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1 Maximum Likelihood Estimation

1.1 The Likelihood Function

Let Xj,..., X, be an iid sample with probability density function (pdf) f(z;;0),
where 0 is a (k x 1) vector of parameters that characterize f(z;;0). For example, if
X;"N(p,0?) then f(z40) = (2m0%) 2 exp(—555(z — p)?) then 0 = (p,0?). The
joint density of the sample is, by independence, equal to the product of the marginal

densities
n

fl@y,. o m050) = f(2150) - f2n;0) = [ £ 0).

=1

The joint density is an n dimensional function of the data xy,...,z, given the pa-
rameter vector 0. The joint density' satisfies
flzy,...,z0;0) > 0

/---/f(a:l,...,a:n;Q)datl---da:n = 1

The likelihood function is defined as the joint density treated as a functions of the

parameters 0 :

n

LO|xy, ..., x,) = fxg, ..., 20;0) = Hf(a:,,@)

=1

Notice that the likelihood function is a k dimensional function of # given the data
Z1,...,Ty. It 18 Important to keep in mind that the likelihood function, being a
function of 6 and not the data, is not a proper pdf. It is always positive but

/---/L(Q[a:l,...,a:n)d61---d6k7é1.

Yf X, ..., X, are discrete random variables, then f(zq,...,2,;0) = Pr(X1 = zy,..., Xy = )
for a fixed value of 6.




To simplify notation, let the vector x = (z1,...,z,) denote the observed sample.
Then the joint pdf and likelihood function may be expressed as f(x;0) and L(0]x).

Example 1 Bernoulli Sampling

Let X;” Bernoulli(#). That is, X; = 1 with probability § and X; = 0 with proba-
bility 1 — 8 where 0 < 6 < 1. The pdf for X; is

f(@s0) =6"(1—0)"", 2,=0,1

Let Xy,..., X, be an iid sample with X;~ Bernoulli(#). The joint density /likelihood

function is given by
f(x;0) = L(0]x) = Hemz — O)1 T = X (1 - ) K

For a given value of 0 and observed sample z, f(x;0) gives the probability of observing
the sample. For example, suppose n = 5 and z = (0,...,0). Now some values of ¢
are more likely to have generated this sample than others. In particular, it is more
likely that € is close to zero than one. To see this, note that the likelihood function

for this sample is

This function is illustrated in figure xxx. The likelihood function has a clear maximum
at @ = 0. That is, 0 = 0 is the value of 0 that makes the observed sample z = (0,. .., 0)
most likely (highest probability)

Similarly, suppose x = (1,...,1). Then the likelihood function is

L|1,...,1)) =6

which is illustrated in figure xxx. Now the likelihood function has a maximum at

0=1.
Example 2 Normal Sampling

Let Xi,..., X, be an iid sample with X;”"N(u, 0%). The pdf for X is

1
f(a:;@):(27r02)1/2exp<—ﬁ(a:—u)2>, —co<p<oo, 02>0, —oo< <00
o

so that 6 = (p,0?). The likelihood function is given by

n

Lol = [Tro?) ey (o - )

i—1
1 n
— 9 2\—n/2 o
(27o?) exp( 5 Z )
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Figure xxx illustrates the normal likelihood for a representative sample of size n = 25.
Notice that the likelihood has the same bell-shape of a bivariate normal density
Suppose 02 = 1. Then

B0la) = k) = (2m) " exp (5 3o =)

=1

so that
1 n
o) = (o) " exp (3 |30 o 4 nta =
i—1
Since both (z; — Z)? and (T — p)? are positive it is clear that L(u|z) is maximized at
p = Z. This is illustrated in figure xxx.

Example 3 Linear Regression Model with Normal Errors
To be completed

Example 4 AR(1) model with Normal Frrors

To be completed

1.2 The Maximum Likelihood Estimator

Suppose we have a random sample from the pdf f(z;;0) and we are inteested in
estimating 6. The previous example motives an estimator as the value of 6 that
makes the observed sample most likely. Formally, the maximum likelihood estimator,
denoted 9mle, is the value of @ that maximizes L(0|x). That is, 9mle solves

max L(0|x)

It is often quite difficult to directly maximize L(f|x). It usually much easier to
maximize the log-likelihood function In L(f|x). Since In(+) is a monotonic function the
value of the @ that maximizes In L(6|x) will also maximize L(0|x). Therefore, we may
also define 9mle as the value of 6 that solves

max In L(0]x)



With random sampling, the log-likelihood has the particularly simple form

In L(0|x) = In (f[lf(a:,, 9)) = anln f(zs;0)

