri-
ately wide confidence region when the LR statistic is inverted. Indeed, we show that
constructing confidence intervals for structural parameters obtained by inverting the
AR, LR, and LM statistics gives rise to unbounded intervals when instruments are
very weak. Dufour’s (1997) results provide theoretical support for the expectation
that approximately correct probability levels can be obtained for these intervals. We
verify the validity of our proposed confidence sets in finite samples through a series
of Monte Carlo experiments. The asymptotic justification for our procedures is given
in Wang and Zivot (1998).

There has been considerable interest in the recent literature in diagnostics for
knowing when instruments are too weak for asymptotic theory to be valid. Nelson
and Startz (1990b) suggested using the significance of the first stage regression, and
Bound et al., (1995) have reiterated this advice. Shea (1997) has studied the multiple
variable case. Hall et al., (1996), however, caution against choosing among instru-
ments on the basis of their first stage significance, finding that screening worsens
small sample bias. They find some merit in the practice of pretesting conditional on
a given set of instruments. In this paper we find that Wald-based inference using
decision rules of the type suggested by Nelson and Startz (1990a, 1990b) can be very
misleading even if there is only one available instrument and the econometrician is
obliged to judge its relevance on the basis of the single sample at hand. However,
conditional on a given set of instruments, we find that pre-testing and using the LM
or LR statistics for structural inference gives substantially better results.

The structure of the paper is as follows: Section 2 defines the Limited Information
Simultaneous Equation Model studied in this paper, its likelihood function, IV and

*Inverting LR statistics to form confidence intervals is more comon in the nonlinear regression
literature in statistics and is discussed in Bates and Watts (1988), Cook and Weisberg (1990), Meeker
and Escobar (1995), and Venzon and Moolgavkar (1988).
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ML estimator. Section 3 discusses how Wald, LM, and LR statistics can be inverted
to obtain confidence regions both within the maximum likelihood and instrumental
variable (generalized method of moments) frameworks and shows that empirical
confidence regions fall into one of four shapes. Section 4 discusses the properties of
valid confidence sets in the presence of weak instruments, and Section 5 gives
examples of such valid intervals. Section 6 presents results of a Monte Carlo
investigation of the actual coverage probabilities and relative power of alternative
confidence regions. Section 7 investigates why the Wald statistic performs poorly.
Section 8 concludes the paper.

2. THE LIMITED INFORMATION SIMULTANEOUS EQUATION MODEL

The Limited Information Simultaneous Equation Model (LISEM) consists of a
single structural equation that can be thought of as being selected from a simultane-
ous system. The equation relates a dependent endogenous variable, y, to explana-
tory variables, x, some of which are endogenous in the sense of being correlated
with the disturbance in that equation, either because there is feedback in the
complete system, or because variables correlated with the explanatory variable have
been omitted. An accompanying ‘first stage regression’ equation then relates the
explanatory variable to a vector of k exogenous variables, Z, called instruments.
Finally, the disturbances in the structure and first stage are contemporaneously (but
not serially) correlated. The specific results in this paper are limited to the case of a
single endogenous explanatory variable and, for expository purposes, we study the
case where no additional exogenous explanatory variables appear in the structural
equation. The results of the paper hold if we have additional exogenous explanatory
variables but the algebra becomes unnecessarily cumbersome; see Wang and Zivot
(1998) for details.

The LISEM may be written as:

(1) y = Bx + u
(Tx1) aAx1rx1) TxD
(2) x = Zm 4+ v
(Tx1) (TxkXkx1) (Tx1)
3 ui “d 0 0u2 Oy ..d 0 2
3 v, ~ i (0), o, o =iid(0,%).

The coefficient 8 in the structural equation (1) is the parameter of interest for
inference, while the k coefficients in the vector 7 in the first stage regression (2) are
not of direct interest. The model is said to be just identified if k=1 and 7 +# 0, and
overidentified if k> 1 and the number of nonzero elements of 7 is greater than
one. Define p=o¢,,/0,0,, Y=[yxl, P,=2(Z'Z)"'Z', for any full rank matrix Z,
and M, =1-P,.

We now review the instrumental variable and maximum likelihood approaches to
estimating (. The two stage least squares estimator (2SLS) for B is éZSLS =
(x'P,x)"'x'P,y. This is also equal to the efficient instrumental variable (IV) and
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efficient generalized method of moments (GMM) estimator. The GMM estima-
tor solves ming J,(B)=T"'(y —xB)'P(y—xpB)/6? where &> is a consistent
estimator of o2 Under standard regularity conditions V7 (B,qs— B) kA N(Q,

0 (' Vyzmw)™ "), where V,,=plim; T 'Z'Z>0. Under weak instruments,
Staiger and Stock (1997) show that BZSLS is not consistent but converges to a ratio of
quadratic forms in correlated normal random variables.

The maximum likelihood estimator for this model under the assumption of
normality was first derived by Anderson and Rubin (1949) and is referred to as the
Limited Information Maximum Likelihood (LIML) estimator. The concentrated log
likelihood function for 8 is given by (c.f. Davidson and MacKinnon 1993, p. 647)

T T
@) I°(B)=—-Thn(27w) — EID(K( B)) — 5111|Y'MZY|

where

(y—Bx)'(y — Bx)

®) <(B)= (y—Bx)'My(y—Bx)’

The LIML estimator of 8 is obtained by minimizing «( 8), a result first demon-
strated by Rubin (1948); see also Koopmans and Hood (1953). Thus B =
argmin, k( B). Operationally, «( B, ) = R is the smallest eigenvalue of the matrix
Y'M Y) 12y'y(Y'M,Y) /2 and ,BL L 1S given by the k-class estimator formula
B = (x'(I — KMZ)x) 1(x (I = RMy). When k=1, which is true in a just
identified model, B; vy = Basis = (x'P,x)~'x'P,y. Under standard regularity con-

ditions VT (B — B) kA N, g2(w'V,,m)~ ") for the just identified and over-
identified models and is equivalent to the asymptotic distribution of VT ( BZSLS B).
Under weak instruments, however, Staiger and Stock (1997) show that B; ;. is not
consistent and converges to a distribution different than the one for B, ..

3. CONSTRUCTION OF CONFIDENCE SETS BY INVERTING TEST STATISTICS

We are interested in constructing confidence sets for the structural parameter 8
in (1). Given a test statistic T( B,) for testing the hypothesis H,: B= B, at the a
significance level, the (1 — a)-100 percent confidence set associated with this
statistic is defined as

Cr(Bs1—a)={Bo:T(By) <cvi_,},

where cv,_, is the (1 — a) quantile from the (asymptotically valid) distribution of
the test statistic 7( 8,); that is, C; contains all of the ‘acceptable’ values of B, at
level « for the null hypothesis H,: 8= B, using the test statistic 7( 3,). Confidence
sets formed this way are said to be determined by ‘inverting’ the test statistic 7'( 8,).

We are interested in confidence regions corresponding to the Wald, LM, and LR
statistics based on maximum likelihood estimation, the three analogous statistics
based on the GMM /2SLS framework, and the Anderson—Rubin statistic. Due to
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the simple form of the hypothesis test there is some redundancy among these
statistics. Consequently, we only need to consider four, or at most five, different
ways to compute confidence regions.

The Wald, LM (see Engle 1984), and LR statistics based on limited information
maximum likelihood are given respectively by

( /§LIML - /30)2

Wald v ( Bo) = EAVAR( ,é ) >
LIML
g( o)’
LMLIML( BO) = EAVAI:( ,30) 4

LR v Bo) = _2[16( Bo) — lc( éLIML)] >

where EAVAR(B) denotes an estimate of the asymptotic variance of ,éLIML
evaluated at B, and g(B)=(d/dB)I°(B) is the gradient of the concentrated log
likelihood for B. Notice that the LM statistic is computed using the value of B
under the null hypothesis. Under standard assumptions, the three statistics are
asymptotically x*(1). Under weak instruments, Staiger and Stock (1997) show that
Wald, ;. is not asymptotically y2(1). They did not investigate the properties of
LM iy of LRy -

The analogous 2SLS or efficient GMM based statistics, which also have asymp-
totic x2(1) distributions under standard conditions (see Newey and West 1987), are:

( IBAZSLS - ﬁo)zx'sz

Wald g 5( By) = 52 ,
(y =xBo) Pe(y —xBy)
LM yq15( Bo) = 0 52 Ly
LR 5 5( Bo) = [ —B) Po(y ~xPy) - ((;2 —xBasis) Po(y — % fasis)| |

where 62 4 g,2. Staiger and Stock (1997) show that Wald,g; ¢ is not asymptotically
x*(1) under weak instruments. They did not consider LM ,q; 5 or LR 5 .

Several facts are worth noting. First, because of the quadratic nature of the
2SLS/GMM minimization problem and the linearity of the restriction 8= ,, the
three 2SLS statistics are numerically identical so long as the same estimate is used
for 62 ( cf. Newey and West 1987). Second, when using 62 =Gk s=T '(y —x-
Bosis) (v —x Bogis), Wald,g ¢ is simply the (square of) ‘asymptotic ,” which is the
statistic used essentially always for inference in applied work. Further, the LR ,q; ¢ is
the statistic calculated in the Hansen (1982) GMM framework as the ‘difference in
the J-statistic.’ Third, use of ¢2=o0f=T "y —xBy)'(y —xB,) instead of &
(a¢ is the natural choice when thinking of using LM,; ) is shown below to make a
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critical difference in inference when instruments are weak. This is due to the fact
that, under the null and weak intruments, &%; ¢ is not consistent whereas o is.

Other than the choice of 62, the 2SLS statistics are straightforward. In contrast,
evaluation of the MLE statistics requires a choice of EAVAR. A variety of
specifications are available. For Wald, ;. , one usually sees the k-class formula with
EAVAR = Gt (' — R-Mpx)™! and Gy =T '(y —x- éLIML)I(Y —x
Brivw)-

For LMy, it is useful to base EAVAR on the information matrix from the
concentrated likelihood function (see Bowden and Turkington 1984).

EAVAR( ) = -[E—;cgi)] —[A(B)+B(B)] ",
4 7 x'Myx B x'x
(8)= [(y—xﬁ)’Mz(y—xB) (y—xB)'(y—xB)]’
B(,B)=2T'[ [x'(y—xB)] - [x,MZ(y_xB)] 2}'
[(y=xB) (y—xB)]"  [(y—xB)My(y—xB)]

The LM statistic can then be written as

X'uy  x'Myu,

- ‘—"—-“‘]}'{A( Bo) +B( /30)}—1

! !
Uy  UgMyu,

xX'uy  x'Mzu,
X{T|——— ————11,
Uy ugMzu,
where u,=y —xB,. The LM statistic as given in (6) is not easily written as a

quadratic in B,. However, using the following approximation results (which are valid
under the standard conditions)

xX'uy  x'Myuyla R'ug 4
T =T dA +B =
[ ] o and A( By) (Bo) oug

(6) LMy pi( Bo) = {T[

!
ugPeu,

gy UgMzu,

we obtain a simpler version of the LM statistic

t

_ Pa(y —
LMLIML=LM=(y xBo) Py (y —xBy)

(y—=xBo)'(y _xﬁo)/T’

where £=P,x. Here LMy is equal to T times the uncentered R? from the
regression of y —xB, on %. We note that this approximation will make LM
identical to the corresponding LM statistic in the 2SLS framework, and henceforth
we will refer to these two statistics as LM. To our knowledge the LM statistic is new.

Finally, consider the statistic proposed by Anderson and Rubin (1949) and
Anderson (1950) for testing H,: 8 = ,. Rewrite (1) by adding and subtracting x 3,
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from both sides and substituting in for x using equation (2) to give
(7) ¢ =Zy+ut,

where y* =y —xB,, ¥=a(B— By), and u* =v(B— By) +u. Then the hypothesis
Hy: B =B, in (1) corresponds to the hypothesis Hy: =0 in (7). The latter hypothe-
sis can be tested with the standard F-statistic

AR p . (RSSE-RSSER)/k (3 —xBo)'Pr(y —xBy) /k
V=0 RSSHR/ (T — k) (y =xBo) Mz (y —xBy) /(T —k) '

If indeed (u; v,) is distributed iid N(0, 3), and the model is correct in the sense that
the identifying restrictions that exclude Z from the structural equation are true,
then the AR statistic is distributed exactly as F(k,T — k). Further, Staiger and Stock

(1997) show that AR 4 x*(k)/k under fairly general assumptions about the distur-
bances and the quality of the instruments.

Creating confidence regions by ‘inverting’ the corresponding test statistics means
solving for the range of values of B, for which the test statistic is less than or equal
to the appropriate critical value. The results are most easily seen graphically. Figures
1 through 6 show plots of the test statistics as functions of B, for a particular Monte
Carlo run for a variety of models with good and weak instrument.®> For a given
statistic, the corresponding confidence region is that region in which the statistic is
below the horizontal critical value line. Notice that the Wald statistic, which is a
quadratic function, is u-shaped so its confidence region is always a closed set. The
other statistics, being ratios of quadratics, can be u-shaped as in Figure 1, or can
have both a minimum and a maximum, as seen in Figures 2 and 5. In the latter case,
three different types of confidence sets are possible. These can be seen by raising or
lowering the critical value line in Figure 2. It is easy to see that at a very high
confidence level the test statistics are everywhere below the critical value so that the
confidence region includes the entire real line. At a somewhat lower confidence
level the line will ‘cut-off’ the peak of the test statistic so the confidence region will
consist of the area from the left cut-point to negative infinity and from the right
cut-point to positive infinity. Finally, as seen in Figure 4, when & > 1 the AR statistic
can imply an empty confidence region since the statistic is always positive.