Since the mle is defined as a maximization problem, we would like know the
conditions under which we may determine the mle using the techniques of calculus.
A regular pdf f(x;0) provides a sufficient set of such conditions. We say the f(z;0)
is regular if

1. The support of the random variables X, Sy = {z : f(z;0) > 0}, does not
depend on 6

2. f(x;0) is at least three times differentiable with respect to ¢

3. The true value of # lies in a compact set ©

If f(x;0) is regular then we may find the mle by differentiating In L(6|x) and
solving the first order conditions

AIn L(O e |x)
0

Since 0 is (k x 1) the first order conditions define k, potentially nonlinear, equations

in k£ unkown values: A
8lnL(e'rnle‘x)

Oln L(Omie|x) 0
89 Oln L(émle\x)
905

The vector of derivatives of the log-likelihood function is called the score vector
and is denoted

dln L(0|x)
Olx) = T
S(o) = 20
By definition, the mle satisfies X
S(lee’X) =0

Under random sampling the score for the sample becomes the sum of the scores for
each observation z; :

(0o = 3 LI 3 s(0ja

=1 =1

where S(0|x;) = %(;“9) is the score associated with x;.

Example 5 Bernoulli example continued
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The log-likelihood function is

In L(Q’X) = In (QZ?:1 $Z<1 — Q)n*Z?:1 Cl?z)
- Zla: In(6) + (n - Za:) In(1 — 0)

i=1
The score function for the Bernoulli log-likelihood is

dln L(0|x)

1 n
0 —_— == E ——|n—- E i
S = 90 8 —1 (n . )
The mle satisfies S (@mlelx) = 0, which after a little algebra, produces the mle

mle = Z HER

Hence, the sample average is the mle for 8 in the Bernoulli model.
Example 6 Normal example continued

Since the normal pdf is regular, we may determine the mle for § = (u,0?) by
maximizing the log-likelihood

In L(0]x) = —%111(2%) — %111(02) — —z:(al:Z — )k

The sample score is a (2 x 1) vector given by

91n L(0]x)
S(0|x) = ( aln%fe\x) )

do?
where
dln L(0|x) 1 &
— = 5> (m—p
o 02;
dln L(0|x) _ o L o og EPRY
~er 5(0) +§(U) Z(% 1)

Note that the score vector for an obervation is

Aln f(6|x;) 2\—1
_{ —an ) _ o?) " Hw; — p)
S(QIJ%‘) - ( 8111?59\1:1‘) ) - ( _%(02)71 + %(02)—2<xi _M)Q )

902

so that S(0|x) = 37, S(0|;).



Solving S(Omie|x) = 0 gives the normal equations

AIn L(Opmie|x) 1 & A
- 5. = = (ajl — My e) =0
al’b O_gnle ZZ:; l
OJln L(@mlelx) n. . B 1, 5 o .
T - _§<O_$nle> ! + 5(0_%7,[6) ? Z(ajl - /J“mle)2 =0

Solving the first equation for f,,,. gives

1 n
Mmle:_i :ajl:aj
"

Hence, the sample average is the mle for p. Using fi,,,. = T and solving the second

. ~9 .
equation for o, ,, gives

n
2 1

Grge = — Z:(al:Z — )%

i
Notice that &2, is not equal to the sample variance.
Example 7 Linear regression example continued

to be completed

1.3 Properties of the Score Function

The matrix of second derivatives of the log-likelihood is called the Hessian

8% 1n L(0]x) 8% 1n L(0|x)
=% ., —=uF
HOla) 5% 1n L(0]z) %% 000k
X)) = —/ = : .. :
0000 3% 1n L(6]x) 8% In L(9]x)
d0r001 807

The information matrixz is defined as minus the expectation of the Hessian

1(0|z) = —E[H(0]2)]

If we have random sampling then

n 82 In 8&71 n
) = Y T = 3 (0l

i—1
and

I(0]z) = ZE (0|z;)] = —nE[H(0|x;)] = nl(0|x;)

The last result says that the sample information matrix is equal to n times the
information matrix for an observation.

The following proposition relates some properties of the score function to the
information matrix.



Proposition 8 Let f(x;;0) be a regular pdf. Then
1. BE[SO|x;)] = [S(0)x;) f(xs;0)dx; =0
2. If 4 is a scalar then
var(S(0)z;) = B[S(0]2:)?) = / S(0]2)2 f (25; 0)dzs = 1(0])
If 6 is a vector then

var(S(0|z;) = E[S(0|x;)S(0]x)] = /S(Q]a:i)S(Qla:)’f(ati; 0)dz; = 1(0|x)

Proof. For part 1, we have
BISO) = [ S0z (5 0)da

B Oln f(x;;0) ’

19
-/ 0y g7 i O (@i O)da

0

0

0
— %.1

= 0.