For each statistic we can give simple closed form solutions for the cut-points. The
confidence sets for B formed by inverting the LM, LR, and AR statistics are each
determined by solutions to an inequality of the form

(8) aBZ+bBy+c<0

where values of a, b', and ¢ depend on the data and the critical value for the
particular test. The cut-points are the roots of the quadratic equation

—b+Vd
= —31

: =1,2
0,i 2a

*The Monte Carlo design is discussed in Section 5.
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FIGURE 1

TEST STATISTICS: k=1, w=1

where d =b?— 4ac denotes the discriminant of the quadratic. We now give the
formulas for the quadratic coefficients for the respective statistics and then charac-
terize the shape of the confidence region in terms of the solution to the quadratic.

The confidence set C;( 8;1 — a) requires finding all values of B, satisfying the
condition

(¥ —xBo) Pz (y —xBy) < Xlz—a(l)
(y—=xBo)' (y —xBo) T

=dry

which can be rearranged as a quadratic of the form of (8). Defining the 2 X 2 matrix
QM =Y'(1 = ¢ Il = [(I = P)DY then a = Q,,, b= —2-Qy,, and ¢ = Qy,,* where
Q; is the (i, )" element of Q. Note that a is closely related to the significance of
the first stage, a topic to which we return below. Turning now to the LR statistic,

*The formula given here is for the LISEM model (1)-(3). If additional exogenous regressors are
present, then y, x and Z in the definition of Q should be replaced with the residuals from
regressing the y, x, or Z on the exogenous regressors. Modify the formulas or the LR and AR below
in the same way.
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TEST STATISTICS: k=1, #=0.1

using the concentrated likelihood function (4), the hypothesis H: 8 = 3, is accepted
if

(Y‘xﬁo),()’_xﬁo) < ex {xf(_ll}.kzd)
(y—xBo) Mz(y—xBy) T L

This inequality can also be expressed in the form of (8). The corresponding matrix Q
is given by Qi g =Y'[I — ¢;r-M,]Y. Finally, the AR confidence set consists of all
values of B, that satisfy the inequality '

(¥ =xBo) (y —xBy) k
<1+F,_(k,T—k)y=—=
(y_xBO),MZ(y_xBO) <1+ 1 a( )T_k ¢AR

where F;_ (k,T — k) denotes the (1 — a) quantile of the F distribution. Note that
this condition is very similar to that given for the LR statistic. As with the LM and
LR statistics, the AR confidence set is determined by solving the inequality (8) with
the corresponding matrix Q given by Qg =Y'[I — ¢pag-M,1Y.

Whether the confidence region is bounded, empty, external, or covers the real line
is determined by the signs of a and d as follows. First consider the case a > 0, so the
inequality may be rewritten as B¢+ (b/a)- B, + (c/a) <0, which is convex from
below. If the inequality is satisfied at all, it will be for a bounded interval. If also
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TEST STATISTICS: k=1, 7=0

d > 0 then the solutions to the quadratic equation are real and there is a bounded
interval with end points corresponding to the two solutions, say [ B, ow» Buicul- We
show below that this occurs when the instruments are of good quality. Alternatively,
if d <0 the roots are complex so there is no value of B, that satisfies the inequality
and thus the confidence set is empty. The LM and LR confidence sets cannot be
empty because at S, =ﬁ the statistics equal zero. When B, = ﬁ, the AR statis-
tic tests significance by regressing the residuals on the instruments. In the just-
identified case the AR statistic is therefore zero so the confidence set cannot be
empty, but it will be empty in overidentified models when the overidentifying
restrictions are rejected.’

Next consider a < 0. The quadratic inequality may then be rewritten as B¢ +
(b/a)- By + (c/a) = 0 which is again convex from below. If d >0 there are again
real solutions to (8), but now it is values of B, outside the interval [ B; ow, Brigul
which satisfy the inequality (because the sign of the inequality is reversed) so the
confidence set is the disconnected region [—, B; ow] U [ Buigy, ] Finally, if d <0

°Note that the AR statistic evaluated at 8 is essentially the J-statistic for testing over-identifying
restrictions and that the J-statistic is minimized at S.
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TEST STATISTICS: k = 4, w=(1,0,0,0)

then there is, again, no real solution to the quadratic equation, but this means that
the inequality is satisfied for all values of B,. We show below that unbounded
confidence regions are associated with weak instruments.

4. VALID CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS

Dufour (1997) shows that any valid (1 — @)-100 per cent confidence set for B
must be unbounded with probability 1 —a for models in which B is nearly
nonidentified. Since the AR statistic is an exact test regardless of instrument quality,
it must satisfy the Dufour requirement. The LM and LR statistics do not satisfy the
Dufour requirement in the overidentified case, but versions with a degrees of
freedom modification do, as shown below. Finally, since inverting a Wald statistic
always produces a bounded confidence interval, such an interval is not valid in
nearly nonidentified models. Indeed, Dufour (1997) shows that Wald confidence
intervals then have zero coverage probability.

Since an unbounded confidence set occurs when the coefficient a in (8) is less
than zero, we are able to link unboundedness with goodness-of-fit statistics for the
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FIGURE 5

TEST STATISTICS: k = 4, w=(0.1,0,0,0)’

first stage regression as follows:

PROPOSITION.

(a) Cor(B;1— @) is unbounded if F,_,<F,_ (k,T—k)

: T-k Xi-a(1)
(b) Cr(B;1— @) is unbounded if F,_, < (e T k—1

(©) Cym(B;1— @) is unbounded if LM, _,=T-R3. < x2_,(1)

where F,__ is the F statistic for testing == 0 in (2), LM _, is the LM statistic for
testing m=0 and R is the uncentered (no intercept) R? from (2). See the
Appendix for proofs.

The link between the unboundedness of confidence sets and the significance of
first stage test statistics allows us to verify the Dufour requirement for a valid
confidence set. For example, the AR confidence set, Cog( 8;1 — a), has the very
interesting property that it is unbounded whenever F,_, is insignificant at level a.
Under Normality and fixed regressors, when the model is not identified (7 = 0) then
PF,_<F,_,(k,T—k)})=1— a. Hence, the AR confidence set satisfies Dufour’s
requirement exactly in finite samples. Under more general conditions, k+ F,_, is
asymptotically x*(k) and so the Dufour requirement is satisfied asymptotically.
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TEST STATISTICS: k = 4, 7= (0,0,0,0)’

Further, the condition for C; z( 8;1 — a) to be unbounded can be simplified when
T is large relative to k£ and the overidentifying restrictions are valid. In this case,
k=1and exp{T ! x7_ (D} =1+ T x2_ (), so that (b) above becomes F,_, <
k=1 x?_,(1). Notice that this condition is similar to the condition in (a) above for
the AR confidence set since, for large T, F,_, (k,T—k) = k™" x{_ (k). However,
the condition for the LR confidence set uses x;_,(1) whereas the condition for the
AR set uses x7_,(k). When k=1, these conditions are identical and so the LR
confidence set satisfies the Dufour requirement asymptotically. For k> 1, x?_ (k)
> x£_ (1), so it follows that when 7= 0, P{C;z(8;1 — @) is unbounded} = P{F,_,
<k 'xi B <PF,_ <kl x} .(k)}=1- a. Hence, in the unidentified case,
C r(B;1— @) is unbounded with probability less than 1 — a and so is not a valid
confidence set.

Finally, a similar result holds for the LM confidence set. When the model is not

identified (w=0), LM _, 2 xi_ o(k), and so when k = 1 the Dufour requirement is
satisified asymptotically. However, when k> 1 P{C;y(B8;1 — @) is unbounded} =
PLM,_, < x{_ (D} <P{LM,_, < x£_ ,(k)} =1 — «a, implying that C;\(B;1— @)
is not a valid confidence set.

The above shows that in the very weak instrument case, inverting the LR and LM
statistics for testing H,: 8= B, using x2(1) critical values is not asymptotically valid
when k > 1, but is using x (k) critical values. It appears, then, that the asymptotic
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distributions of the LM and LR test statistics in this case are poorly approximated by
the x2(1) distribution and are better approximated by the y?(k) distribution. This
conjecture can be shown rigorously using the local-to-zero framework of Staiger and
Stock (1997), which provides a convenient way to obtain analytical results when
instruments are weak.® Wang and Zivot (1998) derive the asymptotic distributions of
the LM and LR statistics using Staiger and Stock’s local-to-zero framework and
show that when k =1 these statistics converge in distribution to (1), but when
k > 1, they do not, but rather are bounded by x*(k).

How, then should we construct confidence intervals in practice when instruments
are of doubtful quality? A conservative option is to always use y (k) critical values
to invert the AR, LM, or LR statistics. In the AR case, the coverage probability is
exact anyway, but for the LM and LR the coverage probabilities are ar least the
stated level since their distribution is bounded by x?(k). However, when k is large
and the instruments are good, the resulting confidence intervals for LM and LR are
larger than necessary since then we could be using x?2(1) critical values instead.
Thus, if we had a reliable rule for switching between critical values based in
instrument quality we could achieve, on average, smaller but still valid confidence
intervals. The link between the unboundedness of confidence intervals and the
significance of the first stage regression suggests that F,_, and LM _, are appro-
priate statistics to use for the switching criterion. In particular, we recommend that
if £,_y<F,_,(k,T—k),or F,_,<k~'-x2_ ,(k), then the LR statistic be inverted
using critical values from x?(k) instead of x?(1). Similarly, if LM _, < x2_,(k)
then the LM statistic should be inverted using x2(k) instead of y *(1) critical values.
We call the test statistics which switch degrees of freedom based on a pre-test of the
significance of the first stage LM, and LR, . Hall et al., (1996) show that the first
stage regression is not very useful in judging the validly of Wald-based confidence
intervals, but we find that pre-testing works well as a criterion for selecting degrees
of freedom for the LM and LR, as will be seen in the following sections.

5. EXAMPLES OF CONFIDENCE INTERVALS FOR g

To illustrate the typical shapes of confidence intervals for instruments of various
quality, we generated data from (1)-(3) with B=1,02=02=1,p=.99,T =100,
Z ~ N(0, I)) for just identified (k = 1) and nominally overidentified (k = 4) models.
For the just identified model, we set w=1 (good instrument case), 7= 0.1 (weak

SIn this framework, the coefficients 7 in (2) are modeled as being in a 7~!/2 neighborhood of
zero. Specifically, == 7 = T~1/2g where g is any k X 1 vector of constants. This device keeps the
statistic F,,_, bounded in probability as the sample size increases so that 3 is asymptotically nearly
nonidentified. Staiger and Stock (1997) show that the 2SLS and LIML Wald statistics do not
converge to x2(1) random variables but rather to random variables that depend on the nuisance
parameters p, k and the noncentrality parameter of the asymptotic distribution of F,._ . This result
is expected since Dufour (1997) shows that any statistic that gives rise to a bounded confidence
interval for a nearly nonidentified parameter must have a nonpivotal distribution (i.e., a distribution
that depends on nuisance parameters). Dufour also shows that if a test statistic produces an
unbounded confidence set for a nearly nonidentified parameter then the distribution of the test
statistic is pivotal or can be bounded by a pivotal distribution.
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TABLE 1
DATA FOR FIGURES 1-3: k=1, B=1, p=099, 0, =0, =1, z~ N(0,1)
=1 7=0.1 7=0.0

BoLs 1.550 (0.044) 1.975 (0.015) 1.995 (0.013)

21 1.148 (0.081) 1.657 (0.152) 2.064 €0.101)
T 1.161 (0.010) 0.262 (0.010) 0.162 (0.009)
F,=0 108.1 (0.000) 5.48 (0.019) 2.092 (0.148)
TR? 52.45 (0.000) 5.297 (0.021) 2.092 (0.148)
Cyaia( B,0.95) [0.990,1.310] [1.380,1.950] . [1.900,2.300]
Crm(B,0.95) [0.947,1.285] [—0.196,1.832] [—o0, +0]
C.r(B,0.95) [0.950,1.284] [—0.085,1.831] [ —o0, +00]
Car( B,0.95) [0.950,1.284] [—0.090,1.831] [—o0, +0]

instrument case) and 7= 0 (unidentified case). For the overidentified model, we set
7=(1,0,0,0)" (good instrument case), 7= (0.1,0,0,0)' (weak instrument case) and
7=1(0,0,0,0)" (unidentified case). The data represent one Monte Carlo draw for the
errors and the same random numbers were used for each plot. The graphs are
representative of the typical shapes that occur over many replications. For each set
of generated data we computed the OLS, 2SLS, and LIML estimates of B, the
reduced form estimate of =, the reduced form LM __, and F,_, statistics, and the
95 per cent confidence sets Cyy, 4, Crr> Ciym @and Cug. These statistics are summa-
rized in Tables 1 and 2 and the confidence intervals are displayed graphically in
Figures 1-6.