The key part to the proof is the ability to interchange the order of differentiation and
integration.

For part 2, consider the scalar case for simplicity. Now, proceeding as above we
get

E[S0]2,)?Y] = /S(eyxi)Qf(xi;e)dxi:/(%W)Qf(xi;e)d%

= /(ﬁ%f@i;e)yjf(%e)d% :/ﬁ (%f@i;e)yd%

Next, recall that I(0]x;) = —E[H(0|x;)] and

&% 1n f(z;;0)

—E[HO) =~ [



Now, by the chain rule

32 0 1 0

o 2 o
= —f(z:;;0)? (agf(% 9)) + [z 9)’1Wf(aﬁi; 0)

Then

—E[H(0]z;)] = —/[—f(a%‘;@)Q (aagf(% )) +f($i39)1%f($i39)] f (@ 0)d;

2 82
- [rwn (5 f(%ﬁ)) da— [ 21w O

= [S i2 882/f 3717 dxz
= B[S(0]z:)"]

1.4 Concentrating the Likelihood Function

In many situations, our interest may be only on a few elements of 6. Let 0 = (61,0)
and suppose 01 is the parameter of interest and 0, is a nuisance parameter (parameter
not of interest). In this situation, it is often convenient to concentrate out the nuisance
parameter #y from the log-likelihood function leaving a concentrated log-likelihood
function that is only a function of the parameter of interest 6.

To illustrate, consider the example of iid sampling from a normal distribution.
Suppose the parameter of interest is ¢ and the nuisance parameter is o2. We wish to
concentrate the log-likelihood with respect to 02 leaving a concentrated log-likelihood
function for u. We do this as follows. From the score function for 62 we have the first
order condition

dIn L(0]x) o9y 2\—2 2
gz = @) +5() D (zi—p)’ =0

Notice that any value of o?(u) defined this way satisfies the first order condition

%@x) = 0. If we substitute o%(p1) for 02 in the log-likelihood function for 6 we get

the following concentrated log-likelihood function for p :
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(z; — M)2> > (z— p)?

(In(27) + 1) — gln (% zn;@; - ,m)

Now we may determine the mle for 2 by maximizing the concentrated log-likelihood
function In I?(p|z). The first order conditions are

8111 LC(ﬂmle’aj) — Z? 1( Mmle) =0

o % ST = flypge)?

which is satisfied by f,,,, = Z provided not all of the x; values are identical.

For some models it may not be possible to analytically concentrate the log-
likelihood with respect to a subset of parameters. Nonetheless, it is still possible
in principle to numerically concentrate the log-likelihood.

1.5 The Precision of the Maximum Likelihood Estimator

The likelihood, log-likelihood and score functions for a typical model are illustrated
in figure xxx. The likelihood function is always positive (since it is the joint density
of the sample) but the log-likelihood function is typically negative (being the log of
a number less than 1). Here the log-likelihood is globally concave and has a unique
maximum at .. Consequently, the score function is positive to the left of the
maximum, crosses zero at the maximum and becomes negative to the right of the
maximumn.

Intuitively, the precision of Oumie depends on the curvature of the log-likelihood
function near lee If the log-likelihood is very curved or “steep” around lee, then
0 will be precisely estimated. In this case, we say that we have a lot of information
about . On the other hand, if the log-likelihood is not curved or “flat” near 9mle,
then 6 will not be precisely estimated. Accordingly, we say that we do not have much
information about 6.

The extreme case of a completely flat likelihood in @ is illustrated in figure xxx.
Here, the sample contains no information about the true value of # because every
value of 8 produces the same value of the likelihood function. When this happens we
say that 6 is not identified. Formally, € is identified if for all 8, # 65 there exists a
sample x for which L(0,|x) # L(02]x).

The curvature of the log-likelihood is measured by its second derivative (Hessian)
H(0]x) = %. Since the Hessian is negative semi-definite, the information in
the sample about ¢ may be measured by —H (0|x). If 0 is a scalar then —H (0]x) is
a positive number. The expected amount of information in the sample about the



parameter ¢ is the information matrix I(6|x) = —FE[H(0|x)]. As we shall see, the
information matrix is directly related to the precision of the mle.

1.5.1 The Cramer-Rao Lower Bound

If we restrict ourselves to the class of unbiased estimators (linear and nonlinear)
then we define the best estimator as the one with the smallest variance. With linear
estimators, the Gauss-Markov theorem tells us that the ordinary least squares (OLS)
estimator is best (BLUE). When we expand the class of estimators to include linear
and nonlinear estimators it turns out that we can establish an absolute lower bound
on the variance of any unbiased estimator 0 of 0 under certain conditions. Then if an
unbiased estimator @ has a variance that is equal to the lower bound then we have
found the best unbiased estimator (BUE).