Consider first the results for the just identified models. For a good instrument,
illustrated in Figure 1, the standard Wald confidence region Cy,4, [0.990, 1.310], is
fairly small and contains the true value 8= 1. The LR, LM, and AR regions are all
very similar to each other and to the Wald interval in this case. The situation is
much different in the weak instrument case seen in Figure 2. The combination of a

TABLE 2
DATA FOR FIGURES 4-6: k=4, B=1, p=0.99, 0, = 0, = 1, z ~ N(0, I, )*
7=(1,0,0,0) 7=(0.1,0,0,0) 7=1(0,0,0,0)

BoLs 1.538 (0.050) 1.985 (0.016) 1.995 (0.013)
Basis 1.040 (0.101) 1.586 (0.256) 1.898 (0.128)
BrimL 1.027 (0.103) 1.316 (0.530) 1.852 (0.185)
K 1.012 1.011 1.005
Ty 1.018 (0.000) 0.118 (0.000) 0.018 (0.010)
T, —0.030 (0.011) —0.030 (0.011) —0.030 (0.011)
s —0.060 (0.010) —0.060 (0.010) —0.060 (0.010)
A 0.139 (0.012) 0.139 (0.012) 0.139 (0.012)

=0 21.859 (0.000) 0.681 (0.606) 0.384 (0.820)
TR? 47.927 (0.000) 2.784 (0.595) 1.592 (0.810)
Cyaa( 8,0.95) [0.850, 1.250] [1.100, 2.100] [1.700, 2.100]
Cim,1(B,0.95) [0.786, 1.208] [—co, 1.837] [4.232, +o0] [—o0, +<0]
Cim.4(B,095) [0.548, 1.287] [—e0,1.906] [2.394, +] [—oo, +o0]
Cir,1(B,0.95) [0.769, 1.197] [ —0,1.744] [3.300, +] [—oo, +o0]
Cir 4(B,0.95) [0.540, 1.272] [ —<0,1.828] [2.446, +] [ —o0, +0]
C,r(B,0.95) [0.588, 1.259] [ —0,1.816] [2.506, +] [—oo, +o0]

*Numbers in parentheses are standard errors for coefficient estimates and are p-values for test

statistics.
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weak instrument and strong endogeneity induces a noticeable bias in ézsLs and,
counter to intuition, the Wald confidence interval is fairly short and does not cover
the true value B=1. Since F,_, and LM, _, are significant at the 5 per cent level
the LR, LM, and AR confidence sets are all closed intervals but they are consider-
ably larger than the Wald interval and contain the true value. In the unidentified
case of Figure 3, the OLS and 2SLS estimates of B are almost identical and the
Wald confidence region indicates a very precise estimate even though the goodness-
of-fit statistics from the first stage regression suggest a poor instrument. The LR,
LM, and AR confidence intervals in this case are equivalent and contain all possible
values of B. This is what we should expect when B is unidentified.

Now consider a nominally overidentified, four instrument model. We vary the
quality of the first instrument, while the other three are always irrelevant (that is,
their reduced form coefficients are zero). The good instrument case is very similar to
the k=1 case. The LM and LR confidence sets based on y?(1) critical values are
closed intervals, are very similar to Cy,q and have roughly the same length. The AR
confidence set, however, is substantially larger that the other sets. Turning next to
the case of one valid, but weak instrument, we see that Cy, 4 is fairly wide, but does
not cover B=1. Here the reduced form statistics F,_, and LM _, are not
significant at the 5 per cent level, indicating that the instruments are poor and B is
nearly unidentified. From the previous section we know that C,g, Cy\ and Cp i will
be unbounded and indeed these sets are unbounded disjoint regions. Finally, in the
nonidentified case Cyy,4 is short and does not cover 8=1. The reduced form
goodness-of-fit statistics are small and statistically insignificant at any reasonable
level and, consequently, the confidence sets C,g, C;y, and C i are unbounded,
containing all possible values of B.

6. A MONTE CARLO INVESTIGATION OF SIZE AND POWER

In this section we analyze the finite sample properties of the 95 per cent
confidence regions for B formed by inverting the level 0.05 Wald, LM, LR, and AR
test statistics for H,: B = B,. We compare empirical coverage probabilities of the
confidence sets under the null as well as empirical powers of the test statistics under
a range of alternatives H,: B= B,. Our Monte Carlo design is the same as in
Section 5, except that we consider p=1(0.99,0.5,0}. For the power analysis we
generate data under the alternatives B8, = B, + §; where §; ranges from —2 to 2 in
increments of 0.25. The empirical probabilities of the confidence sets under the null
for the case p =0.99 are summarized in Tables 3 and 4 and results on power for the
cases m=1 and 7= (1,0,0,0)" are given in Tables 5 and 6.

Consider first the size results for the k = 1 case. Since, as shown in Section 3, the
LM, LR, and AR statistics are approximately x>(1) regardless of the values of p and
7, the 95 per cent confidence sets formed by inverting these statistics have empirical
coverage frequencies very close to 95 per cent in all cases. However, the situation is
different for Cy,4 since, as Staiger and Stock (1997) show, the distribution of the

"The results for the other cases do not add much to the discussion and are therefore omitted.
They are reported in the working paper version of the paper.
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TABLE 3
EMPIRICAL FREQUENCY OF 95% CONFIDENCE SET TYPES: k= 1, p = 0.99*
T=0
Interval Type AR LM LR Wald
[ —o0, —o0] 84.7% 84.8% 84.4% 0.0%
Bo €[, alU[b, +x] 9.4% 9.4% 9.5% 0.0%
Bo & [—,a]l U[b, +o] 0.8% 0.8% 0.8% 0.0%
Bo €la, bl 0.6% 0.5% 0.6% 36.8%
By & la, bl 4.5% 4.5% 4.7% 63.2%
%] 0.0% 0.0% 0.0% 0.0%
Total Coverage 94.7% 94.7% 94.5% 36.8%
Total Unbounded 95.0% 95.0% 94.7% 0.0%
Median Width 0.6027 0.6017 0.5949 1.1782
7=0.1
Interval Type AR LM LR Wald
[—o0, 4] 0.0% 0.0% 0.0% 0.0%
By € [—, a] U[b, +] 81.3% 81.4% 80.8% 0.0%
By & [—»,a] U[b, +] 2.4% 2.4% 2.5% 0.0%
By €la, bl 13.4% 13.4% 13.7% 81.7%
Bo & la, bl 2.9% 2.9% 3.0% 18.3%
%] 0.0% 0.0% 0.0% 0.0%
Total Coverage 94.7% 94.7% 94.5% 81.7%
Total Unbounded 83.7% 83.7% 83.3% 0.0%
Median Width 2.1338 2.1504 2.1053 3.5100
T=1
Interval Type AR LM LR Wald
[ —o0, +o0] 0.0% 0.0% 0.0% 0.0%
By € [—,a] U [b, +o] 0.0% 0.0% 0.0% 0.0%
Bo &[—,a] U[b, +o] 0.0% 0.0% 0.0% 0.0%
Bo €la, bl 94.7% 94.7% 94.5% 94.5%
By & la, bl 5.3% 5.3% 5.5% 55%
%] 0.0% 0.0% 0.0% 0.0%
Total coverage 94.7% 94.7% 94.5% 94.5%
Total Unbounded 0.0% 0.0% 0.0% 0.0%
Median Width 0.4151 0.4161 0.4117 0.3918

*Number of simulations = 10,000; median width is computed for bounded confidence intervals.

Wald statistic depends on p and 7 in the weak instrument case. In the unidentified
(7= 0) case with p=0.99, Cy,,q covers the true value B,=1 in less than 37 per
cent of the samples and the sets Cy y, C| g, and C,g are unbounded with frequency
0.95. The results for the weak instrument case (77 = 0.1) are similar to the unidenti-
fied case. In the good instrument case (7= 1), all of the 95 per cent confidence sets
are bounded intervals with correct coverage frequency. The sets C p, Cpr, and Cug
are about the same length on average and Cy,4 is slightly shorter.

Next consider the size results for the nominally over identified, £ = 4, model. In
the unidentified and weakly identified cases with p=0.99 the actual coverage
frequencies of Cy,,y are 1.3 per cent and 14.5 per cent, respectively. By contrast,
Car has the correct coverage frequency regardless of instrument quality but is about
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TABLE 4
EMPIRICAL FREQUENCY OF 95% CONFIDENCE SET TYPES: k = 4, p = 0.99*
7=1(0,0,0,0)
Interval Type AR LM! LM*  LMSW LR! LR* LRSY  wald
[ —o0, +o0] 839% 421% 91.7% 91.7% 45.0% 912% 83.8% 0.0%

BoEl—=,alU[b, +o] 10.7% 11.6% 3.3% 33% 30.3% 6.1% 7.4% 0.0%
Bo&E[—=,alU[b, +] 0.7% 2.6% 0.6% 0.6% 2.5% 0.4% 0.7% 0.0%

By €la, bl 0.6% 3.3% 0.6% 0.6% 2.6% 0.4% 0.9% 1.3%
By &la,b] 40% 404% 3.7% 37% 19.7% 1.9% 74%  98.7%
%] 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Total Coverage 952% 570% 95.6% 956% 118% 91.7% 92.0% 1.3%
Total Unbounded 953% 563% 957% 957% 118% 917% 91.8% 0.0%

Median Width 0.7205 0.5195 09584 0.8164 0.4594 0.8239 0.8164 0.3273

w=1(0.1,0,0,0)'
Interval Type AR Mt LM* LMY LR LR* LRSW  Wald
[, +o] 00% 95% 33.6% 336% 00% 00% 00% 00%

BoE€l—=,alU[b, +»] 888% 326% 56.6% 56.6% T19.7% 91.8% 82.2% 0.0%
Bo&[—=,alU[b, +] 22% 3.0% 0.5% 0.5% 2.5% 0.1% 0.4% 0.0%

By €la, bl 64% 24.0% 6.6% 5.6% 14.5% 19% 141% 145%
Bo & [a, b] 1.6% 30.8% 2.7% 3.7% 3.3% 0.2% 33% 855%
1G] 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Total Coverage 952% 661% 968% 958% 942% 99.7% 963% 14.5%
Total Unbounded  91.0% 45.1% 908% 90.8% 822% 979% 82.6% 0.0%

Median Width 21651 0.8594 19308 1.6683 2.0570 3.2267 1.6683 0.5449

7=(1,0,0,0)
Interval Type AR LMm! LM*  LMSY  IR! LR* LR  wald
[ —o0, +0] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

By el—=,alU[b, +=] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
By &[—=,a]U[b, +»] 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

By €la, bl 952% 945% 99.71% 945% 94.6% 99.71% 94.6% 91.6%
Bo & la,b] 2.5% 5.5% 0.3% 5.5% 5.4% 0.3% 5.4% 8.4%
1G] 2.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Total Coverage 952% 945% 99.7% 945% 94.6% 99.7% 94.6% 91.6%
Total Unbounded 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Median Width 0.5765 0.3967 0.6849 03967 04115 0.6991 03967 0.3747

*Numbers of simulation = 10,000. Median width is computed for bounded confidence intervals.
Superscripts ‘1’ and ‘4’ indicate that confidence sets are computed using x2(1;0.95) and y2(4;0.95).
The superscript ‘SW’ indicates switching statistic computed using x2(1;0.95) if F,_,> F(4,96;
0.95); x2(4;0.95) if F,_, < F(4,96; 0.95).

50 per cent larger, on average, than Cy,,4 in the good instrument case. Interestingly,
Cr is empty about 2 per cent of the time in the good instrument case and is empty
slightly less frequently in the other cases. In the unidentified and weak instrument
cases, the sets Cyy; and Cpx computed using x3s(1) have actual coverage frequen-
cies less than 0.95 for all values of p. The sets Cy,; and C;x based on y2s(4) have
actual frequencies of at least 0.95 in all cases, and this supports the use of x2(4) as a
bounding distribution for the LM and LR statistics in finite samples. In all cases,
Cpum and Cjy are very close to C,g. Finally, The sets Cy; and Cyy using x2s(1) or
X35(4) based on a pretest of the significance of the first stage regression perform
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TABLE 5
EMPIRICAL POWER OF TEST STATISTICS: k=1, w=1*
p=10.99

Wald AR LM LR
B=—-1.00 1.00 1.00 1.00 1.00
B=-0.75 1.00 1.00 1.00 1.00
B= —0.50 1.00 1.00 1.00 1.00
B=—-025 1.00 1.00 1.00 1.00
B=0.00 1.00 1.00 1.00 1.00
B=+025 1.00 1.00 1.00 1.00
B= +0.50 1.00 1.00 1.00 1.00
B=+0.75 0.83 0.92 0.92 0.92
B= +1.00 0.05 0.05 0.05 0.05
B=+1.25 0.64 0.51 0.51 0.52
B= +1.50 0.97 0.92 0.92 0.93
B=+175 1.00 0.99 0.99 0.99
B=+2.00 1.00 1.00 1.00 1.00
B=+225 1.00 1.00 1.00 1.00
B=+2.50 1.00 1.00 1.00 1.00
B=+2.75 1.00 1.00 1.00 1.00
B=+3.00 1.00 1.00 1.00 1.00

p=0.50

‘Wald AR LM LR
B= —1.00 1.00 1.00 1.00 1.00
B=—-0.75 1.00 1.00 1.00 1.00
B=—0.50 1.00 1.00 1.00 1.00
B=—-025 1.00 1.00 1.00 1.00
B=0.00 1.00 - 1.00 1.00 1.00
B= 4025 1.00 1.00 1.00 1.00
B = +0.50 1.00 1.00 1.00 1.00
B = +0.75 0.73 0.79 0.79 0.79
B = +1.00 0.06 0.06 0.06 0.06
B=+1.25 0.67 0.56 0.56 0.57
B= +1.50 0.99 0.97 0.97 0.97
B=+175 1.00 1.00 1.00 1.00
B= +2.00 1.00 1.00 1.00 1.00
B=+2.25 1.00 1.00 1.00 1.00
B=+2.50 1.00 1.00 1.00 1.00
B=+2.75 1.00 1.00 1.00 1.00
B=+3.00 1.00 1.00 1.00 1.00