Theorem 9 Cramer-Rao Inequality

Let Xy,..., X, be an iid sample with pdf f(z;0). Let 0 be an unbiased estimator
of 0; i.e., E[0] = 0. If f(x;0) is regular then

var(0) > 1(0]x) "

where I(0|z) = —E[H(0|x)] denotes the sample information matrix. Hence, the
Cramer-Rao Lower Bound (CRLB) is the inverse of the information matrix. If 6 is a
1

vector then var(0) > I(0]x)~' means that U@T(Q) I(0)z) is positive semi definite.

Example 10 Bernoulli model continued

To determine the CRLB the information matrix must be evaluated. The infor-
mation matrix may be computed as

1(0|z) = —E[H(0]2)]

or

I(0|x) = var(S(0|x))

Further, due to random sampling 1(0|x) = n - [(0]x;) = n - var(S(0|x;)). Now, using
the chain rule it can be shown that

d d x; — 0
H(Olz:) = —5500lz) = — (M)

B 0(1—0)

10



The information for an observation is then

1(0)z;) = —E[erxi)]:1+E[5<9’§2>11:82)9E[S<91xi>]

0(1—0)

since Ble) — 6 00
E[S(0)x:)] = 0(1—0) 0(1—0)

=0

The information for an obervation may also be computed as

1(0|z;) = war(S(0|x;) =var (QQ(E; : Z))

var(x;) _ 6(1—0)
0’1 —0)2  0°(1—0)?
1
(1 — 0)

The information for the sample is then

I(0|z) =n-1(0)z;) = 30

and the CRLB is
6(1—0)

T

CRLB = I(0]z) ' =

This the lower bound on the variance of any unbiased estimator of 6.
Consider the mle for 6, 0,,,. = Z. Now,

E[émle] = E[a_j] =0
o(1 — 0)

T

var(Ome) = wvar(z) =

Notice that the mle is unbiased and its variance is equal to the CRLB. Therefore,

O mie 1s efficient.
Remarks

~

e If ) =0 or § =1 then I(f|z) = oo and var(fme) = 0 (why?)

1

e [(0]z) is smallest when 0 = 5

e As n — oo, I(0|x) — oo so that var(@mle) — 0 which suggests that Opmie 1S
consistent for 6.

11



Example 11 Normal model continued

The Hessian for an observation is

H(0]2) = 0? 1253%’“9) _ 85299!/%) = ( Z:E‘%:: Zz%}%z; )
020y a(e?)?
Now
*“Ilaf_f@ = ()"
W — (o)) (s — p)
%ﬁs@ = (o) (z; — p)
W _ %(&)2— (0%) (i — )
so that
I(0|lz;)) = —FE[H(0|x;)]

Using the results®

we then have

and the CRLB is

CRLB = 1(0|z) ' = ( g 284 )

n

Q(xi — M)Q /0? is a chi-square random variable with one degree of freedom. The expected value
of a chi-square random variable is equal to its degrees of freedom.

12



Notice that the information matrix and the CRLB are diagonal matrices. The CRLB

for an unbiased estimator of pu is %2 and the CRLB for an unbiased estimator of o2

. 4
is 22—
g 2
The mles for p and o* are

/lmle =

. 1

O_gn,le = _Z<$Z /J“mle)2

nz:l
Now
E[ﬂmle] = K
—1

Blot.) = 0

so that fi,,, is unbiased whereas 62, is biased. This illustrates the fact that mles

are not necessarily unbiased. Furthermore,

2

var(f,e) = % = CRLB

and so fi,,,, is efficient.
The mle for 02 is biased and so the CRLB result does not apply. Consider the

unbiased estimator of o2 .
1
2

s = > (x; —3)°

n—1:=

Is the variance of s? equal to the CRLB? (To be continued)
Remarks

e The diagonal elements of I(f]x) — co as n — oo
e [(]x) only depends on o?

1.6 Invariance Property of Maximum Likelihood Estimators

One of the attractive features of the method of maximum likelihood is its invariance
to monotonic transformation of the parameters of the log-likelihood. That is, if 0,

is the mle of 6 and o = h(0) is a monotonic function of 6 then Gy = h(Ome) is the
mle for a.

Example 12 Normal Model Continued
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The log-likelihood is parameterized in terms of 4 and 0% and we have the mles

Pmie = &
9 1
O_ —_—
l
mle n

Suppose we are interested in the mle for ¢ = h(0?) = (02)"/2. The invariance property

) X . 1/2
says that 0., = (Ufnle)l/2 = (% v (x— Mmle)Q) .
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