p=0

Wald AR LM LR
B=—-1.00 1.00 1.00 1.00 1.00
B=-0.75 1.00 1.00 1.00 1.00
B=-050 1.00 1.00 1.00 1.00
B=-025 1.00 1.00 1.00 1.00
B=0.00 1.00 1.00 1.00 1.00
B=+0.25 1.00 1.00 1.00 1.00
B= +0.50 1.00 1.00 1.00 1.00
B=+0.75 0.68 0.66 0.66 0.66
B= +1.00 0.05 0.05 0.05 0.05
B= +1.25 0.71 0.68 0.68 0.68
B=+1.50 1.00 0.99 0.99 0.99
B=+1.75 1.00 1.00 1.00 1.00
B=+2.00 1.00 1.00 1.00 1.00
B= +2.25 1.00 1.00 1.00 1.00
B= 4250 1.00 1.00 1.00 1.00
B=+2.75 1.00 1.00 1.00 1.00
B=+3.00 1.00 1.00 1.00 1.00

*Number of sumulations = 1,000
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TABLE 6
EMPIRICAL POWER OF TEST STATISTICS: k = 4, 7= (1,0,0,0)*
p=10.99

Wald AR LR! LR* LRSWY LM! LM* LMSW
B=—1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=-0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=—-050 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=-025 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=10.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+025 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+0.75 0.74 0.75 0.92 0.58 0.92 0.85 0.41 0.85
B= +1.00 0.08 0.05 0.05 0.01 0.05 0.06 0.00 0.06
B=+125 0.75 0.30 0.52 0.14 0.52 0.61 0.18 0.61
B= +1.50 0.98 0.75 0.93 0.58 0.93 0.95 0.65 0.95
B=+175 1.00 0.93 0.99 0.86 0.99 0.99 - 0.89 0.99
B=+2.00 1.00 0.98 1.00 0.97 1.00 1.00 0.98 1.00
B=+225 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+2.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p=0.50

Wad AR LR' LR LR IM!'  IM* LMV
B=—1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=-0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=-050 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=—-025 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+0.50 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00
B=+0.75 0.69 0.57 0.78 0.37 0.78 0.73 0.29 0.73
B=+1.00 0.06 0.05 0.06 0.01 0.06 0.06 0.00 0.06
B=+125 0.73 0.34 0.57 0.16 0.57 0.64 0.18 0.64
B=+1.50 0.99 0.85 0.96 0.71 0.96 0.98 0.74 0.98
B=+175 1.00 0.98 1.00 0.96 1.00 1.00 0.97 1.00
B=+2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+225 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+275 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B= +3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p=0

Wald AR LR! LR* LRW IM! - LM' LM%V
B=—1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=-0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=—0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=—0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -
B=+050 1.00 0.96 1.00 0.91 1.00 1.00 0.92 1.00
B=+0.75 0.69 0.44 0.66 0.25 0.66 0.67 0.23 0.67
B=+1.00 0.05 0.05 0.06 0.00 0.06 0.05 0.00 0.05
B=+125 0.72 0.43 0.68 0.22 0.68 0.69 0.20 0.69
B=+150 1.00 0.96 0.99 0.90 0.99 1.00 0.90 1.00
B=+175 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+225 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+250 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B=+275 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
B= +3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

*Numbers of simulation = 1 ,000. Power is not size adjusted. Superscripts ‘1’ and ‘4’ indicate
that confidence sets are computed using x x2(1;0.95) and x2(4;0.95). The superscnpt ‘SW’ indi-
cates switching statistic computed using x*(1;0.95) if F,_,> F(4,96; 0.95); x2(4;0.95) if F,_, <
F(4,96; 0.95).
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much better than the sets based solely on y32s(4). They have approximately correct
coverage frequencies in all cases and in the good instrument case they are shorter,
on average, than C,y and are very close to the sets based on y3s(1) and Cyyyg-
Hence, pretesting on the first stage does not adversely affect the size of the LM or
LR statistics.

Now consider the issue of power.® For the weak instrument cases, the Wald test is
severely size distorted and the tests based on LM, LR, and AR are not consistent,
which is to be expected since with weak instruments B is nearly nonidentified, and
so power comparisons amongst these statistics are not particularly meaningful. With
good instruments, however, these tests have approximately the correct size and are
consistent so power comparisons are informative. When k =1, the powers of the
LM, LR, and AR statistics are very similar and are also nearly identical to the power
of the Wald test.® Differences in test power occur when k > 1 and instruments are
good. The powers for the Wald statistic are symmetric in B, but the powers of the
AR, LR, and LM tests are asymmetric when p # 0. The powers of Wald, LR gy, and
LMy are very close and are higher than the power of AR. AR has higher power
than LR and LM if the y?(4) bounding distribution is used.

7. WHY DO TRADITIONAL WALD CONFIDENCE
INTERVALS PERFORM SO POORLY?

With a large enough sample, asymptotic distribution theory approximates actual
sampling distributions and should provide a good guide to inference. Having ob-
served the failure of Wald based inference, it is natural to conclude the problem is
that the distribution N( B, s, 6 >(x'P,x)~") does a poor job of approximating the
true sampling distribution. Curiously, it’s just the other way around. The reported
distribution represents the sampling distribution quite accurately, but with weak
instruments and significant endogeneity the sampling distribution is highly concen-
trated and is not located particularly near the true parameter (See Phillips 1989 and
Nelson and Startz 1990a). We illustrate the problem in two ways, first by looking
more closely at the likelihood function, and then by comparing the actual and
reported sampling distributions.

Return to Figure 2, which shows the Wald statistic and the LR statistic, the latter
being the log-likelihood function less a constant. The apparently flat likelihood
function actually has a very sharp peak around BAZSLS' The Wald statistic does a good
job of approximating this peak. Inference does not work very well because while the
peak in the likelihood function is very sharp, there is very little mass under it.

Turn now to the question of how well the sampling distribution is approximated
by N(B,sis» 621 s(x'P,x)~ 1. There are both series and closed form expressions for

the density of g in quite general situations (See Sawa 1969 and Phillips 1983). These
expressions do not lend themselves to easy interpretation. However, Phillips (1989)

8The reported power results are not size adjusted. This mainly affects the Wald statistic since the
actual sizes of the AR, LR, and LM statistics are close to the nominal size.

’We note that Maddala (1974) has previously studied the power of the AR test and shown it to be
comparable to the power of the Wald test in just identified models with good instruments.
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FIGURE 7

COMPARISON OF EXACT AND ASYMPTOTIC DISTRIBUTION OF é2SLS

and Staiger and Stock (1997) give the following expression for the exact distribution
of B, s in the completely unidentified case of (1)—(3).

~ n
©) BZSLSEB+0+W'tk

where = denotes equivalence in distribution, 6= po, /0, n=(1 - p»°** 0,/0,, and
t, denotes a Student-# random variable with k degrees of freedom. Figure 7 shows
both the exact distribution and the normal approximation evaluated at the median
values of B,q ¢ and its associated asymptotic standard error from two unidentified
models based on the Monte Carlo design used in Sections 5 and 6. In both cases the
reported distribution is quite close to the true distribution, differing mostly in that
the true distribution (which is somewhat Cauchy-like) has fatter tales. The problem
with inference arises in the case of strong endogeneity because the distribution is
centered near the point of concentration. When p = 0 there is no endogeneity and
the distribution is approximately median unbiased, which is consistent with the result
reported in Nelson and Startz (1990a).
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To understand why Wald-based confidence intervals can be misleadingly small,
consider the density in (9) as p — 1, the worst possible case. Here 6 — o, /0, and
1 — 0 so that the density is zero except for a spike. at ézsm =B + o,/0,. Given that
the estimator collapses to the point of concentration, one can write the instrumental
variable residuals as y — éZSLSx =y—(B+0,/0,)x=u—0,/0,x. But in this case
x=v and u = 0, /0,0, o the residuals collapse to zero. Since 6% is just the mean
sum squared residuals, it too collapses to zero. Thus the Wald confidence intervals,
based on &ZZSLS, are far too small. In contrast, the LM, based on &02, is immune to
this problem. '

The linkage between the first-stage fit and the sampling distribution of both
instrumental variables estimators and test statistics has led many practitioners to an
informal pre-test rule: if the first-stage is ‘significant’ proceed with instrumental
variable estimation and Wald-based inference. The logic is that if the first-stage is
significant, then it is very unlikely that the model is unidentified. Nelson and Startz
(1990b) advise that checking for the first-stage TR? > 2 is a useful diagnosis. Hall et
al,, (1996) performed an extensive Monte Carlo analysis of Wald-based inference
using pre-test rules like the one suggested by Nelson and Startz (1990b), and found
no clear benefits from pre-testing for the problem of choosing among a possible set
of instruments. They also investigated the performance of Wald-based inference
conditional on the outcome of a pre-test for instrument relevance with a given
instrument set, and again found no clear benefits from pre-testing. The poor
performance of Wald-based inference in this context is due to the ill behaved
distribution of the Wald statistic conditional on the realized value of a pre-test
statistic when instruments are weak. The conditional distributions of the LM and LR
statistics are better behaved and lead to more accurate inferences. To illustrate we
ran a Monte Carlo experiment similar to the one reported in Section 6 of Hall et al.,
(1996). Table 7 reports actual coverage probabilities of the Wald, LM and LR 90 per
cent confidence intervals with and without regard to the outcome of a pre-test on

TABLE 7
ACTUAL COVERAGE PROBABILITIES OF 90% CONFIDENCE INTERVALS
(k =1, T =100, test level = 0.10, 7= 0.1, p = 0.9)*

Wald LR LM
P(cover and P significant) 0.119 0.207 0.209
P(cover and ® not significant) 0.683 0.688 0.689
P(no cover and P significant) 0.148 0.055 0.054
P(no cover and P not significant) 0.051 0.050 0.049
P(cover) 0.801 0.895 0.897
P(no cover) 0.199 0.105 0.103
P(® significant) 0.267 0.262 0.262
P(® not significant) 0.733 0.738 0.738
P(cover | @ significant) 0.445 0.789 0.796
P(no cover | ® significant) 0.555 0211 . 0.204
P(cover | @ not significant) 0.931 0.932 0.934
P(no cover | ® not significant) 0.069 0.068 0.066

*® denotes a pre-test statistic for the significance of the first stage
regression. For the Wald, ® is the Hall, Rudebusch, Wilcox LR statistic;
for LM, @ is the LM, _, statistic; for LR, ® is the F,_, statistic.
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the significance of the first stage regression. Unconditionally, the Wald, LM and LR
intervals have coverage rates of 0.80, 0.90 and 0.89, respectively. Conditional on a
significant first stage, however, these rates are 0.44, 0.80 and 0.79.

8. CONCLUSIONS

Our principal findings for confidence regions and inference in the presence of
weak instruments and strong endogeneity are as follows:

(1) Wald-based confidence regions perform poorly in the sense that they lead to
the wrong conclusion. The probability they reject the null is far greater than their
nominal size. They are too narrow and the probability that they cover the true
parameter value is much lower than the stated level.

(2) The confidence region proposed by Anderson and Rubin (1949) and confi-
dence regions formed by inverting Lagrange multiplier (LM) and likelihood ratio
(LR) statistics may be bounded intervals, empty, cover unbounded regions on the
real line or cover the entire real line. These regions are unbounded when the first
stage regression is not significant. While unfamiliar, the results of Dufour (1997)
indicate such confidence regions are appropriate in the case of near nonidentifica-
tion.

(3) While the AR test is defined only for the full set of structural coefficients, the
LM and LR statistics can be defined for individual coefficients. Also, the AR
statistic is based on an explicit joint test of restrictions on the structural parameters
and of the validity of the identifying restriction, whereas the LM and LR statistics
only explicitly test the restrictions on the structural parameters.

(4) The practice of conducting an informal pre-test based on the significance of
the first-stage regression and then using the Wald statistic can be worse than not
doing a pre-test. Pretesting and then using the LM or LR statistics can increase the
power of these tests relative to the AR statistic without greatly distorting the sizes of
the tests.

(5) The poor performance of Wald-based inference can be understood in part as
arising from the bias of the instrumental variable estimator, leading to an underesti-
mate of the variance of the structural parameter. Estimating the variance of the
structural errors under the null leads to more accurate inference.

The results in this paper are specific to the case of one endogenous right-hand-side
variable. The extension to the multiple endogenous variable case is straightforward
in principle but not in practice, and is the focus of our future research.

APPENDIX

The AR, LR, and LM confidence sets are determined by finding all values of 8,
that satisfy (8), and the set will be unbounded if the coefficient a in (8) is less than
Zer10.
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Part (a): Here a =x'[1 — ¢psg M, 1x where ¢pr =1+ F,_ (k,T—k)-(k/T —k).
Now a <0 if (x'x)/(x'Mx) < ¢,r which can be rearranged to give the condition
F (x'x—x'Myx)/k

=0 x!Myx/T—k

<F_,(k,T-k).

Part (b): Here a =x'[I — ¢y x-M,1x where ¢, =exp{ x?_ ,(1)/T} k. Now a <0
if (x'x)/(x'Myx) < ¢ . After some simple manipulations, we obtain the equivalent
condition

- k

'x—x'Myx)/k  (T—k 2D
S LY WENCT )

Part (c): Here a =x'[P; — ¢y I]x where £=P,x and ¢ = x7_,(1)/T. Then
a<0 if x'Pyx/x'x < ¢y, which is equivalent to the condition T-R%.=T-
(x'Pyx/x'x) < x2_ (.
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